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PREFACE 

THE mathematical treatment of the principles of mathematics, which is 

the subject of the present work, has arisen from the conjunction of two 

different studies, both in the main verv modern. On the one hand we have 

the work of analysts and geometers, in the way of formulating and systematising 

their axioms, and the work of Cantor and others on such mutters as the theory 

°f aggregates. On the other hand we have symbolic logic, which, after a 

necessary period of growth, has now, thanks* to Peano and his followers, 

acquired the technical adaptability and the logical comprehensiveness that arc 

essential to a mathematical instrument for dealing with what have hitherto 

been the beginnings of mathematics. From the combination of these two 

studies two results emerge, namely (1) that what were formerly taken, tacitly 

or explicitly, as axioms, are either unnecessary or demonstrable; (2) that the 
same methods by which supposed axioms arc demonstrated will give valuable 

results in regions, such as infinite number, which had formerly been regarded 

as inaccessible to human knowledge. Hence the scope of mathematics is 

enlarged both by the addition of new subjects and by a backward extension 

into provinces hitherto abandoned to philosophy. 

The present work was originally intended by us to be comprised in a 
second volume of The Principles of Mathematics. With that object in view, 

the writing of it was begun in 1900. But as we advanced, it became in¬ 

creasingly evident that the subject is a very much larger one than we had 
supposed; moreover on many fundamental questions which had been left 

obscure and doubtful in the former work, we have now arrived at what we 
believe to be satisfactory solutions. It therefore became necessary to make 

our book independent of The Principles of Mathematics. We have, however, 
avoided both controversy and general philosophy, and made our statements 

dogmatic in form. The justification for this is that the chief reason in favour 
of any theory on the principles of mathematics must always be inductive, 

i.e. it must lie in the fact that the theory in question enables us to deduce 
ordinary mathematics. In mathematics, the greatest degree of self-evidence 
is usually not to be found quite at the beginning, but at some later point; 

hence the early deductions, until they reach this point, give reasons rather 
for believing the premisses because true consequences follow from them, than 

for believing the consequences because they follow from the premisses. 

In constructing a deductive system such as that contained in the present 

work, there are two opposite tasks which have to be concurrently performed. 
On the one hand, we have to analyse existing mathematics, with a view 

to discovering what premisses are employed, whether these premisses are 
mutually consistent, and whether they are capable of reduction to more 
fundamental premisses. On the other hand, when we have decided upon our Sremisses, we have to build up again as much as may seem necessary of the 

ata previously analysed, and as many other consequences of our premisses 

as are of sufficient general interest to deserve statement. The preliminary 
labour of analysis does not appear in the final presentation, which merely 
sets forth the outcome of the analysis in certain undefined ideas and 
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undomonst rated prop>silions. It is not claimed that the analysis could not 

have hern carried farther: we have no reason to suppose that it is impossible 

to find simpler ideas and axioms by means of which those with which we 
start could be defined and demonstrated. All that is affirmed is that the 
ideas and axioms with which we start are sufficient, not that they are 

necessary. 

In making deductions from our premisses, we have considered it essential 
tocarry them up to the point where we have proved as much as is true in 
whatever would ordinarily lie taken for granted. Hut we have not thought 

it desirable to limit ourselves too strictly to this task. It is customary to 
consider only particular cases, even when, with our apparatus, it is just as 

easy to deal with the general case. For example, cardinal arithmetic is 
usually conceived in connection with finite numbers, but its general laws hold 

equally for infinite numbers, and are most easily proved without any mention 
of the distinction between finite and infinite. Again, many of the properties 

commonly associated with series hold of arrangements which are not strictly 
serial, but have only some of the distinguishing properties of serial arrange¬ 

ments. In such cases, it is a defect in logical style to prove fora particular 
class of arrangements what might just as well have been proved more generally. 
An analogous process of generalization is involved, to a greater or less degree, 
in all our work. Wo have sought always the most general reasonably simple 

hypothesis from which any given conclusion could be reached. For this reason, 
especially in the later parts of the l*»ok, the importance of a proposition 
usually lies in its hypothesis. The conclusion will often be something which, 

in a certain class of cases, is familiar, but the hypothesis will, whenever possible, 
be wide enough to admit many cases besides those in which the conclusion is 
familiar. 

We have found it necessary to give very full proofs, because otherwise it 
is scarcely possible to see what hypotheses are really required, or whether our 
results follow from our explicit premisses. (It must be remembered that we 

are not affirming merely that such and such propositions are true, but also 
that the axioms stated by us are sufficient to prove them.) At the same time, 
though full proofs are necessary for the avoidance of errors, and for convincing 
those who may feel doubtful as to our correctness, yet the proofs of propo¬ 

sitions may usually be omitted by a reader who is not specially interested in 
that part of the subject concerned, and who feels no doubt of our substantial 

accuracy on the matter in hand. The reader who is specially interested in 
some particular portion of the book will probably find it sufficient, as regards 
earlier portions, to read the summaries of previous parts, sections, and 

numbers, since these give explanations of the ideas involved and statements of 
the principal propositions proved. The proofs in Part I. Section A. however, 

are necessary since in the course of them the manner of stating prools is 
explained. The proofs ol the earliest propositions are given without the 
omission of any step, but as the work proceeds the proofs are gradually 

compressed, retaining however sufficient detail to enable the reader by the 
help of the references to reconstruct proofs in which no step is omitted. 

The order adopted is to some extent optional. For example, we have treated 
cardinal arithmetic and relation-arithmetic before series, but we might have 

treated senes first. To a great extent, however, the older is determined by 
logical necessities. J 
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A very largo part of the labour iuvolvotl in writing tin* pivsrnt work lias 

boon expended on the contradictions and paradoxes which have inlivlvd logic 

and the theory of aggregates. We have examined a great number of hypo¬ 

theses for dealing with these eontradictions; many such hypotheses have been 

advanced by others, and about as many have been invented by ourselves. 

Sometimes it has cost 11s several months' work to convince ourselves that 

a hypothesis was untenable. In the course of such a prolonged study, we 

have been led, as was to be expected, to modify our views from time to time; 

but it gradually became evident to us that some form of the doct rine of types 

must be adopted if the contradictions were to be avoided. The particular 

form of the doctrine of types advocated in the present work is not logically 

indispensable, and there are various other forms equally compatible with the 

truth of our deductions. We have particularized, both because the form of 

the doctrine which we advocate appears to us the most probable, and because 

it was necessary to give at least one perfectly definite theory which avoids 

the contradictions. But hardly anything in our book would be changed by the 

adoption of a different form of the doctrine of types. In fact, we may go 
farther, and say that, supposing some other way of avoiding the contradictions 

to exist, not very much of our book, except what explicitly deals with types, 

is dependent upon the adoption of the doctrine of types in any form, so soon 

ns it has been shown (as we claim that we have shown) that it is possible 
to construct a mathematical logic which does not lead to contradictions. It 

should be observed that the whole effect of the doctrine of types is negative: 

it forbids certain inferences which would otherwise be valid, but does not 

permit any which would otherwise be invalid. Hence we may reasonably 
expect that the inferences which the doctrine of types permits would remain 

valid even if the doctrine should be found to be invalid. 

Our logical system is wholly contained in the numbered propositions, which 
are independent of the Introduction and the Summaries. The Introduction 

and the Summaries are wholly explanatory, and form no part of the chain of 
deductions. The explanation of the hierarchy of types in the Introduction 

differs slightly from that given in *12 of the body of the work. The latter 
explanation is stricter and is that which is assumed throughout the rest of 
the book. 

The symbolic form of the work has been forced upon us by necessity: 

without its help we should have been unable to perform the requisite 
reasoning. It has been developed as the result of actual practice, and is not 
an excrescence introduced for the mere purpose of exposition. The general 
method which guides our handling of logical symbols is due to Peano. His 

great merit consists not so much in his definite logical discoveries nor in the 
details of his notations (excellent as both are), as in the fact that he first 
showed how symbolic logic was to be freed from its undue obsession with the 
forms of ordinary algebra, and thereby made it a suitable instrument for 

research. Guided by our study of his methods, we have used great freedom 
in constructing, or reconstructing, a symbolism which shall be adequate to 
deal with all parts of the subject. No symbol has been introduced except 
on the ground of its practical utility for the immediate purposes of our 
reasoning. 

A certain number of forward references will be found in the notes and 
explanations. Although we have taken every reasonable precaution to secure 
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the accuracy of these forward references, we cannot of course guarantee their 

accuracy with the same confidence as is possible in the case of backward 

references. 

Detailed acknowledgments of obligations to previous writers have not very 

often been possible, as we have had to transform whatever we have borrowed, 
in order to adapt it to our system and our notation. Our chief obligations 

will In* obvious t«> ever}* reader who is familiar with the literature of the 
subject. In the matter of notation, we have as far as possible followed Pcano, 

supplementing his notation, when necessary, by that of Frege or by that ot 
Schroder. A great deal of the symbolism, however, has had to be new. not 

so much through dissatisfaction with the symbolism of others, os through the 
fact that we deal with ideas not previously symbolised. In all questions of 

logical analysis, our chief debt is to Frege. Where we differ from him, it is 
largely because the contradictions showed that he, in common with all other 

logicians ancient and modern, had allowed some error to creep into his pre¬ 
misses; hut apart from the contradictions, it would have been almost impossible 

to detect this error. In Arithmetic and the theory of series, our whole work 
is based on that of Georg Cantor. In Geometry we have had continually 

before us the writings of v. Staudt. Pasch. Peano. Pieri, and Veblen. 

We have derived assistance at various stages from the criticisms ol friends, 

notably Mr G. Cl. Berry of the Bodleian Library and Mr R. G. Hawtrcy. 

We have to thank the Council of the Royal Society for a grant towards the 

expenses of printing of £200 from the Government Publication Fund, and also 
the Syndics of tin* University Press who have liberally undertaken the greater 

portion of the expense incurred in the production of the work. The technical 
excellence, in all departments, of the University Press, and the zeal and courtesy 
of its officials, have materially lightened the task of proof-correction. 

The second volume is already in the press, ami both it and the third will 

appear as soon as the printing can be completed. 

A. N. W. 

B. R. 

Camiikidoe, 

Xavrml/rr, l!»10. 
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INTRODUCTION TO THE SECOND EDITION* 

In preparing this new edition of Prnicipiti Muthemativa. the authors have 

thought it best to leave the text unchanged, except as regards misprints and 

minor errors+, even where they were aware of possible improvements. The 

chief reason for this decision is that any alteration of the propositions would 

have entailed alteration of the references, which would have meant a very 

great labour. It seemed preferable, therefore, to state in an introduction the 

main improvements which appear desirable. Some of these are scarcely open 

to question ; others are, as yet, a matter of opinion. 

The most definite improvement resulting from work in mathematical logic 

during the past fourteen years is the substitution, in Part I, Section A, of the 

one indefinable “ p and q are incompatible ” (or, alternatively, •' p and q are 

both false”) for the two indcfinables “not-p' and “p or q." This is due to 

Dr H. M. ShefferJ. Consequentially. M. Jean Nicod§ showed that one 

primitive proposition could replace the five primitive propositions #1’2,3‘4’5'6. 

From this there follows a great simplification in the building up of 

molecular propositions and matrices; *9 is replaced by a new chapter, #8, 

given in Appendix A to this Volume. 

Another point about which there can be no doubt is that there is no need 

of the distinction between real and apparent variables, nor of the primitive 

idea “assertion of a propositional function.” On all occasions where, in 

Prircipia Mathematica, we have an asserted proposition of the form “ V .fx" 

or UV .fp,” this is to be taken as meaning “ 1-. (x) .fx ” or “ V . (p).fpCon¬ 

sequently the primitive proposition *111 is no longer required. All that is 

necessary, in order to adapt the propositions as printed to this change, is the 

convention that, when the scope of an apparent variable is the whole of the 

asserted proposition in which it occurs, this fact will not be explicitly indicated 

unless “ some ” is involved instead of “ all.” That is to say, “ H . <f>x " is to mean 

“ I-. (x) . <j)X”; but in “ I-. ( gx). <£x ” it is still necessary to indicate explicitly 

the fact that “some” x (not “ all ” x’s) is involved. 

” It is possible to indicate more clearly than was done formerly what are 

the novelties introduced in Part I, Section B as compared with Section A. 

• In this introduction, as well as in the Appendices, the authors are under great obligations 

to Mr F. P. Ramsey of King’s College, Cambridge, who has read the whole in MS. and contributed 

valuable criticisms and suggestions. 

., t In regard to these we are indebted to many readers, but especially to Drs Behmann and 

Boscovitoh, of Gflttingen. 

$ Traru. Amer. Math. Soc. Vol. xrr. pp. 481—488. 

§ “A reduction in the number of the primitive propositions of logic,” Prate. C'amb. Phil. Soc. 

Vol. six. 



XIV INTRODUCTION 

They are three in number, two being essential logical novelties, and the third 

merely notational. 

(1) For the “p” of Section A. we substitute " <£-r.” so that in place of 

“ h .</>). //> we havc*'lm .(4>.x)'f (fa)." Also, if we have "h •f(p,q,r. • ••)»” 

we may substitute <f>>\ <f>y. 4>z,... for p,»/. r,... or <f>.r, <f>y lor />, q. and yfrz, ... 

for ;•.and so on. We thus obtain a number of new general propositions 

different from those of Section A. 

(2) We introduce in Section B the new primitive idea " (gx). t.e. 

existence-1impositions, which do not occur in Section A. In virtue of the 

abolition of tin- real variable, general propositions of the form “(/>)•//> ’do 

occur in Section A, but "(3p)•.//>" docs not occur. 

(3) By means of definitions, we introduce in Section B general propositions 

which are molecular constituents of other propositions; thus " (x). (f>x. v . p is 

to mean " (x). tf>r v p." 

It. is these three novelties which distinguish Section B from Section A. 

One point in regard to which improvement is obviously desirable is the 

axiom of rcducibility (*12111). This axiom has a purely pragmatic justifica¬ 

tion : it leads to the desired results, and to no others. But clearly it is not 

the sort of axiom with which we can rest content. On this subject, however, 

it cannot be said that a satisfactory solution is as yet obtainable. Dr Leon 

Chwistek* took the heroic course of dispensing with the axiom without 

adopting any substitute; from his work, it is clear that this course compels 

us to sacrifice a great deal of ordinary mathematics. There is another course, 

recommended by Wittgenstein! for philosophical reasons. This is to assume 

that functions of propositions are always truth-functions, and that a function 

can only occur in a proposition through its values. There are difficulties in 

the way of this view, but perhaps they are not insurmountable}. It involves 

the consequence that all functions of functions are extensional. It requires us 

to maintain that " A believes p " is not a function of p. How this is possible 

is shown in Tract at us J.ugico-l’lnlusophiciis {luc. cit. and pp. 19—21). We arc 

not prepared to assert that this theory is certainly right, but it has seemed 

worth while to work out its consequences in the following pages. It appears 

that everything in Vol. I remains true (though often new proofs are required); 

the theory of inductive cardinals and ordinals survives; but it seems that the 

theory of infinite Dedekindian and well-ordered series largely collapses, so 

that irrationals, and real numbers generally, can no longer be adequately 

dealt with. Also Cantor’s proof that 2" > n breaks down unless n is finite. 

Perhaps some further axiom, less objectionable than the axiom of reducibility, 

might give these results, but we have not succeeded in finding such an axiom. 

• In liis “ Theory of Constructive Types.” See references at the end of this Introduction, 

t Tractalus Logico-Philosophicut, «5-54 ff. 

* See Appendix C. 
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It- shouM be stated that a now and very |Hmvrf..l moMiml in matlu n.atieal 

loKl0 has been invented by Dr 11. M. She Her. This meth.Hl. however, would 

demand a complete re-writing of Prineipia Mathematic,. We recommend 

this task to Dr Shorter. since what has so far been published by him is 

scarcely sufficient to enable others to undertake the necessary reconstruction. 

We now proceed to the detailed development of the above general sketch. 

I. ATOMIC AXD MOLKCULAU I'KOPOSITIOXS 

Our system begins with “atomic propositions.- We accept these as a 

datum, because the problems which arise concerning them belong to the 

philosophical part of logic, and are not amenable (at any rate at present) to 

mathematical treatment. 

Atomic propositions may be defined negatively as propositions containing 

no parts that are propositions, and not containing the notions “air or “some.” 

Thus “ this is red,” “this is earlier than that," are atomic proposition®. 

Atomic propositions may also be defined positively—and this is the better 

course—as propositions of the following sorts: 

Ri (.r), meaning “x has the predicate 

!/) [°r xR«.y\ meaning "x has the relation R, (in intension) to y"\ 

Ri(x,y, z), meaning have the triadic relation R3 (in intension)"; 

ft, (x, y, e, w), meaning “x,y.z,w have the tctradic relation It, (in intension)"; 

and so on ad infinitum, or at any rate as long as possible. Logic does not 

know whether there are in fact n-adic relations (in intension); this isanempirical 

question. We know as an empirical fact that there are at least dyadic relations 

(m intension), because without them series would be impossible. But logic is 

not interested in this fact; it is concerned solely with the hypothesis of there 

being propositions of such-and-such a form. In certain cases, this hypothesis is 

itself of the form in question, or contains a part which is of the form in question; 

in these cases, the fact that the hypothesis can be framed proves that it is 

true. But even when a hypothesis occurs in logic, the fact that it can be 

framed does not itself belong to logic. 

Given all true atomic propositions, together with the fact that they are all, 

every other true proposition can theoretically be deduced by logical methods! 

lhat is to say, the apparatus of crude fact required in proofs can all be con¬ 

densed into the true atomic propositions together with the fact that every 

true atomic proposition is one of the following: (here the list should follow). 

. used, this method would presumably involve an infinite enumeration, 

since it seems natural to suppose that the number of true atomic propositions 

18 infinite, though this should not be regarded as certain. In practice, 

generality is not obtained by the method of complete enumeration, because 

tni8 method requires more knowledge than we possess. 

b&w i . 
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We must now advance to molecular propositions. Let p. 7, r, s, t denote, 

to begin with, atomic propositions. We introduce the primitive idea 

p q, 

which may be read "p is incompatible with q,"m and is to be true whenever 

either or both are false. Thus it may also be read "p is false or 7 is false”; 

or again, ‘ p implies 1101-7.” Hut as we are going to define disjunction, impli¬ 

cation, and negation in terms of pi7. these ways of reading p 7 arc better 

avoided to begin with. The symbol "pi7” is pronounced: "p stroke 7.” We 

now pul 

~p . = • p p Df. 

P D 7 . m . P ~7 Df, 

j)V7- = .~p]~7 Df, 

p.q . = .~(p!r/) Df. 

Thus all the usual truth-functions can be constructed by means of the stroke. 

Note that by the above, 

p D7 . * -p |(717) Uf- 
We find that 

p . D . 7. r . = . p | (71 r). 

Thus p D 7 is a degenerate case of a function of three propositions. 

We can construct new propositions indefinitely by means of the stroke; 

for example, (p 17) j r, p | (71 r),(pl7)|(r|s),andsoon. Note that the stroke obeys 

the perinutativc law (p| q) = (7 Ip) but not the associative law (pl7>|r = />|(7l>). 

(These of course are results to be proved later.) Note also that, when we 

construct a new proposition by means of the stroke, we cannot know its truth 

or falsehood unless either (a) we know the truth or falsehood of some of its 

constituents, or (6) at least one of its constituents occurs several times in a 

suitable manner. The case (a) interests logic as giving rise to the rule of in¬ 

ference, viz. 
Given p and | (7 jr), we can infer r. 

This or some variant must be taken as a primitive proposition. For the 

moment, we are applying it only when p, 7, r are atomic propositions, but we 

shall extend it later. Wc shall consider (/>) in a moment. 

In constructing new propositions by means of the stroke, wc assume that 

the stroke can have on either side of it any proposition so constructed, and 

need not have an atomic proposition on either side. Thus given three atomic 

propositions p, 7, r, we can form, first, p 17 and 71 r, and thence (p j 7) | r and 

p | (71 r). Given four, p. 7, r, s, we can form 

l(pl7)Mk (p\q)\(r\s), pltal(rl*)l 

and of course others by permuting p, 7, r, 5. The above three are substantially 

• For what follows, see Nicod, *• A reduction in the number of the primitive propositions of 

logic.” Proe. Camb. Phil. Soc. Vol. xix. pp. 32—41. 
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different propositions. Wo have in fact 

10* l«?)lr) |* • = v~q . r : v :<w, 

(P17) i (** I • = • p • q • v . r. 

P: {71 (rl*)l • = : v :»/ .*%»#• v-^s. 

All the propositions obtained by this method follow from one rule: in 

p | 9, substitute, for/) or 7 or both, propositions already constructed by means 

of the stroke. This rule generates a definite assemblage of new propositions 

out of the original assemblage of atomic propositions. All the propositions so 

generated (excluding the original atomic propositions) will be called “ mole¬ 

cular propositions.” Thus molecular propositions are all of the form p\q, but 

the p and q may now themselves be molecular propositions. If p is p, ps, 

p, and pa may be molecular; suppose p,-p,|!p„. p„ may be of the form 

Pm |Pm, and so on; but after a finite number of steps of this kind, we are to 

arrive at atomic constituents. In a proposition p | q, the stroke between p and 

q is called the “principal” stroke; if p = p,|p„ the stroke between p, and p.. is 

a secondary stroke; so is the stroke between qx and qt if q = qx j qs. If px =pu |p„t 

the stroke between pxx and p„ is a tertiary stroke, and so on. 

Atomic and molecular propositions together are “ elementary propositions.” 

Thus elementary propositions are atomic propositions together with all that 

can be generated from them by means of the stroke applied any finite number 

of times. This is a definite assemblage of propositions. We shall now, until 

further notice, use the letters p, q, r, s, t to denote elementary propositions, 

not necessarily atomic propositions. The rule of inference stated above is to 
hold still; i.e. 

If P’ r are elementary propositions, given p and p|(9|r), we can infer r. 

This is a primitive proposition. 

We can now take up the point (6) mentioned above. When a molecular 

proposition contains repetitions of a constituent proposition in a suitable 

manner, it can be known to be true without our having to know the truth or 

falsehood of any constituent. The simplest instance is 

pI(pIp), 

which is always true. It means “p is incompatible with the incompatibility 

of p -with itself,” which is obvious. Again, take "p.q.D . p.” This is 

t(pl9)l(pk))l(plp). . 
Again, take “~p.D.~pv~q." This is 

Again, “p.D.pv^” is 
(PI P> I |(p I ?) I (p | ?))• 

p I [{(p I p) I (? I q)} I l(p I p) I ($ I $))]. 
All these are true however p and q may be chosen. It is the fact that we can 

build up invariable truths of this sort that makes molecular propositions 

important to logic. Logic is helpless with atomic propositions, because their 

6 2 
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truth or falsehood can only be known empirically. But the truth of molecular 

propositions of suitable form can be known universally without empirical 

evidence. 

The laws of logic, so far as elementary propositions are concerned, are all 

assertions to the effect that, whatever elementary propositions p, q, r, ... may 

be, a certain function 
F{p,q, r,...), 

whose values are molecular propositions, built up by means of the Stroke, is 

always true. The proposition "/'(/>) is true, whatever elementary proposition 

p may be" is denoted by 
ip). F(p). 

Similarly the proposition "F(p,q. r,...) is true, whatever elementary pro¬ 

positions />, q, r.... may be is denoted by 

(p.q. r....) • F(p, q, r....). 

When such a proposition is asserted, we shall omit the “(p.q.r,...)” at the 

beginning. Thus 

"h • F{p, q. r,...)" 

denotes the assertion (as opposed to the hypothesis) that F(p,q.r,...) is true 

whatever elementary propositions p. q, r, ... may be. 

(The distinction between real and apparent variables, which occurs in 

Frege and in Principia Mathemntica. is unnecessary. Whatever appears as a 

real variable in Principal Mathematica is to be taken as an apparent variable 

whose scope is the whole of the asserted proposition in which it occurs.) 

The rule of inference, in the form given above, is never required within 

logic, but only when logic is applied. Within logic, the rule required is different. 

In the logic of propositions, which is what concerns us at present, the rule 

used is: 

Given, whatever elementary propositions p, 7, r may be, both 

*'h . F(p,7,r,...)” and . F(p, 7, r, ...)| \G(p,q, r, ...)\H(p, q, r, 

we can infer "h . //(/>, 7, r,...).” 

Other forms of the rule of inference will meet us later. For the present, 

the above is the form we shall use. 

Nicod has shown that the logic of propositions (*1—*5) can be deduced, 

by the help of the rule of inference, from two primitive propositions 

^-p 1 (p\p) 
and b :pD q .s\q5p\$. 

The first of these may be interpreted as “/> is incompatible with not-/),” or 

as “ p or not-/),” or as ** not (p and not-/))," or as "p implies /).” The second 

may be interpreted as 

p0q.D:qD'>*s,5.p'5~s, 
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which is a form of the principle of the syllogism. Written wholly in terms of 
the stroke, the principle becomes 

l/>! (9I 9>1 I [!(•'* I 9> I U/>1 i (PI *))) I ! q)! Up! *> i (p | x»JJ. 

Nicod has shown further that these two principles may be replaced by 

one. Written wholly in terms of the stroke, this one principle is 

\p K91 r)\ | [(* | (t! t)\ I 1(5: q) I ((/»I *) | (/>. *•)))]. 

It will be seen that, written in this form, the principle is less complex than 

the second of the above principles written wholly in terms of the stroke. 

When interpreted into the language of implication, Nicod’s one principle 
becomes 

p . D . q . r : D . ID t. s J q D p \ s. 

In this form, it looks more complex than 

/09.D.«|9D/>|«( 

but in itself it is less complex. 

From the above primitive proposition, together with the rule of inference, 

everything that logic can ascertain about elementary propositions can be 

proved, provided we add one other primitive proposition, viz. that, given a 

proposition (p, q, r, ...) . F (p, q, r, ...), we may substitute for p, q, r, ... 

functions of the form 

and assert 
f3(p, q, r,...), A(p. q. r,...) 

(P,q,r, •••) • F\fx(p,q,r, ...), /,(p, q,r, ...),f9(p, q, r,...), ...), 

where ft f%,f,... are functions constructed by means of the stroke. Since 

the former assertion applied to all elementary propositions, while the latter 

applies only to some, it is obvious that the former implies the latter. 

A more general form of this principle will concern us later. 

II. ELEMENTARY FUNCTIONS OF INDIVIDUALS 

1. Definition of ” individual ” 

We saw that atomic propositions are of one of the series of forms: 

Ri (*), R»Cx, y), R, (a, y, z), R< (x, y, z,w), .... 

Here RXt R2, RR4, ... are each characteristic of the special form in which 

they are found: that is to say, Rn cannot occur in an atomic proposition 

Rm(xi, x2, ... xm) unless n = m, and then can only occur as Rm occurs, not as 

••• occur. On the other hand, any term which can occur as the 

a? a occur in Rn(xltxa>... xn) can also occur as one of the x's in Rm(x1,xt,... xm) 

even if m is not equal to n. Terms which can occur in any form of atomic 

proposition are called “ individuals” or “ particulars”; terms which occur as the 

R’b occur are called “ universals.” 

We might state our definition compendiously as follows: An “ individual” 

Js anything that can be the subject of an atomic proposition. 
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Given an atomic proposition R„(x,,x-, ... x„), we shall call any of the x’s 

a "constituent" of the proposition.and R„ a " component ‘ of the proposition *. 

We shall say the same as regards any molecular proposition in which 

... x„) occurs. Given an elementary proposition p \q, where p and 7 

may be.atomic or molecular, we shall call p and 7 "parts" of pi 7; and any 

parts of p or 7 will in turn be called parts of /> 7. and so on until we reach the 

atomic parts of p 7. Thus to say that a proposition /• " occurs in ’’ /> J 7 and to 

say that r is a " part " of p 7 will be synonymous. 

2. Definition of an elementary function of an individual 

Given any elementary proposition which contains a part of which an 

individual a is a constituent, other propositions can be obtained by replacing 

a by other individuals in succession. We thus obtain a certain assemblage 

of elementary propositions. We may call the original proposition 4>a, and 

then the propositional function obtained by putting a variable x in the 

place of a will Ik- called <£.r. Thus tf,r is a function of which the argument 

is .<• and tin* values are elementary propositions. The essent ial use of ” <f>.r" 

is that it collects together a certain set of propositions, namely all those that 

are its values with different arguments. 

We have already had various special functions of propositions. If p is a 

part of some molecular proposition, we may consider the set of propositions 

resulting from the substitution of other propositions for p. If we call the 

original molecular pro|K>sition fp, the result of substituting 7 is called fij. 

When an individual or a proposition occurs twice in a proposition, three 

functions can be obtained, by varying only one. or only another, or both, of 

the occurrences. For example,/) |/> is a value of any one of the three functions 

P17. 71p, 7 ! 7. where 7 is the argument. Similar considerations apply when an 

argument occurs more than twice. Thus p\(p\p) is a value of 7 | (/* |«). or 

71(r17>» or 7 i (71 **), or 7|(r », or 7K7I7). When we assert a proposition 

"I-.(p).Fp'‘ the p is to be varied whenever it occurs. We may similarly 

jissert a proposition of the form "(x). meaning "all propositions of the 

assemblage indicated by <f>x are true"; here also, every occurrence of x is to be 

varied. 

3. " Always true " and " sometimes true " 

Given any function, it may happen that all its values arc true; again, it 

may happen that at least one of its values is true. The proposition that all 

the values of a function <f> (x,y,z,...) are true is expressed by the symbol 

" 2,...).<t>(x,y, 

unless we wish to assert it, in which case the assertion is written 

This terminology is taken from Wittgenstein. 



INTRODUCTION XX! 

We have already had assertions of this kind where the variables were ele¬ 

mentary propositions. We want now to consider t he case where the variables 

are individuals and the function is elementary, i.e. all its values are elementary 

propositions. We no longer wish to confine ourselves to the case in which it. 

is asserted that all the values of <f>(.r,y,...) are true; we desire to be able 

to make the proposition 

{x,y,z,...). </>(.r,y,-.•••) 

a part of a stroke function. For the present, however, wo will ignore this 

desideratum, which will occupy us in Section III of this Introduct ion. 

In addition to the proposition that a function <f>.v is "always true” 

(i.e. (a?). <t>.v), we need also the proposition that <f>x is "sometimes true," i.e. is 

true for at least one value of x. This we denote by 

‘•(3.r). <*>*." 

Similarly the proposition that <f>(x,y,z,...) is "sometimes true" is denoted by 

"(3*.y.*. y, 
We need, in addition to (x, y, z,...). <t>(x,y,z, ...)and (gx,y,z,...). <f>(xty,z,...), 

various other propositions of an analogous kind. Consider first a function of 

two variables. We can form 

(a*) = (y) • </> (*. y), (*): (3y) • <t> (*.y). <3y): (x) • </> (*, y), (y) • (a*) • <t> (*. y)- 
These are substantially different propositions, of which no two arc always 

equivalent. It would seem natural, in forming these propositions, to regard 

the function <f>(x,y) as formed in two stages. Given <f>(a,b), where a and b 

are constants, we can first form a function <f>(a,y), containing the one variable 

y\ we can then form 

(y) • <t> (<*, y) and (3y) . <f> (a, y). 

We can now vary a, obtaining again a function of one variable, and leading 

to the four propositions 

(x) (x, y), (gx) : (y) . <f> (x, y), (x) : (gy) . <f> (x, y), (gx) : (gy) . «*> (x, y). 

On the other hand, we might have gone from <f> (a, b) to <f> (x, 6), thence to 

(x). <ft (x, 6) and (g#) . <f> (x, b), and thence to 

(y) i(x).<f> (x, y), (gy) : (x) . 0 (x, y), (y) : (gx) . <f> (x, y), (gy) : (gx) . <f> (x, y). 

All of these will be called "general propositions"; thus eight general 

propositions can be derived from the function (f> (x, y). We have 

(x) : (y). <f> (x, y) s = s (y) : (x). <f> (x, y), 

(3*)s (3y) '<f>(x,y)z = i (gy): (gx) . <f> (x, y). 

But there are no other equivalences that always hold. For example, the dis¬ 

tinction between “ (x) : (gy). <f> (x, y) " and “ (gy) : (x) . <f> (x, y) ” is the same 

as the distinction in analysis between “ For every e, however small, there is a 

8 such that...” and "There is a 8 such that, for every e, however small, ....” 



XXII INTRODUCTION 

Although it might seem easier, in view of the above considerations, to 

regard ever}' function of several variables as obtained by successive steps, each 

involving only a function of one variable, yet there are powerful considerations 

on the other side. There are two grounds in favour of the step-by-step method; 

first, that only functions of our variable need be taken ns a primitive idea; 

secondly, that such definitions as the above seem to require either that, we 

should fiist vary ./•. keeping // constant, or that we should first vary y, keeping 

j' constant. The former seems to be involved when "(//) or "(3//)" appears 

to the left of “(ur)’ or "('•K).’ the latter in the converse case. The grounds 

agam»t the step-by-step method are that it interferes with the method of 

matrices, which brings order into the successive generation of types of pro¬ 

positions and functions demanded by the theory of types, and that it requires 

us, from the start, to deal with such propositions as (y). y), which are 

not elementary. Take, for example, the proposition : 7 . D . p v7." This 

will be 

H :>./.v9l 

wr b !• (7) :• (p): 7. D . p v 7, 

and will thus involve all values of either 

(7): 7 . D . /> v 7 considered as a function of p, 

or (p) s 7. D. p v 7 considered us a function of 7. 

This makes it im|>ossiblo to start our logic with elementary propositions, as 

we wish to do. It is useless to enlarge the definition of elementary propositions, 

since that only increases the values of 7 or p in the above functions. Hence 

it seems necessary to start with an elementary function 

T*' ••• 

before which we write, for each xr, either “(xr)" or "(gxr),M the variables in 

this process being taken in any order xve like. Here <f> (j-,, xit x,, ... x„) is 

called the " matrix,” and what comes before it is called the " prefix.” Thus in 

<3*) (*• y) 

" y)" is the matrix and “ (gx): (y) ” is the prefix. It thus appears that 

a matrix containing n variables gives rise to n!2" propositions by taking its 

variables in all possible orders and distinguishing " (j*f) ” and “ (gj*r) ” in each 

case. (Some of these, however, arc equivalent.) The process of obtaining such 

propositions from a matrix will be called “generalization," whether we take 

“all values” or “some value," and the propositions which result will be called 

" general propositions." 

We shall later have occasion to consider matrices containing variables that 

are not individuals; we may therefore say: 

A “ matrix ” is a function of any number of variables (which may or may 

not be individuals), which has elementary propositions as its values, and is 

used for the purpose of generalization. 
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A “ general proposition ” is one derived from a matrix by generalization. 

Wo shall add one further definition at this stage: 

A “first-order proposition** is one derived by generalization from a malrix 

in which all the variables are individuals. 

4. Methods of pror in tj general propositions 

There are two fundamental methods of proving general propositions, one 

for universal propositions, the other for such as assort existence. The method 

of proving universal propositions is as follows. Oiven a proposition 

F (P> 7. r> •••>•** 

where F is built up by the stroke, and p, 7, r, ... are elementary, we may re¬ 

place them by elementary functions of individuals in any way we like, putting 

p =f (xt, x^, ••• 

q a-,, ... a„). 

and so on, and then assert the result for all values of a\, xa, ... <r„. What we 

thus assert is less than the original assertion, since p, 7. r,... could originally 

take all values that are elementary propositions, whereas now they can only 

take such as are values of f,f3,f3. (Any two or more of f,f>, fj, ... may 

be identical.) 

For proving existence-theorems we have two primitive propositions, namely 

*8*1. • (a*. y) • <t>a 1 (4>x 14>y)and 

*811. I-. (ax) • <t>x I (4>a I 4>b) 

Applying the definitions to be given shortly, these assert respectively 

<t> a.D . (3*) . 4>x 

and (x). <f>x . D . <j>a . <f>b. 

These two primitive propositions are to be assumed, not only for one variable, 

but for any number. Thus we assume 

<f> (a,, a„ ... a„) . D . (3*,, x,,... xn) . <f> (x,, x,.... xn), 

(xlt xa, ... xn) . <f> ... xn) .0 . <f> (a,, a,, ... an) . <f> (&,, b2, ... bn). 

The proposition (x) . <f>x . D . <f>a . <f>b, in this form, does not look suitable for 

proving existence-theorems. But it may be written 

(3x) - ~ <frx. v . <f>a . tf>b 

or ~ <fja v ~ <f>b . D . (a31) - ~ 4*x> 

in which form it is identical with *9*11, writing <f> for ~<f>. Thus our two 

primitive propositions are the same as *9T and *9'II. 

For purposes of inference, we still assume that from (x). <f>x and 

(x) . tfjx D \frx we can infer (x) . i/rx, and from p and pDj we can infer q, even 

when the functions or propositions involved are not elementary. 
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Existence-theorems arc very often obtained from the above primitive 

propositions in the following manner. Suppose we know a proposition 

b ./(*,*). 

Since <f>.r. D . (gy). <£y. we can infer 

i.e. I-: (x): (gy) ./(*, y). 

Similarly b s (y): (g.r) .fir. y). 

Again, since <t> (x. y). D . (gr. ut). <f> (z. w), we can infer 

and b . <gy,x) ./(x. y). 

We may illustrate the proofs both of universal and of existence propo¬ 

sitions by a simple example. We have 

b .</>)./> Op. 

Hence, substituting <t>r for />, 
K (/). D <t> r. 

Hence, as in the case of/(x, x) above. 

b :(x): (gy). <*u 0 4>y, 

*■ • (•/) • (:*l r) • <t>r 3 

• (3*. y) • 4>x 3 «#>//• 

Apart from special axioms asserting existence-theorems (such as the axiom of 

reducibility, the multiplicative axiom, and the axiom of infinity), the above 

two primitive propositions give the sole method of proving existence-theorems 

in logic. They are, in fact, always derived from general propositions of the 

form (x)./(x,x) or (x)./(x,x.x) or etc., by substituting other variables for 

some of the occurrences of x. 

III. GENERAL PROPOSITIONS OF LIMITED SCOPE 

In virtue of a primitive proposition, given (x). <f>x and (x) . <£x 0 \f/x, we 

can infer (x). yfrx. So far, however, we have introduced no notation which 

would enable us to state the corresponding implication (as opposed to inference). 

Again, (gx) . <px and (x, y). £x 0 yjry enable us to infer (y). yjry; here again, 

we wish to be able to state the corresponding implication. So far, we have only 

defined occurrences of general propositions as complete asserted propositions. 

Theoretically, this is their only use, and there is no need to define any other. 

But practically, it is highly convenient to be able to treat them as parts 

of stroke-functions. This is entirely a matter of definition. By introducing 

suitable definitions, first-order propositions can be shown to satisfy all the 

propositions of *1—#5. Hence in using the propositions of *1—*5, it will 

no longer be necessary to assume that p, q, r, ... are elementary. 

The fundamental definitions are given below. 
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When a general proposition occurs as part of another, il. is said !•» have 

limited scope. If it- contains an apparent, variable .r, the scope of .r is said to 

be limited to the general proposition in question. Thus in /> }(.r). </>.r', the 

scope of .r is limited to (.r) . <f>x, whereas in (x) . p <f>.v the scope of .r extends 

to the whole proposition. Scope is indicated by clots. 

The new chapter *8 (given in Appendix A) should replace *1* in Priiictpio 

Mathematica. Its general procedure will, however, be explained now. 

The occurrence of a general proposition as part of a stroke-function is 

defined by means of the following definitions: 

10*0 •‘Ml7 • “ • (3 *0 . </> »•! q Df. 

Ka®) • ♦**•} w. 
pi l(y)• • -• (3y)• piDf- 

p\ 1(3»/)• *y) • = • (y)• p\Df- 
These define, in the first place, only what is meant by the stroke when it 

occurs between two propositions of which one is elementary while the other is 

of the first order. When the stroke occurs between two propositions which 

are both of the first order, we shall adopt the convention that the one on the 

left is to be eliminated first, treating the one on the right as if it were ele¬ 

mentary; then the one on the right is to be eliminated, in each case, in 

accordance with the above definitions. Thus 

i(®) . <f>x\ | «y) . yjry) . = : (a®) : 4>® I {(!/) • +'j\ ! 

-:(3*):(3y)-^l^y. 
l(®) . <f>x\ | |(ay) . ^y) . = : (a*) : <f>x | {(ay) . ^y | : 

“: (a*): (y) • <t>x I ^y> 

1(3®) • «M I l(y) • 'fc/) • *: (®): (3y) • <t>x I ^y- 

The rule about the order of elimination is only required for the sake of 

definiteness, since the two orders give equivalent results. For example, in 

the last of the above instances, if we had eliminated y first wc should have 

obtained 
(3y) •• (®) • ^y> 

which requires either (a:) .~<f>x or (ay) •~,'/ry» aQd is then true. 

And 0*0 : (ay) • £® i 'ft/ 

is true in the same circumstances. This possibility of changing the order of 

the variables in the prefix is only due to the way in which they occur, i.e. to 

the fact that x only occurs on one side of the stroke and y only on the other. 

The order of the variables in the prefix is indifferent whenever the occurrences 

of one variable are all on one side of a certain stroke, while those of the other 

are all on the other side of it. We do not have in general 

(a®) = (y) • x (®»y): =: (y): (3®) • x (®* y); 
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here the right-hand side is more often true than the left-hand side. But we 

do have 

<3r) : <//> • 4>* V''/ : : <y) : (gx). 4>x y\ry. 

The possibility of altering the order of the variables in the prefix when the)' 

are separated by a stroke i* a primitive proposition. In general it is convenient 

t<» put on the left the variables of which "all" arc* involved, and on the right 

those of which " some " are involved, after the elimination has been finished, 

always assuming that the variables occur in a way to which our primitive 

proposition is applicable. 

It is not necessary for the above primitive proposition that the stroke 

separating .r and y should be the principal stroke, e.rj. 

P |(y)-^l]-«■•/> [(*):(ay).^y]• 

»:(3*):<»/)•/> (4>r I 'K'/) s 

s :(y):(g*).p|(<^x|^ry). 

All that is necessary is that there should be some stroke which separates x 

from y. When this is not the case, the order cannot in general be changed. 

Take e.y. the matrix 

<f>x V >\nj >fry. 

This may be written (<£.r D >\nj) j (>/ry D <f>x) 

or l^l(^yl^y))||^y|(^i^)I. 

Here there is no stroke which separates all the occurrences of x from all those 

of y, and in fact the two propositions 

(y) i (3*) - </>x V >\nj . — 4>x V ~ yfry 

and (3*):(y). «^rv>fry .~<£xv~>/ry 

arc not equivalent except for special values of tf> and yfr. 

By means of the above definitions, we arc able to derive all propositions, 

of whatever order, from a matrix of elementary propositions combined by 

means of the stroke. Given any such matrix, containing a part p, we may 

replace p by <f>x or <f> (x, y) or etc., and proceed to add the prefix (x) or (gx) 

or (x, y) or (x): (gy) or (y): (gx) or etc. If p and q both occur, we may replace 

p by <f>x and q by yfry, or we may replace both by <f>x, or one by <f>x and another 

by some stroke-function of <f>x. 

In the case of a proposition such as 

P I !(*) : (3y) • * (*. y)) 

we must treat it as a case of p | {(x). <£xj, and first eliminate x. Thus 

P I K*): w) • * (*. y)| . = : (gx): (y). p \ + (x, y). 

That is to say, the definitions of {(x).<£x)) q etc. are to be applicable un¬ 

changed when <f>x is not an elementary function. 
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The definitions of ~ p, p v q. />.»/. p D ij are to be taken over iinelian«'o«l. 

Thus 
~ {(a ) . <f>.r] . = : |(.r) . <f>.r] f J(.r) . <f>.r\ : 

= 8 (a-**) 8 <t> r • <M : 

=: ia*-> ‘ lay) • <<*>•' <*>//>. 

~ |(3») • <M • = 8 (•*•) 8 ('/) • (<f>r 4>>/). 
p . D . (.1). <f>.r : = :/>; [j(x) . <f>.r] |(.r). : 

= 8 P |(a^> 8 (ay) • *y)I : 
= 8 (•* ) 8 (y)-/>!(«*> ' +//). 

(.r) . <^r . D . /> : = : |(x) . <£.r{ j (;> />) : 

= 8 <3-»*> • <t*■. (/»! p): - : (3 « > • ♦*«■ =5 
(.r) . <#>x . v . p : - : [~|(x) . <*>x|] | ~p : 

= 8 1(3*) 8 (3y) • (4> r I i (p ! p): 

-8 (*) • l<3//> • (<*>*! 4>y)\! (/> I p) : 

■5 <*)8 <y> • (tf>* 14>y) I (p ». 
/>. V .(x).<*>x: - : (.r) :(y). (/>!/;) | (<^r;</>y). 

It will be seen that in the above two variables appear where only one might 

have been expected. We shall find, before long, that the two variables can be 

reduced to one; i.e. we shall have 

(3*) 8 (3y) . 4>x | <f>y : s . (gx) . <f>x | <f>x, 

(*) • (y) - <t>* 14>y : = • (x) - <t>*! 4>x. 
These lead to 

~ {(x) .<f>x| . = . (gx). ~ <*>x, 

~ {(gx) • ♦*) ~ 0x. 

But we cannot prove these propositions at our present stage ; nor, if we could, 

would they be of much use to us, since we do not yet know that, when two 

general propositions are equivalent, either may be substituted for the other 

as part of a stroke-proposition without changing the truth-value. 

For the present, therefore, suppose we have a stroke-function in which p 

occurs several times, say p \ (p | p), and we wish to replace p by (x). <f>x, we 

shall have to write the second occurrence of p " (y). <£y,” and the third 

"(*)•$£." Thus the resulting proposition will contain as many separate 
variables as there are occurrences of p. 

The primitive propositions required, which have been already mentioned, 

are four in number. They are as follows: 

(I) b - (3®, y) '4>a\ (<f>x | <f>y), i.e. b : <£a . D . (gx) . tf>x. 

, (2) b . (gx) . <f>x | (<f>a | tf>b), i.e. b : (x) . <f>x . D . <f>a . <f>b. 

• (3) The extended rule of inference, i.e. from (x) . <f>x and (x) . <f>x D \Jrx 
we can infer (x) . yfrx, even when <ft and yjr are not elementary. 

(4) If all the occurrences of x are separated from all the occurrences of 

y by a certain stroke, the order of x and y can be changed in the prefix; i.e. 
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For (g.r): (y). <f>s ^y we can substitute (y): (gr). <f>r >\ry. and vice 

versa, even when this is only a part of the whole asserted proposition. 

The above primitive propositions are to be assumed, not only for one 

variable, but for any number. 

By means of the above primitive propositions it can be proved that all 

the propositions of *1—*5 apply equally when one or more of the propositions 

/>. 7 r, ... involved are not elementary. For this purpose, we make use of the 

work of Nicod. who proved that the primitive propositions of *1 can all be 

deduced from 

h • P 3 P 

and h . p D q. D . 8 7 Dp* 

together with the rule of inference: “ Given /> and p (7 | r), we can infer r." 

Thus all we have to do is to show that the above propositions remain true 

when p. 7, .v, or some of them, are not elementary. This is done in *8 in 

Appendix A. 

IV. FUNCTIONS AS VARIABLES 

The essential use of a variable is to pick out a certain assemblage of 

elementary propositions, and enable us to assert that all members of this 

assemblage arc true, or that at least one member is true. We have already 

used functions of individuals, by substituting <f>x for p in the propositions of 

*1—*5, and by the primitive pro|K>sitious of *8. But hitherto we have always 

supposed that the function is kept constant while the individual is varied, and 

we have not considered cases where we have "g<£." or where the scope of "<£" 

is less than the whole Jisscrted proposition. It is necessary now to consider 

such cases. 

Suppose a is a constant. Then "tf>a” will denote, for the various values 

of <f>, all the various elementary propositions of which a is a constituent. This 

is a different assemblage of elementary propositions from any that can be 

obtained by variation of individuals; consequently it gives rise to new general 

propositions. The values of the function are still elementary propositions, 

just ns when the argument is an individual; but they are a new assemblage 

of elementary propositions, different from previous assemblages. 

As we shall have occasion later to consider functions whose values are not 

elementary propositions, wo will distinguish those that have elementary 

propositions for their values by a note of exclamation between the letter 

denoting the function and the letter denoting the argument. Thus "<£! x” is 

a function of two variables, x and <f>! z. It is a matrix, since it contains no 

apparent variable and has elementary propositions for its values. We shall 

henceforth write “<£ ! x" where we have hitherto written tf>r. 

If we replace x by a constant a, we can form such propositions as 

(<£).<£!a, (g4>).<t>la. 
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Those are not elementary propositions, and are therefore not of the form </>! a. 

The assertion of such propositions is derived from matrices by the method of 

*S. The primitive propositions of *8 are to apply when the variables, or some 

of them, are elementary functions as well as when they are all individuals. 

A function can only appear in a niatri.r throuqh its rallies*. To obtain a 

matrix, proceed, as before, by writing <p ! .r, >/r ! //. * ! r_in place of p. q, /•,... 

in some molecular proposition built tip by means of tin* stroke. We can then 

apply the rules of #8 to <f>, \Jr, ••• as well as to .r, y. c. The difference 

between a function of an individual and a function of an elementary function 

of individuals is that, in the former, the passage from one value to another 

is effected by making the same statement about a different individual, while 

in the latter it is effected by making a different statement about the same 

individual. Thus the passage from "Socrates is mortal'’ to "Plato is mortal” 

is a passage from fix to f\ y, but the passage from "Socrates is mortal" to 

"Socrates is wise” is a passage from <f>! a to \/r ! a. Functional variation is 

involved in such a proposition as: "Napoleon had all the characteristics of a 

great general.” 

Taking the collection of elementary propositions, every matrix has values 

all of which belong to this collection. Every general proposition results from 

some matrix by generalizationf. Every matrix intrinsically determines a 

certain classification of elementary propositions, which in turn determines the 

scope of the generalization of that matrix. Thus " x loves Socrates ” picks out 

a certain collection of propositions, generalized in " (x).x loves Socrates ” and 

"(a*) . x loves Socrates.” But"<f>! Socrates” picks out those, among elementary 

propositions, which mention Socrates. The generalizations "(<f>). <f> l Socrates" 

and " (a<*>) • <f> 1 Socrates ” involve a class of elementary propositions which 

cannot be obtained from an individual-variable. But any value of "<£ fSocrates” 

is an ordinary elementary proposition; the novelty introduced by the variable 

<f> is a novelty of classification, not of material classified. On the other hand, 

<*) . x loves Socrates, (</>) . <J>! Socrates, etc. are new propositions, not contained 

among elementary propositions. It is the business of *8 to show that these 

propositions obey the same rules as elementary propositions. The method of 

proof makes it irrelevant what the variables are, so long as all the functions 

concerned have values which are elementary propositions. The variables may 

themselves be elementary propositions, as they are in *1—*5. 

A variable function which has values that are not elementary propositions 

starts a new set. But variables of this sort seem unnecessary. Every elementary 

proposition is a value of <f>! Ss; therefore 

(p) .fp. = . (<f>, x).f(<pix) •. (a p) •fp- = • (a</». *) •/(«/>! *)• 
* This assumption is fundamental in the following theory. It has its difficulties, but for the 

moment we ignore them. It takes the place (not quite adequately) of the axiom of reduoibility. 

It is disoussed in Appendix 0. 

t In a proposition of logic, all the variables in the matrix must be generalized. In other 

general propositions, suoh as “all men are mortal,” some of the variables in the matrix are re- 

placed by constants. 
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Hence all secon<l-order propositions in which the variable is an elementary 

proposition can be derived from elementary matrices. The question of other 

second-order projxwitions will be dealt with in the next section. A function 

of two variables, say if> (x. y). picks out a certain class of classes of propositions. 

We shall have the class y), for given a and variable y; then the class of 

all classes <f> (a, y) as a varies. Whether we an* to regard our function as 

giving classes <f>(ii,y) or <f>(x./>) depends upon the order of generalization 

adopted. Thus " (gx): (y) ” involves <f>(o,y), but "(y):(3x)M involves 

</>(./•. b). 

Consider now the matrix <f>lx, as a function of two variables. If we first 

vary x. keeping <£ fixed (which seems the more natural order), we form a class 

of propositions if)! .r, ! y, ! •, ... which dittbr solely by the substitution of 

one individual for another. Having made one such class, we make another, 

and so on. until we have done so in all possible ways. But now suppose we 

vary <f> first, keeping x fixed and equal to »/. We then first form the class of 

all propositions of the form (f>!«, i.e. all elementary propositions of which a is 

a constituent: we next form the class <f>\h\ and so on. The set of propositions 

which are values of <f>! u is a set not obtainable by variation of individuals, 

i.e. not of the form fs [for constant / and variable x). This is what inukes <f> 

a new sort of variable, different from .r. This also is why generalization ol the 

form (<f>). Fl(<b\z,x) gives a function not of the form fix [for constant /]. 

Observe also that whereas ,» js a constituent of / ! «./ is not; thus the matrix 

<f>! x has the peculiarity that, when a value is assigned to x, this value is a 

constituent of the result, but when a value is assigned to <f>, this value is 

absorbed in the resulting proposition, and completely disappears. We may 

define a function <£!.2 as that kind of similarity between propositions which 

exists when one results from the other by the substitution of one individual 

for another. 

We have seen that there are matrices containing, sis variables, functions 

of individuals. We may denote any such matrix by 

/U4>'-2.+l2.X1z- — !/• z> •••)• 
Since a function can only occur through its values, <f>! 2 (e.y.) can only occur 

in the above matrix through the occurrence of <f>! x, <f>! y, <f>! z,... or of <f> l a, 

<f>\b,<f>\c.where a, b, c are constants. Constants do not occur in logic, that 

is to say, the a. b, c which we have been supposing constant are to be regarded 

as obtained by an extra-logical assignment of values to variables. They may 

therefore be absorbed into the x, y, z. Now x, y, z themselves will only 

occur in logic as arguments to variable functions. Hence any matrix which 

contains the variables <£!2, yfrlz, x'.'z, x, y, z and no others, if it is of the sort 

that can occur explicitly in logic, will result from substituting <f>lx, if>ly, <f>lz, 

i' I ^1 y» if! 2> X! x> X *• y* X! z> or 301,16 of them, for elementary propositions 
in some stroke-function. 



iNTitoiurrioN x x x i 

It is necessary here to explain what is meant when wo spo.ik of a •• maui\ 

that can occur explicitly in logic.' or. as we may call it. a "logical matrix." 

A logical matrix is one that contains no constants. Thus /» #/ is a logical 

matrix ; so is <f> !.i\ where <f> anil .r are both variable. Taking any elementary 

proposition, we shall obtain a logical matrix it' we replace all its components 

and constituents by variables. Other matrices result I rum logical matrices by 

assigning values to some of their variables. There are. however, various ways 

of analysing a proposition, and therefore various logical matrices can be derived 

from a given proposition. Thus a proposition which is a value of p will 

also be a value of (</>!a) | (y\r\y) and of \• (•»’. .'/)• Different forms are reiptired 

for different purposes; but all the forms of matrices required explicitly in 

logic are logical matrices as above defined. 'Phis is merely an illustration of 

the fact that logic aims always at complete generality. The test of a logical 

matrix is that it can be expressed without introducing any symbols other 

than those of logic, e.g. we must not require the symbol “Socrates.” Consider 

the expression 

/! 2, ... g, z). 

When a ydue is assigned to/, this represents a matrix containing the variables 

<f>- X> ••• x» !/> *. But while / remains unassigned, it is a matrix of a 

new sort, containing the new variable / We call / a “ second-order function," 

because it takes functions among its arguments. When a value is assigned, 

not only to / but also to <f>, yfr, ... x, y, z, .... we obtain an elementary 

proposition; but when a value is assigned to / alone, we obtain a matrix 

containing as variables only first-order functions and individuals. This is 

analogous to what happens when we consider the matrix <f>! x. If wc give 

values to both </> and x, we obtain an elementary proposition; but if we give 

a value to <f> alone, we obtain a matrix containing only an individual as variable. 

There is no logical , matrix of the form /!(<£! 2). The only matrices in 

which <f>! z is the only argument are those containing <f>! a, </>! 6, (f>! c, ..., where 

a, b, c, ... are constants; but these are not logical matrices, being derived 

from the logical matrix <f>! x. Since <f> can only appear through its values, it 

must appear, in a logical matrix, with one or more variable arguments. The 

simplest logical functions of <f> alone are (x). <f>! x and (gx) . <f>! x, but these 

are not matrices. A logical matrix 

/! (<f> l xlt xt, ... xn) 

is always derived from a stroke-function 

F(Px,Pz, p». ...pn) 
by substituting <f>! Xj, <f> l x2, ... <f>! xn for pit p„ ... pn. This is the sole method 

of constructing such matrices. (We may however have xr = x, for some values 

of r and 8.) 

• Second-order functions have two connected properties which first-order 

functions do not have. The first of these is that, when a value is assigned to 

r&w i r 
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/', the result may be a logical matrix: the second is that certain constant values 

of / can be assigned without going outside logic. 

To take the first point first:/! {tf>! 2. x), for example, is a matrix containing 

three variables,/, <f>, and x. The following logical matrices (among an infinite 

number) result from the above by assigning a value to/: <f>! x, {<f>! x) | (</>! x), 

<t>! x D <£ ! x, etc. Similarly <f>! x D <f>! y, which is a logical matrix, results from 

assigning a value to /in/!(</>! 2 ,x.y). In all these cases, the constant value 

assigned to/is one which can be expressed in logical symbols alone (which 

was the second property of/). This is not the case with <f>\x: in order to 

assign a value to <f>, we must introduce what we may call “empirical constants," 

such as “Socrates" and “mortality" and “ being Greek." The functions of x 

that can be formed without going outside logic must involve a function as a 

generalized variable; they are (in the simplest case) such as (<f>).<f>lx and 

(a$) •*!•'•• 

To some extent, however, the above peculiarity of functions of the second 

and higher orders is arbitrary. We might have adopted in logic the symbols 

Ri (*). K (•**. •/). R» (•*■,!/. i). 
where R, represents a variable predicate. II, a variable dyadic relation (in 

intension), and so on. Each of the symbols /?, (x). R~{.r,y), R»{r,y,x), ••• » 

a logical matrix, s«* that, if we used them, we should have logical matrices not 

containing variable functions. It is perhaps worth while to remind ourselves 

of the meaning of "<f>! a," where a is a constant. The meaning is as follows. 

Take any finite* number of propositions of the various forms R, (x), R,(x,y),... 

and combine them by means of the stroke in any way desired, allowing any 

one of them to be repeated any finite number of times. If at least one of 

them has a as a constituent, t.e. is of the form 

Rn(a,6,, 6„ ... &„-,). 

then the molecular proposition we have constructed is of the form <f>la, 

i.e. is a value of “ </>!«" with a suitable <f>. This of course also holds of the 

proposition R„ (<t,6,,6t,... &„_,) itself. It is clear that the logic of propositions, 

and still more of general propositions concerning a given argument, would be 

intolerably complicated if we abstained from the use of variable functions; 

but it can hardly be said that it would be impossible. As for the question of 

matrices, we could form a matrix/!(/£,, x), of which R, (.r) would be a value. 

That is to say, the properties of second-order matrices which we have been 

discussing would also belong to matrices containing variable universals. They 

cannot belong to matrices containing only variable individuals. 

By assigning <f>! z and x in /!(</»! 2, x), while leaving/variable, we obtain 

an assemblage of elementary propositions not to be obtained by means of 

variables representing individuals and first-order functions. This is why the 

new variable / is useful. 



INTRODUCTION* XXXIII 

We can proceed in like manner t<» matrices 

FI (/!(<£ ! gl($l * n ... * ! * X ! 2. ... .r. //. ...] 

and so on indefinitely. These merely represent new ways of grouping ele¬ 

mentary propositions, leading to new kinds of generality. 

V. FUNCTIONS OTHER THAN MATRICES 

When a matrix contains several variables, functions of some of them can 

be obtained by turning the others into apparent variables. Functions obtained 

in this way are not matrices, and their values are not elementary propositions. 

The simplest examples are 

(*,y) and (gy). <f>!(.r,y). 

When we have a general proposition (<*>). F (<*>! 2, x, y, ...|, the only values </> 

can take are matrices, so that functions containing apparent variables are not 

included. We can, if we like, introduce a new variable, to denote not only 

functions such as <f>! 2, but also such as 

(y).</>!(2,y), (y,z)-<t>l(£,y,z), ... (ay) • <t> 10*. y), •••; 

in a word, all such functions of one variable as can be derived by generalization 

from matrices containing only individual-variables. Let us denote any such 

function by <t>xx, or ^,.r, or x,a:, or etc. Here the suffix 1 is intended to indi¬ 

cate that the values of the functions may be first-order propositions, resulting 

from generalization in respect of individuals. In virtue of #8, no harm can 

come from including such functions along with matrices as values of single 

variables. 

Theoretically, it is unnecessary to introduce such variables as <f>,, because 

they can be replaced by an infinite conjunction or disjunction. Thus e.g. 

. <f>ix. = : (</>) . <f>! x: (<f>, y). <f>! (x, y) z (<£): (gy) .<t>l(x,y): etc., 

(a*»> • * * = : (atf*) - <t>! X: v: (g<£): (y) . ! (x, y): v :(g<£, y). <f>! (x, y) : v: etc., 

and generally, given any matrix/! (<f>! 2, x), we shall have the following pro¬ 

cess for interpreting (<*>,) ./! (<£,2, x) and (g<*>.) ./! (£,2, x). Put 

(<*>>) ./! x). = z (<*>) ./! | (y) . <f> l (2, y), x) : (<*,) ./! [(gy) . <f>! (2, y), *), 

where/! {(y). <f>! (2,y), x\ is constructed as follows: wherever, in/! \<f>! 2, x), 

a value of <f>, say <f,! a, occurs, substitute (y) . </>! (a, y), and develop by the 

definitions at the beginning of *8. /! ((gy) . <f> ! (2, y), a:) is similarly con¬ 

structed. Similarly put 

(**> •/* (*’ 1 5, x) . = : (*)./! ((y, */).«*>! (2, y. w), x\ : 

(<#») •/* l(y) s (a"') - £ * (2, y, w), *| : etc., 

where *etc.w covers the prefixes (gy) : (w) (gy,«/) (w) : (gy). We define 

<p> «£4,... similarly. Then 

: ,‘(«r/l.(tt*).-:(«./WW s(^*)./!(^2,a:): etc. 

This process depends upon the feet that /!(</>! 2, a:), for each value of <f> and a:, 

is a proposition constructed out of elementary propositions by the stroke, and 
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that *8 enables us to replace any of these by a proposition which is not 

elementary. (fl<M •/•(<£.-• •' * is defined by an exactly analogous disjunction. 

It is obvious that, in practice, an infinite conjunction or disjunction such 

as the above cannot Ik* manipulated without assumptions ad hoc. We can 

work out results for any segment of the infinite conjunction or disjunction, 

and we can ".see” that these results hold throughout. But we cannot prove 

this, because mathematical induction is not applicable. We therefore adopt 

certain primitive propositions, which assert only that what we can prove in 

each case holds generally. By means of these it becomes possible to manipulate 

such variables as <f> 

In like manner we can introduce /, (0,2, s), where any number of in¬ 

dividuals and functions 0,. ••• may appear ;is apparent variables. 

No essential difficulty arises in this process so long as the apparent 

variables involved in a function are not of higher order than the argument to 

the function. For example, x «!)*/{, which is (fly) • *Ry, may be treated 

without danger as if it were of the form <f>! a*. In virtue of *8. <f>,x may be 

substituted for <f>ls without interfering with the truth of any logical pro¬ 

position which <t>'.x is a part. Similarly whatever logical proposition holds 

concerning/! (£,3,x) will hold concerning/, (0,2. x). 

But when the apparent variable is of higher order than the argument, a 

new situation arises. The simplest cases are 

<*)./!<*! 2. x). (g^)./!(^!?.x). 

These are functions of /, but are obviously not included among the values 

for <t> lx (where <f> is the argument). If we adopt a new variable fa which is 

to include functions in which 0! 2 can be an apparent variable, we shall obtain 

other new functions 

<*,)./!(*,2.*). <3*.>./«<*.J.*). 

which are again not among values for fax (where fa is the argument), because 

the totality of values of faz, which is now involved, is different from the totality 

of values of 0! 2, which was formerly involved. However much we may en¬ 

large the meaning of <f>. a function of x in which 0 occurs as apparent variable 

has a correspondingly enlarged meaning, so that, however 0 may be defined, 

(*)./! (*2,x) and (fl0)./! (02, x) 

can never be values for fac. To attempt to make them so is like attempting 

to catch one's own shadow. It is impossible to obtain one variable which 

embraces among its values all possible functions of individuals. 

We denote by fax a function of x in which fa is an apparent variable, but 

there is no variable of higher order. Similarly fax will contain fa as apparent 

variable, and so on. 
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The essence of the matter is that a variable may travel through any well- 

defined totality of values, provided these values are all such that any one eon 

replace any other significantly in any context. In constructing fax, the only 

totality involved is that of individuals, which is already presupposed. Hut 

when we allow <f> to be an apparent variable in a function of x, we enlarge the 

totality of functions of x, however <t> may have been defined. It- is therefore 

always necessary to specify what sort of <f> is involved, whenever <f> appears as 

an apparent variable. 

The other condition, that of significance, is fully provided for by the 

definitions of *8, together with the principle that a function can only occur 

through its values. In virtue of the principle, a function of a function is a 

stroke-function of values of the function. And in virtue of the definitions in 

*8, a value of any function can significantly replace any proposition in a 

stroke-function, because propositions containing any number of apparent 

variables can always be substituted for elementary propositions and for each 

other in any stroke-function. What is necessary for significance is that every 

complete asserted proposition should be derived from a matrix by generaliza¬ 

tion, and that, in the matrix, the substitution of constant values for the 

variables should always result, ultimately, in a stroke-function of atomic 

propositions. We say " ultimately,” because, when such variables as fa.3 are 

admitted, the substitution of a value for fa may yield a proposition still 

containing apparent variables, and in this proposition the apparent variables 

must be replaced by constants before we arrive at a stroke-function of atomic 

propositions. We may introduce variables requiring several such stages, but 

the end must always be the same: a stroke-function of atomic propositions. 

It seems, however, though it might be difficult to prove formally, that the 

functions <f>x, /, introduce no propositions that cannot be expressed without 

them. Let us take first a very simple illustration. Consider the proposition 

(3<M . <f>i& • fao>, which we will call f{x, a). 

Since <£, includes all possible values of <f>! and also a great many other values 

in its range,/(x, a) might seem to make a smaller assertion than would be 

made by 

(30). 0 ! x. <f>! a, which we will call /. (x, a). 

But in fact f(x, a) . D . f0 (x, a). This may be seen as follows: fax has one of 

the various sets of forms: 

(y) . 0 ! (x, y), (y,z). <f>l (x, y, z)t 

(ay) - 0 *(*. y). (a.y>*) • 0 * (*>y> *)> •••». 
-(y): (a*) • 0 • (*» y» *)» (ay) • (*) - 0 * (*. y.*). 

Suppose first that fax . = . (y) . <f> l (x, y). Then 

fax . faa • = :(!/) • 4>l{x,y):(y) . <f>l(a,y)i 

Di<t>l(x,b).<t>l(a,b)z 

, • D : (30) . <f>! x . <f>! a. 
!> • 
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Next, suppose 0,/. = . (fly). <t>l(-r, y). Then 

<t>tx. tf>,a . = :(gy)-0!(*.y): (g*>- <f>Ua,z): 

D : (ay. :): <f>! (x.y) v <*>! (x, j) . <£ ! (a. y) v <f>! (a, z): 

D: (g£). <£ !x. <f>! a, 

because <f>! (x. y) v <f>! (x, j) is of the form <f>! x. when y and r are fixed. It is 

obvious that tins method of proof applies to the other cases mentioned above. 

Hence 

We can satisfy oprsclves that the same result holds in the general form 

(<t>X *)• = • (3</»)./! (<t>! 2, x) 

by a similar argument. We know that /!(<£! 2, x) is derived from some 

stroke-function 
F(/>. 7. r,...) 

by substituting $ ! x, <f>! a. <#>! fc, ... (where d. 6. ... are constants) for some of 

the propositions ji, if. r, ... and y,! x. y7! .r. y,! x. ... (where <7,, *7,. are 

constants) for others of /». 7, r.while replacing any remaining propositions 

/>, if, r, ... by constant propositions. Take a typical case; suppose 

We then have to prove 

4>,«|(4>,x <*>,/>). 3.(g$). $!« (<£ ! x | <£ ! 6), 

where </>,x may have any of the forms enumerated above. 

Suppose first that ^,x. = . (y). <f>! (x, y). Then 

4>,«|(<f>,x 0,6>. » : (gy) :(*, w). <t>! (<*.y)l I4> * (x. z) | <t>! (b, «•)) : 

3: (ay) • <t> * («. y)l 1* •• (*. y) 14>! (*. y)l: 

D:(3*).<*>!a|<*!*|«M6) 

because, for a given y. <f>! (x, y) is of the form 4>! x. 

Suppose next that <£,x . = . (gy). *f>! (x, y). Then 

<M S (<M! «M) • = *• (y): (a*. «*) • ! («*. y>! !^>! (x* -)! ! (&. w)): 

D :(g^). irla\(ylrlx\yfrl b). 

putting \Jr ! x . = . <f>! (x, z) v if>! (x, w). Similarly the other wises can bo dealt 

with. Hence the result follows. 

Consider next the correlative proposition 

<*.) ./!(<*>,2.x). = .(<*>)./!«*>I 2.x). 

Here it is the converse implication that needs proving, i.e. 

(<*,)./!(*! 2. x). D. (*,)./! (<#>,2. x). 

This follows from the previous case by transposition. It can also be seen in¬ 

dependently os follows. Suppose, as before, that 

/! (<f>,2, x). = . (<#>,a) | (</>,x | </>,£»), 

and put first «/>,x. = . (y). <t>! (x, y). 

Then (<J>,a) | (</>,x | <*>,fc). = : (gy): (z, w).<f>l (a, y) | {<£! (x, z) | if>! (6, w)). 
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Thus we require that, given 

we should have (g;/) : (z, w) . <f>! («i, //) | \<f>! (*, z) | <f>! (b. w)\. 

Now 

(yfr). yfr ! o | (>/r ! x j yfr ! b) . D <f>! (ci, j) . D . <f>! (.i\ z). <f> l (b. z) z 

4>! (u, «*). D . <f>! (.r, w) . </>! (6, w) 

D :.</>! (a, j) . <f>! (a, /<•) . D . 0 ! (.r, z). <f>l (b, w) 

D <£! (a, m») . D : <£! (a, z). D . <f>l (.r, z). <f>! (6. tv) (1) 

Also (atw). D : 0! (a, «•). D . <£! (<r, j) . </>! (/>. «•) (*2) 

(l).(2).Ds.(^).^!a|(^!o:!>fr!6):D:.(ay):^!(a^).D.<^Har^).0!(6. w) 

which was to be proved. 

Put next = - (3!/) • <£*(*• y)- 

Then (</>,a) | (<£,* | <#>,&) . - : (y) : (g*. w) . <*>! (a. y) i |</> • (*. *)!</>! (&. w)|. 

In this case we merely put z = w = y and the result follows. 

The method will be the same in any other case. Hence generally: 

<+.) •/! (<M. *) • =’• <«*>) •/* (<t> * 2, a:). 

Although the above arguments do not amount to formal proofs, they suffice 

to make it clear that, in fact, any general propositions about <f>! 2 are also 

true about <£,2. This gives us, so far as such functions arc concerned, all that 

cotild have been got from the axiom of rcducibility. 

Since the proof can only be conducted in each separate case, it is necessary 

to introduce a primitive proposition stating that the result holds always. This 

primitive proposition is 

h :(*)./!<*! 2, x). D./! x) Pp. 

As an illustration: suppose we have proved some property of all classes defined 

by functions of the form <f>! 2, the above primitive proposition enables us to 

substitute the class D‘i2, where R is the relation defined by <f>! (2, p), or by 

(a2) - <f> l (2, f), z), or etc. Wherever a class or relation is defined by a function 

containing no apparent variables except individuals, the above primitive pro¬ 

position enables us to treat it as if it were defined by a matrix. 

We have now to consider functions of the form tf>tx, where 

<f>2x . = . (<f>)./! (<f> l 2, x) or <f>2x. = . (g<#>) ./! (<f>! 2, x). 

We want to discover whether, or under what circumstances, we have 

(<t>) • 9 1 (<t> ! 2* x) . D . g ! (<^2, x). (A) 

Let us begin with an important particular case. Put 

gl(tf>l2,x). = .<f>laD<pix. 

. Then (<f>) . g l (<f> ! 2, x) . = . x = a, according to *13*1. 
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Wc want to prove 

(0). 0! a D 0! x. D . <t>.u D 0.x, 

U. (0). 0! a 0 0 Sx. D : (0)./! (0 ! 2.a). D . (0)./! (0! 2.4r): 

<30) •/! (0 ! 2. «). D . (%!</>)./! (0 ! 2, *). 

Now y'! (0 ! 2,./■) must be derived from some stroke-function 

/’(/>. 7. r, ...) 

by substituting for some of p, 7. r, ... the values 0 ! .r, 0 ! &, 0 ! c. ... where 

b, c.... are constants. As soon as 0 is assigned, this is of the form 0 ! .r. Hence 

(0). 0! n D 0! x . D :«<^>>:/! (0 ! 2,«) • 3 ./!(0 ! 2, *): 

D:(0)./!(0!2.o). D .(0)./!(0! 2.a): 

<a0)-/!(0!2.«).^.(a^)-/!(0i2.x). 

Thus generally (0).0!a D0I/.D. (0..). 0.ci D 0;x without the need of any 

axiom of rcducibility. 

It must not, however, be assumed that (A) is always true. The procedure 

is as follows: /! (0! 2,a) results from some stroke-function 

F(p. 7, /•. ...) 

by substituting for some of p, 7, r, ... the values 0 ! x, 0 ! ci, 0 ! 6, ... (a, b, ... 

being constants). We assume that, e.g. 

0.x.« .<0)./!(0! 2. a). 

Thus 0,x. = .(0). F(<f>! x, 0 ! a, 0 ! 6, ...). (B) 

What we want to discover is whether 

(0) • #! (0 ! 2, a). D . <7! (0.2, a). 

Now g! (0! 2, a) will be derived from a stroke-function 

G(/>. 7. r, ...) 

by substituting 0!a, 0! «\ 0!6', ... for some of p, 7. r. To obtain 

*7! (0a2, a), we have to put 0,x, 0,o', 0,6\ ... in G(/>, 7, r, ...), instead of 

0 ! a\ 0 !0 ! b'. We shall thus obtain a new matrix. 

If(0)-«7!(0! 2,a) is known to be true because G(p, 7, r, ...) is always 

true, then 7 ! (0,2, a) is true in virtue of *8, because it is obtained from 

G (p, 7, r, ...) by substituting for some of 7, r, ... the propositions 0,a, 

0,«\ 0,1*',... which contain apparent variables. Thus in this case an inference 

is warranted. 

We have thus the following important proposition: 

Whenever (0). g! (0 ! 2, x) is known to be true because gl(<f>lz,x) is 

always a value of a stroke-function 

G(p, q, r, ...), 

which is true for all values of p,q,r.then g ! (0,2.x) is also true, and so 

(of course) is (0,) .g! (0,2, x). 
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'l'his, however, does not cover the case where (</>).</! (*f>! ••') is not a 

truth of logic, but a hypothesis, which may be true for some values ol .»• ami 

false for others. When this is the case, the inference to g l . .r) is some¬ 

times legitimate and sometimes not: the various eases must be investigated 

separately. We shall have an important illustration of the failure of the 

inference in connection with mathematical induction. 

VI. CLASSES 

rl he theory of classes is at once simplified in one direction and complicated 

in another by the assumption that functions only occur through their values 

and by the abandonment of the axiom of reducibility. 

According to our present theory, all functions of functions are extonsional. 

i.e. 

<f>x =x yfrx . D ./(<£3) =f(>\rz). 

This is obvious, since <*> can only occur in /(<£2) by the substitution of values 

of <f> for p, q, r, ... in a stroke-function, and, if 4>x = yjrx, the substitution of 

<f>x for p in a stroke-function gives the same truth-value to the truth-function 

as the substitution of yfrx. Consequently there is no longer any reason to 

distinguish between functions and classes, for we have, in virtue of the above, 

<t>x =x yfrx . D . 

We shall continue to use the notation 5 (<f>x), which is often more convenient 

than <f>£; but there will no longer be any difference between the meanings of 

the two symbols. Thus classes, as distinct from functions, lose even that 

shadowy being which they retain in *20. The same, of course, applies to 

relations in extension. This, so far, is a simplification. 

On the other hand, we now have to distinguish classes of different orders 

composed of members of the same order. Taking classes of individuals as the 

simplest case, &(<f>lx) must be distinguished from £(fax) and so on. In 

virtue of the proposition at the end of the last section, the general logical 

properties of classes will be the same for classes of all orders. Thus e.g. 

aC£ .0Cy. D .aCy 

will hold whatever may be the orders of a, 0, y respectively. In other kinds of 

cases, however, trouble arises. Take, as a first instance, plK and s*k. We have 

x ep*K . = : a e k . D„ . x e a. 

Thus p‘rc is a class of higher order than any of the members of k. Hence the 

hypothesis (or) ./a may not imply /(p‘<c), if a is of the order of the members 

of k. There is a kind of proof invented by Zermelo, of which the simplest 

example is his second proof of the Schroder-Bernstein theorem (given in *73). 

This kind of proof consists in defining a certain class of classes k, and then 

showing that p‘fce/c. On the face of it, “p‘/c e k ” is impossible, since p‘/c is 
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not of the same order as members of *. This, however, is not all that is to be 

said. A class of classes * is always defined by some function of the form 

r., »/=, ...). F(.rt€a. x.ea. ... y.co, ytea. ...), 

where F is a stroke-function, and "acK means that the above function is 

true. It may well happen that the above function is true when p*K is sub¬ 

stituted for a. and the result is interpreted by *8. Does this justify ns in 

asserting />‘* e k * 

Let. us take an illustration which is important in connection with 

mathematical induction. Put 

k = a (R“a Cfl.ftt a). 

Then C p‘x . a < p‘« (see <40-81) 

mi that, in a sense, />** * k. That is to say, if we substitute for a in the 

defining function of *. and apply *8. we obtain a true proposition. By the 

definition of *90. 

R+n ■= />**. 

Thus R0*a is a second-order class. Conse<piently. if we have a hypothesis 

(a) .fa. where a is a first-order class, we cannot assume 

(a).fa.O .j\R+*a). (A) 

By the proposition at the end of the previous section, if (a), fa is deduced by 

logic from a universally-true stroke-function of elementary propositions. 

/(/f*4«) will also be true. Thus we may substitute for a in any asserted 

proposition “h./a' which occurs in Principia Mathematica. But when 

(a) .fa is a hypothesis, not a universal truth, the implication (A) is not, prima 

facie, necessarily true. 

For example, if k — a(R*‘a C a . a c a), we have 

atif.D:an/3fif . = . R“(a r\ 0)C 0 . a c 0. 

Hence a c « . R“(a r\0)C0.a€0.O. p*x C0 (1) 

In many of the propositions of *90, as hitherto proved, we substitute p*tc for 

a, whence we obtain 

i.e. 

or 

li'“</3n p‘K) C 0.ac0.D.p*K C 0 (2) 

zc 0. ali+z. D..*. W€0 m €0. aR+x : D . j* € 0 

aR+x. D z € 0 . aR+z . . w c 0 : a e 0 : 3 . x c 0. 

This is a more powerful form of induction than that used in the definition of 

But the proof is not valid, because we have no right to substitute p‘ic 

for a in passing from (1) to (2). Therefore the proofs which use this form of 

induction have to be reconstructed. 
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It will bo found that the form to which wo can reduce most. the fallacious 

inferences that scorn plausible is the following: 

Given M h . (.r) . /(.r,.r)'* wo can infer " b : (.r) : (;•!//>. t( r, //).** Thus given 

" ^ ” we can infer “ b : (a): (g£) ./(a, £)." But this depends upon 

the possibility ot a = 8. If. now, a is of one order and 8 of another, wo do 

not know that a = 8 is possible. Thus suppose we have 

a e k . . ga 

and we wish to infer g8> where 8 is a class of higher order satisfying 

The proposition 

(8) :• a € k . Da . ga : D : e * . D . q8 

becomes, when developed by *8, 

(£)::(ga):.a* * . D .</a : D :/9c * . D . <7# 

This is only valid if a = /9 is possible. Hence the inference is fallacious if 8 

is of higher order than a. 

Let us apply these considerations to Zermelo’s proof of the Schruder- 

Bernstein theorem, given in *73 8 ff. We have a class of classes 

* = 3 (a C D‘R . 8 - Cl‘R C a . R“a C a) 

and we prove p‘/c e k (*73'81), which is admissible in the limited sense ex¬ 

plained above. We then add the hypothesis 

x~c (8 ~ G‘i2) vi R“p‘* 

and proceed to prove p‘tc — l*x c * (in the fourth line of the proof of *73 82). 

This also is admissible in the limited sense. But in the next line of the same 

proof we make a use of it which is not admissible, arguing from p'tc - i‘x e k 

to plK C p*K — i*x, because 

a e k . D. . p*K C o. 
The inference from 

a e k . D. .p*K C a to p‘ic — l‘x e k . D . p*K Cp‘/e — l‘x 

is only valid if ptK—itx is a class of the same order as the members of *. 

For, when a e k . ,p*K C a is written out it becomes 

(a) ::: (g/9) (x) ::ae*.D:./9e*.D.x€/9: D . x e a. 

This is deduced from 
a e k . Dz.acrc.D.xea : D . x e a 

by the principle that/(a, a) implies (g>9) ./(a, £). But here the 8 must be 

of the same order as the a, while in our^case a and 8 are not of the same 

order, if a = p‘/c — i‘x and 8 is an ordinary member of k. At this point, there¬ 

fore, where we infer p'tc Cp‘/c — i*x, the proof breaks down. 

It is easy, however, to remedy this defect in the proof. All we need is 

x~e(J3 — Q.‘R) vi R“p‘k . D . x~ep*K 
or, conversely. 

xep‘* . D . xe(8— d‘R) vi R“p‘tc. 
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Noxv 

eplK . D :.a **. D. : a — f4J*~e * : 

D.: -<£- (I4K C a - i«jp) . v . -!£“<a - i‘.r) C a - t4.r* : 

tt44(a- f4.r) 

D :..r* £- (I4/f : v : a f «f. D4 • < /f44a. 

Hence. by *72*341. 

.*<//*. D .s<(0-(\‘R) v rt4</>4* 

which gives llie required result. 

Wi- assume that a-f4.» is »f no higher order than a; this can he secured 

by taking a to b«- of at least the second order, since i*j\ and therefore — l*x, 

is of tin* second order. We may always assume our classes raised to a given 

order, but not raised indefinitely. 

Thus the Schroder-Bernstein theorem survives. 

Another difficulty arises in regard to sub-classes. We put 

Cl4a «£(£Ca) Df. 

Now " Cn is significant when & is of higher order than a, provided its 

members are of the same type as those of a. But when we have 

£ C a . D, ./$, 

the fS must be of some definite type. As a rule, we shall be able to show 

that a proposition of this sort holds whatever the type of tf, if we can show 

that it holds when (3 is of the same type ns a. Consequently no difficulty 

arises until we come to Cantor's proposition *2" > n, which results from the 

proposition 
^J(CI4a)sm a| 

which is proved in *102. The proof is ns follows: 

li € 1 1 . D4/* = a . (I4/* C Cl4a . £-3 |x*a- R‘xj. D : 
~ 

'/«a . y t Rl;j .1.,. y • 'J~' R*y • : 3 :y««. + R'y: 
D:£~*(l47f. 

As this proposition is crucial, we shall enter into it somewhat minutely. 

Let a — jt (A ! x), and let 

xR {*<* !*)). = ./!<*!*,*). 

Then by our data, 
A Sx.D.(a^) ./!(<#>! 5.x), 

/l(^!2.x)./!(^!2,y).D.x = y, 

/l(<f>llx)./!(yJr!3,x).D.<f>ly=,yJr!y. 
With these data, 

xea — R*x . = : A!x:/!(<£ !z,x). D* ! x. 

£ = *((<*>): A !*:/!(*! 2.*). Thus 
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Thus £ is defined by n function in which 0 appears as apparent variable. If 

we enlarge the initial range of 0. we shall enlarge the range of values involve.I 

m the definition off. There is therefore no way of escaping from the result, 

that f is of higher order than the sub-classes of o contemplated in the 

definition of CTa. Consequently the proof of 2" > n e.. I lapses when the 

axiom of reducibility is not assumed. We shall find, however, that t he propo¬ 

sition remains true when n is finite. 

With regard to relations, exactly similar questions arise as with regard to 

classes. A relation is no longer to be distinguished from a function of two 

variables, and wo have 

0 (•«•, 9) - 0“ (^. 9) • = s 0 y) . . 0 (.r, y). 

The difficulties ns regardsp*\and Rl'Pare less important than those concerning 

P*k and Cl4a, because p*\ and R1‘P are less used. But a very serious difficulty 

occurs as regards similarity. We have 

asrajS.B. (gP) . R e 1 1 . a - D‘P . & = CI‘P. 

Here R must be confined within some type; but whatever type we choose, 

there may be a correlator of higher type by which a and /9 can be correlated. 

Thus we can never prove ~(a sm /9), except in such special cases as when 

either a or is finite. This difficulty was illustrated by Cantor’s theorem 

2” > n, which we have just examined. Almost all our propositions are con¬ 

cerned in proving that two classes are similar, and these can all be interpreted 

so as to remain valid. But the few propositions which are concerned with 

proving that two classes are not similar collapse, except where one at least of 

the two is finite. 

VII. MATHEMATICAL INDUCTION 

All the propositions on mathematical induction in Part II, Section E and 

Part III, Section C remain valid, when suitably interpreted. But the proofs 

of many of them become fallacious when the axiom of reducibility is not 

assumed, and in some cases new proofs can only be obtained with considerable 

labour. The difficulty becomes at once apparent on observing the definition 

of “ xR^y" in *90. Omitting the factor "xcC'-R,” which is irrelevant for 

our purposes, the definition of “xR+y" may be written 

zRw . w. 0 ! z D 0 ! w : D* . <t> l x D <£ ! y, (A) 

i.e. “ y has every elementary hereditary property possessed by x.” We may, 

instead of elementary properties, take any other order of properties; as we 

shall see later, it is advantageous to take third-order properties when R is 

one-many or many-one, and fifth-order properties in other cases. But for 

preliminary purposes it makes no difference what order of properties we take, 

and therefore for the sake of definiteness we take elementary properties to 

begin with. The difficulty is that, if 0, is any second-order property, we 

cannot deduce from (A) 

zRw . . <p2z D 0*u/ : D . <f>sx 3 02y. (B) 
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Suppose, for example, that = .(*)./!($ S3.*); then from (A) we can 

deduce 

zliw . D. ,r./! <<f>! 3. :) D*/! (<*>! 3, itr): D s/S <<#>! 3.- 0* ./'• <4> '• 2, y) : 
D: <f>:.r. D. <£*//. (C) 

But in general our hypothesis here is not implied by the hypothesis ot (B). 

It wc put <f>:z . = . (3+)./! (<f> S 3.we get exactly analogous results. 

Hence in order to apply mathematical induction to a second-order property, 

it is not sufficient that it should be itself hereditary, but it must be composed 

of hereditary elementary properties. That is to say, if the property in question 

is <f>2z, where <f>.z is either 

(*)•/!(+Si.*) »r wt>)./U<t>'.2.z). 

it is not enough to have 
zliir. O.^.^.zOtft.W, 

but we must have, for each elementary <fj. 

zliw . 0:.„./! (<*>! 3. z) Of l (0! 3, w). 

One inconvenient consequence is that, prirnd facie, an inductive property 

must not be of the form 
rli+ z . 4>! z 

or StVoiiiVR.^lS 

or «« NC induct. <f>!«. 

This is inconvenient, because often such properties are hereditary when <f> 

alone is not, i.e. we may have 

.r/f* z . <t>! z . zliw . 0t>te. -rtf* w . <f>! w 

when we do not have 
<f>lz .zRw.Ot'*.<t>lw, 

and similarly in the other cases. 

These considerations make it necessary to re-examine all inductive proofs. 

In some cases they are still valid, in others they are easily rectified ; in still 

others, the rectification is laborious, but it is always possible. The method of 

rectification is explained in Appendix B to this volume. 

There is, however, so far as wc can discover, no way by which our present 

primitive propositions can be made adequate to Dedekindian and well-ordered 

relations. The practical uses of Dedekindian relations depend upon *211*63— 

*155)2, which lead to *214*3—*34, showing that the series of segments of a series 

is Dedekindian. It is upon this that the theory of real numbers rests, real 

numbers being defined as segments of the series of rationals. This subject is 

dealt with in *310. If we were to regard ;is doubtful the proposition that the 

series of real numbers is Dedekindian, analysis would collapse. 

The proofs of this proposition in Principia Mathematica depend upon the 

axiom of reducibility, since they depend upon *211*64, which asserts 

X.CD ‘Pt.0.s‘\eV‘Pe. 
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For reasons explained above, if a is of the order of members of X, (a) ./a may 

not imply /($‘X), because s*\ is a class of higher order than the members of 

X. Thus although we have 

s*X = 7>‘ViV‘X. 

yet we cannot infer except when s‘X or s‘iJ,MX is, for some special 

reason, of the same order as the members of X. This will be the case when X 

is finite, but not necessarily otherwise. Hence the theory of irrationals will 

require reconstruction. 

Exactly similar difficulties arise in regard to well-ordered series. The 

theory of well-ordered series rests on the definition *250 01 : 

Bord - P (Cl ex*CtP C a<minj») Df, 

whence P € Bord . = : a C C*P . a ! a . . 3 ! a - P“a. 

In making deductions, we constantly substitute for a some constructed class 

of higher order than C*P. For instance, in *250122 we substitute for a the 

class C*P r\ p‘P**(a r> C‘P), which is in general of higher order than a. If this 

substitution is illegitimate, we cannot prove that a class contained in C‘P 

and having successors must have an immediate successor, without which the 

theory of well-ordered series becomes impossible. This particular difficulty 

might be overcome, but it is obvious that many important propositions must 

collapse. 

It might be possible to sacrifice infinite well-ordered series to logical 

rigour, but the theory of real numbers is an integral part of ordinary mathe¬ 

matics, and can hardly be the object of a reasonable doubt. We arc therefore 

justified in supposing that some logical axiom which is true will justify it. 

The axiom required may be more restricted than the axiom of reducibility, 

but, if so, it remains to be discovered. 

The following are among the contributions to mathematical logic since the 

publication of the first edition of Principia Mathematica. 

D. Hilbert. Axiomatisches Dcnken, Mathematieche Annalcn, Vol. 78. Die logischen 

Grundlagen dor Mathematik, ib. VoL 88. Neue Begriindung dcr Mathematik, 

Abhandlungen aus dem mathemalischen Seminar der Uamburgischen UnivcrsitiU, 1922. 

P. Bernays. Ueber Hilbert’s Gedanken zur Grundlegung dcr Arithmetik, Jahresbericht 

der deutschen MathenuUiker- Vereinigung, Vol. 31. 

H. Behmakn. Beitrage zur Algebra dor Logik. Malhematische Annalcn, Vol. 86. 

L. CHWI8TBK. Ueber die Antinomien der Prinzipien der Mathematik, Mathematiichc 

Zeitachrift, Vol. 14. The Theory of Constructive Types. Annalcs de la Societe 

MathAmatique de Pologne, 1923. (Dr Chwistek has kindly allowed us to read in MS. 

a longer work with the same title.) 

H. Weyl. Dae KorUinuum, Veit, 1918. Ueber die neue Grundlagenkrise der Mathematik, 

Mathematieche Zeitachrift, Vol. 10. Randbemerkungen zu Hauptproblemen der 

Mathematik, Mathematieche Zeitechrift, VoL 20. 
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stcc. JS'o:___ 

< 

*v. SPlNN''',J 

The mathematical logic which occupies Part I of the present work has 

been constructed under the guidance of three different purposes. In the first 

place, it aims at effecting the greatest possible analysis of the ideas with 

which it deals and of the processes by which it conducts demonstralions, 

and at diminishing to the utmost the number of the undefined ideas and 

undemonstrafod propositions (called respectively primitive ideas and primitive 

propositions) from which it starts. In the second place, it is framed with a 

.view to the perfectly precise expression, in its symbols, of mathematical 

propositions: to secure such expression, and to secure it in the simplest and 

most convenient notation possible, is the chief motive in the choice of topics. 

In the thin! place, the system is specially framed to solve the paradoxes 

which, in recent years, have troubled students of symbolic logic and the 

theory of aggregates; it is believed that the theory of types, as set forth in 

what follows, leads both to the avoidance of contradictions, and to the 

detection of the precise fallacy which has given rise to them. 

Of the above three purposes, the first and third often compel us to adopt 

methods, definitions, and notations which are more complicated or more 

difficult than they would be if we had the second object alone in view. This 

applies especially to the theory of descriptive expressions (#14 and *30) and 

to the theory of classes and relations (*20 and *21). On these two points, 

and to a lesser degree on others, it has been found necessary to make some 

sacrifice of lucidity to correctness. The sacrifice is, however, in the main 

only temporary: in each case, the notation ultimately adopted, though its 

real meaning is very complicated, has an apparently simple meaning which, 

except at certain crucial points, can without danger be substituted in 

thought for the real meaning. It is therefore convenient, in a preliminary 

explanation of the notation, to treat these apparently simple meanings as 

primitive ideas, i.e. as ideas introduced without definition. When the notation 

has grown more or less familiar, it is easier to follow the more complicated 

explanations which we believe to be more correct. In the body of the work, 

where it is necessary to adhere rigidly to the strict logical Older, the easier 

order of development could not be adopted ; it is therefore given in the 

Introduction. The explanations given in Chapter I of the Introduction are 

such as place lucidity before correctness; the full explanations are partly 

supplied in succeeding Chapters of the Introduction, partly given in the body 

of the work. 

The use of a symbolism, other than that of words, in all parts of the book 

which aim at embodying strictly accurate demonstrative reasoning, has been 

r&wi • 1 



2 XTRODUCTIOX 

forei’il on us by \ Ik* consistent pursuit of the- above three purposes. The 

reasons for this extension of symbolism beyond the tamiliar regions of number 

and allied idea' are many : 

( I ) The ideas here employed are more abstract than those familiarly con¬ 

sidered in language. Accordingly there are no words which are used mainly 

in the exact consistent -enso*. which are required here. Any use of words 

would rc«|iiire unnatural limitations to their ordinary meanings, which would 

be in fact more difficult to remember consistently than are the definitions of 

entirely new symbols. 

<-> The grammatical structure of language is adapted to a wide variety 

o! usages. Thus it po>*e>^es no unique simplicity in representing the few 

simple though highly abstract, processes and ideas arising in the deductive 

trains o( reasoning employed here. In fact the very abstract simplicity of the 

ideas of this work defeats language. Language can represent complex ideas 

moreea-ily The proposition "a whale i^ big represents language at its best, 

giving terse expression to a complicated fact; while the true analysis of "one 

is a number " leads, in language, to an intolerable prolixity. Accordingly 

terseness is gained by using a symbolism especially designed to represent the 

ideas and processes of deduction which occur in this work. 

(3) The adaptation of the rules of the symbolism to the processes of 

deduction aids the intuition in regions too abstract for the imagination 

readily to present to the mind the true relation between the ideas employed. 

For various collocations of symbols become familiar as representing im¬ 

portant collocations of ideas; and in turn the possible relations—according 

to the rules of the symbolism—between these collocations of symbols become 

familiar, and these further collocations represent still more complicated 

relations between the abstract ideas. And thus the mind is finally led to 

construct trains of reasoning in regions of thought in which the imagination 

would be entirely unable to sustain itself without symbolic help. Ordinary 

language yields no such help. Its grammatical structure docs not represent 

uniquely the relations between the ideas involved. Thus, "a whale is big” 

and "one is a number both look alike, so that the eye gives no help to the 

imagination. 

(4) The terseness of the symbolism enables a whole proposition to be 

represented to the eyesight as one whole, or at most in two or three parts 

divided where the natural breaks, represented in the symbolism, occur. This 

is a humble property, but is in fact very important in connection with the 

advantages enumerated under the heading (3). 

(5) The attainment of the first-mentioned object of this work, namely 

the complete enumeration of all the ideas and steps in reasoning employed 
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in mathematics, necessitates both terseness ami the presentation of each pro¬ 

position with the maximum of formality in a form as characteristic of itself 

as possible. 

Further light on the methods ami symbolism of this hook is thrown by a 

slight consideration of the limits to their useful employment: 

(a) Most mathematical investigation is concerned not with the analysis 

ot the complete process of reasoning, but with the presentation of such an 

abstract ot the proof as is sufficient to convince a properly instructed mind. 

For such investigations the detailed presentation of the steps in reasoning is 

of course unnecessary, provided that the detail is carried far enough to guard 

against error. In this connection it may be remembered that the investiga¬ 

tions of Weierstrass and others of the same school have shown that, even in 

the common topics of mathematical thought, much more detail is necessary 

than previous generations of mathematicians had anticipated. 

(/3) In proportion as the imagination works easily in any region of 

thought, symbolism (except for the express purpose of analysis) becomes only 

necessary us a convenient shorthand writing to register results obtained 

without its help. It is a subsidiary object of this work to show that, with 

the aid of symbolism, deductive reasoning can be extended to regions of 

thought not usually supposed amenable to mathematical treatment. And 

until the ideas of such branches of knowledge have become more familiar, 

the detailed type of reasoning, which is also required for the analysis of the 

steps, is appropriate to the investigation of the general truths concerning 

these subjects. 



CHAPTER I 

PRELIMINARY EXPLANATION'S OF IDEAS AND NOTATIONS 

The notation adopted in the present work is based upon that of Peano, 
and t lie following explanations are to some extent modelled on those which 
he prefixes to his Formulario Mathematico. His use of dots as brackets is 

adopted, and so an* many of his symbols. 

Variables. The idea of a variable, as it occurs in the present work, is 
more general than that which is explicitly used in ordinary mathematics. 
In ordinary mathematics, a variable generally stands for an undetermined 
number or (piantity. In mathematical logic, any symbol whose meaning is not 
determinate is called a variable, and the various determinations of which its 
meaning is susceptible are called the values of the variable. The values may 
be any set of entities, propositions, functions, classes or relations, according 
to circumstances. If a statement is made about " Mr A and Mr B,” “ Mr A 
and " Mr B ” are variables whose values are confined to men. A variable may 
either have a conventionally-assigned range of values, or may (in the absence 
of any indication of the range of values) have as the range of its values all 
determinations which render the state-ment in which it occurs significant. 
Thus when a text-book of logic asserts that "A is A." without any indication 
as to what A may be. what is meant is that any statement of the form 
"A is A is true. We may call a variable restricted when its values are 
Coiifine*I to some only of those of which it is capable: otherwise, we shall call 
it unrestricted. 'Phils when an unrestricted variable occurs, it represents any 
object such that the statement concerned can be made significantly (i.e. either 
truly or falsely) concerning that object. For the purposes of logic, the 
unrestricted variable is more convenient than the restricted variable, and we 
shall always employ it. Wc shall find that the unrestricted variable is still 
subject to limitations imposed by the manner of its occurrence, i.e. things 
which can be said significantly concerning a proposition cannot be said 
significantly concerning a class or a relation, and so on. But the limitations 
to which tin* unrestricted variable is subject do not need to be explicitly 
indicated, since they are the limits of significance of the statement in which 
the variable occurs, and are therefore intrinsically determined by this state¬ 
ment. This will be more fully explained later*. 

To sum up, the three salient facts connected with the use of the variable 
arc: (1) that a variable is ambiguous in its denotation and accordingly undefined; 
(2) that a variable preserves a recognizable identity in various occurrences 
throughout the same context, so that many variables can occur together in the 

• Cf. Chapter II of the Introduction. 
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sjuuo context each with its separate identity: and (3* that either the imigo of 

possible determinations of two variables may be the same, so that, a possible 

determination of one variable is also a possible determination of the other, or 

the ranges of two variables may be ditVerent. so that, if a possible determina¬ 

tion of one variable is given to the other, the resulting complete phrase is 

meaningless instead of becoming a complete unambiguous proposition (true 

or talse) as would be the case if all variables in it had been given any suitable 

determinations. 

The uses of various letters. Variables will be denoted by single letters, and 

so will certain constants; but a letter which has once been assigned to a constant 

by a definition must not afterwards be used to denote a variable. The small 

letters of the ordinary alphabet will all be used for variables, except /> and s 

after *40, in which constant meanings are assigned to these two letters. The 

following capital letters will receive cons bint meanings: B, C. D, K. F, I and f. 

Among small Greek letters, we shall give constant meanings to e, i and (at a 

later stage) to rj, 0 and o>. Certain Greek capitals will from time to time be 

introduced for constants, but Greek capitals will not be used for variables. Of 

the remaining letters, p, q, r will be called propositional letters, and will stand 

for variable propositions (except that, from *40 onwards, p must not be used 

for a variable); f g, <f>, 0 and (until *33) F will be called functional 

letters, and will be used for variable functions. 

The small Greek letters not already mentioned will be used for variables 

whose values arc classes, and will be referred to simply as Greek letters. Ordinary 

capital letters not already mentioned will be used for variables whose values 

are relations, and will be referred to simply as capital letters. Ordinary small 

letters other thanp, q, r, s.f g will be used for variables whose values are not 

known to be functions, classes, or relations; these letters will be referred to 

simply as sviall Latin letters. 

After the early part of the work, variable propositions and variable functions 

will hardly ever occur. We shall then have three main kinds of variables: 

variable classes, denoted by small Greek letters; variable relations, denoted by 

capitals; and variables not given as necessarily classes or relations, which will 

be denoted by small Latin letters. 

In addition to this usage of small Greek letters for variable classes, capital 

letters for variable relations, small Latin letters for variables of type wholly 

undetermined by the context (these arise from the possibility of “systematic 

ambiguity,” explained later in the explanations of the theory of types), the 

reader need only remember that all letters represent variables, unless they have 

been defined as constants in some previous place in the book. In general the 

structure of the context determines the scope of the variables contained in it; 

but the special indication of the nature of the variables employed, as here 

proposed, saves considerable labour of thought. 
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Thefill" l‘i mental functions of /impositions. An aggregation of propositions, 

con«*idcied as wholes not neccs'aiily unambiguously determined, into a single 

propition ..complex than it-* constituents, is a function irith propositions 

ns urtfoments. The general idea of .such an aggregation of propositions, or ol 

variables representing propitious, "ill not he employed in this work. But 

there are four special cases which an- of fundamental importance, since all the 

aggregations of sulMudinate propositions into one complex proposition which 

occur in the sequel are formed out of them step by step. 

They me (I) the Contradictory Function, (2) the Logical Sum, or Dis¬ 

junctive Function, (.'{> the Logical Product, or Conjunctive Function, (4) the 

Implicative Function. These functions in the sons© in which they are required 

in this work are not all independent: and it two of them arc taken as primitive 

undefined ideas, the other two can 1m- defined in terms of them. It is to some 

extent—though not entirely—arbitrary as to which functions are taken jus 

primitive. Simplicity of primitive ideas and symmetry of treatment seem to 

be gained by taking the first two functions as primitive ideas. 

The Contradictory Function with argument p. whore p is any proposition, 

is the proposition which is the contradictory of />. that is. the proposition 

asserting that p is not true. This is denotes I by ^ p. Thus ^ p is the 

contradictory function with p as argument and means the negation of the 

proposition />. It will also he referred to as the propition not-p. Thus ~p 

means not-yr, which means the negation of p. 

The Logical Sum is a propitionnl function with two arguments p and 7. 

and is the proposition asserting p or 7 disjunctively, that is, asserting that at 

least one of (he two yinmDy is true. This is denoted by p v 7. Thus /ivy is 

the logical sum with y> and 7 as arguments. It is also called the logical sum of 

p and 7. Accordingly y» v 7 means that at least p or 7 is true, not excluding the 

case in which both are true. 

'fhe Logical Product is a propositional function with two arguments p ami 

7, and is the prop it ion asserting y> ami 7 conjunctively, that is, asserting that 

both y> and 7 are true. This is denoted by p. 7, or—in order to make the dots 

act as brackets in a way to be explained immediately—by p 17, or by p7, 

or by put/. Thus y>*7 is the logical product with p and 7 as arguments. It 

is also called the logical product of y» and 7. Accordingly p . 7 means that both 

y> and 7 are true. It is easily seen that this function can be defined in terms 

of the two preceding functions. For when p and 7 are both true it must be 

false that either ^p or is true. Hence in this book y>. 7 is merely a 

shortened form of symbolism for 

~ ~ p v ~ 7). 

If any further idea attaches to the proposition “both p and 7 are true," it is 

not required here. 
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The Implicative Function is a pnqiositional function with t wo .-irgumnits 

p and 7. and is tlu? proposition that cither not-y> or 7 is true, that is. it is the 

proposition ^ pv 7. Thus if p is true, ^ p is false, and accordingly the only 

alternative left by the pro{>osition pv q is that 7 is true. In other welds 

it P and v 7 are both true, then 7 is true. In this sense the proposition 

^ pv q will be quoted as stating that p implies 7. The idea contained in 

this propositional function is so important that it requires a symbolism which 

with direct simplicity represents tlu* proposition as connecting /» and 7 

without the intervention of ^ p. Hut ** implies” as used here expresses 

nothing else than the connection between p and 7 also expressed by the 

disjunction “not-p or 7.” The symbol employed for "y> implies 7." i.e. for 

“ ~pvq,’’ is “/O7.” This symbol may also be read "if />. then 7.” The 

association of implication with the use of an apparent variable produces 

an extension called "formal implication.” This is explained later: it is an 

idea derivative from “ implication ” as here defined. When it is necessary 

explicitly to discriminate " implication ” from " formal implication.” it is called 

“material implication.” Thus “ material implication” is simply “implication' 

as here defined. The process of inference, which in common usage is often 

confused with implication, is explained immediately. 

These four functions of propositions arc the fundamental constant (i.e. 

definite) propositional functions with propositions as arguments, and all other 

constant propositional functions with propositions as arguments, so far ns they 

are required in the present work, are formed out of them by successive steps. 

No variable propositional functions of this kind occur in this work. 

Equivalence. The simplest example of the formation of a more complex 

function of propositions by the use of these four fundamental forms is furnished 

by “equivalence." Two propositions p and 7 are said to be “equivalent” 

when p implies 7 and 7 implies p. This relation between p and 7 is denoted 

by "p = 7.” Thus “ p = 7 ” stands for “(pDg).(gD p).’’ It is easily seen that 

two propositions are equivalent when, and only when, they are both true or 

are both false. Equivalence rises in the scale of importance when we come 

to “ formal implication ” and thus to “ formal equivalence.” It must not 

be supposed that two propositions which are equivalent are in any sense 

identical or even remotely concerned with the same topic. Thus “Newton 

was a man ” and “ the sun is hot ” arc equivalent as being both true, and 

“ Newton was not a man ” and “ the sun is cold " are equivalent as being both 

false. But here we have anticipated deductions which follow later from our 

formal reasoning. Equivalence in its origin is merely mutual implication as 

stated above. 

Truth-values. The “ truth-value ” of a proposition is truth if it is true, 

and falsehood if it is false*. It will be observed that the truth-values of 

• This phrase is due to Frege. 
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pv 7 V • 7* /' ^ 7- ~ />• /> = 7 depend only upon those of /> and 7. namely the 

truth-value of "p v</' is truth if the truth-value of either p or 7 is truth, 

and is falsehood otherwise ; that of"/#. 7 is truth if that of both p and 7 is 

truth, and is falsehood otherwix*; that of “/O7 is truth if either that ot p 

is falsehood or that of 7 is truth; that of* p is the opposite of that of p\ 

and that of " /> = 7 is truth if p and 7 have the same truth-value, and is 

falsehood otherwise. Now the only ways in which propositions will occur 

in the present work are ways derived from the above by combinations and 

repetitions. Hence it i> easy to x-e (though it cannot be formally proved 

except in each paiticul'.r case) that if a proposition /» occurs in any propo¬ 

sition / (/») which we shall ever have occasion to deal with, the truth-value 

Ol /( p) will de|M*nd. lint upon the particular pro|xisition p, but only upon 

its truth-value: i.e. if /> = 7, we shall have /< //) 2/(7). Thus whenever two 

propositions are known to In- equivalent, either may be substituted for the 

other in anv formula with which we shall have occasion to deal. 

We may call a function J\ p) a " truth-function “ when its argument p is 

a proposition, and the truth-value of /ip) depends only upon the truth- 

value o| jt. Such functions are by no means the only common functions of 

propositions. For example, ".1 believes p" is a function of p which will 

vary its truth-value for diflorent arguments having the same truth-value: 

A may believe one true pro|tosition without believing another, and may 

believe one false proposition without believing another. Such functions 

are not excluded from our consideration, and arc included in the scope of 

any general propositions we may make about functions; but the particular 

functions of propositions which we shall have occasion to construct or to con¬ 

sider explicitly are all truth-functions. This fact is closely connected with a 

characteristic of mathematics, namely, that mathematics is always concerned 

with extensions rather than intensions. The connection, if not now obvious, will 

become more so when we have considered the theory of classes and relations. 

Asxertion-xiyn. The sign "b,” called the "assertion-sign,” means that 

what follows is asserted. It is required for distinguishing a complete propo¬ 

sition, which we assert, from any subordinate propositions contained in it but 

not asserted. I11 ordinary written language a sentence contained between full 

stops denotes an asserted proposition, and if it is false the book is in error. 

The sign " b” prefixed to a proposition serves this same purpose in our sym¬ 

bolism. For example, if “b(/Op)’’ occurs, it is to be taken as a complete 

assertion convicting the authors of error unless the proposition “pOp" is 

true (as it is). Also a proposition stated in symbols without this sign “ b ” 

prefixed is not asserted, aud is merely put forward for consideration, or as a 

subordinate part of an asserted proposition. 

Inference. The process of inference is as follows: a proposition “/>” is 

asserted, and a proposition "p implies 7 ” is asserted, and then as a sequel 
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the proposition “7” is assorted. Tlu* tins! in inference is tin* belief t hat, if tin* 

two former assertions are not in error, the Hnal assertion is not. in error. 

Accordingly whenever, in symbols, where /» ami 7 have of course special 

determinations, 

“!-/>•* ami " I- (/> D 7) " 

have occurred, then t,\mq" will occur if it is desired to put. it on record. The 

process of the inference cannot be reduced to symbols. Its sole record is the 

occurrence of" h 7.’* It is of course convenient, even at the risk of repetition, 

to write "b/>” and “ b (/> D 7)" in close juxtaposition before proceeding to 

“ h 7 ” as the result of an inference. When this is to be done, for the sake of 

drawing attention to the inference which is being made, we shall write 

instead 

which is to be considered as a mere abbreviation of the threefold statement 

“ hp " and " h (p D 7) ’’ and M h 7.'* 

Thus may be read “p. therefore 7," being in fact the same 

abbreviation, essentially, as this is; for "p, therefore q" does not explicitly 

state, what is part of its meaning, that p implies 7. An inference is the 

dropping of a true premiss ^ it is the dissolution of an implication. 

The use of dots. Dots on the line of the symbols have two uses, one to 

bracket off propositions, the other to indicate the logical product of two 

propositions. Dots immediately preceded or followed by “v " or ‘O” or 

“ — ” or - h/* or by “<*) ” “(or. y),” "<*. y, z)'\.. or “(a*).” « (g*. y)f “(g*r, y. z)’\.. 

or “[(lx)(ft>x)]” or “[i£‘y]” or analogous expressions, serve to bracket ofF a 

proposition; dots occurring otherwise serve to mark a logical product. The 

general principle is that a larger number of dots indicates an outside bracket, 

a smaller number indicates an inside bracket. The exact rule as to the scope 

ot the bracket indicated by dots is arrived at by dividing the occurrences of 

dots into three groups which we will name I, II, and III. Group I consists of 

dots adjoining a sign of implication (D) or of equivalence (=) or of disjunction 

(v) or of equality by definition (= DO- Group II consists of dots following 

brackets indicative of an apparent variable, such as (x) or (x, y) or (gx) or 

(a*»y) or [(?#) or analogous expressions*. Group III consists of dots 

which stand between propositions in order to indicate a logical product. 

Group I is of greater force than Group II, and Group II than Group III. 

The scope of the bracket indicated by any collection of dots extends backwards 

or forwards beyond any smaller number of dots, or any equal number from a 

group of less force, until we reach either the end of the asserted proposition 

or a greater number of dots or an equal number belonging to a group of 

equal or superior force. Dots indicating a logical product have a scope which 

works both backwards and forwards; other dots only work away from the 

• The meaning of these expressions will be explained later, and examples of the nee of dots in 

oonneotion with them will be given on pp. 16, 17. 
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adjacent sign of di*»junction, implication. or equivalence, or forward from tlie 

adjacent symbol of one of the other kinds enumerated in Group II. 

.Some examples will serve to illustrate the use of dots. 

' /> v y. 3.7 v// means the proposition " *p or y implies '7 or />.’ ” When 

we tissert this proposition, instead of merely considering it, we write 

“ h : // v 7 . 3 . 7 v />. 

where the two dots after the assertion-sign show that what is asserted is the 

whole of what follows the assoition-sign. since there are not. as many as two 

dots anywhere else. If we had written "p: v : 7 . 3 . 7 v//,” that would mean 

tie- pro|M»iti.»n - either/> i^ true, or 7 implies 7 or//."' If we wished to assert 

this, we should have to put three dots after the assertion-sign. If we had 

written "p v 7 . 3 . 7 : v : />. that would mean the proposition " either '/> or 7' 

implies y. or // is true.'" The forms p. v . 7.3. y v />" and * // v 7 . 3 . 7 . v . />’’ 

have 110 ineaiiiiio 

’ /O7.3: 7 3 r. 3 . //3 r" will mean “ if /> implies 7, then if 7 implies /*, 

// implies r." If we wi*h to assert this (which is true) we write 

■* h :. // 3 7.3 :7 3 /•. 3 . // 3 r." 

Again •//3y . 3 . y 3/•: 3 .//3/•'■ will mean ** if ‘y> implies y* implies y 

implies /•,' then // implies r. This is in general untrue. (Observe that 

/>3y is sometimes mo't conveniently read as ' p implies 7," and sometimes 
as it p, then 7.") "//3 y . y 3/•. 3 .//3/•' will mean "if /> implies 7, and 

/ implies #•, then // implies #•." In this formula, the first dot indicates a logical 

product; hence the scope of the second dot extends backwards to the begin¬ 

ning of the pro|K/sition. ' p 3y : y 3 r. 3 . /> 3 r" will menu "/> implies y; and 

i! y implies r, then p implies r." (This is not true in general.) Here the two 

dots indicate a logical product; since two dots do not occur anywhere else, the 

seopo of these two dots extends backwards to the beginning of the proposition, 

and forwards to the end. 

" p v 7.3 p, v . 7 3 r: 3 ,p v r" will mean “ if either p or 7 is true, then 

il either p or *y implies r’ is true, it ft/llows that either p or r is true.” If 

this is to lie asserted, wc must put four dots after the assertion-sign, thus: 

" h ;; y» v y . 3 ;. />. v • y 3 r i 3 .yj v r." 

( I'liis proposition is proved in the body of the work; it is *2 73.) If we wish 

to assert (what is equivalent to the above) tbe proposition: "if either p or 7 

is true, and either p or *y implies r' is true, then either p or r is true," we 

write 

" b p v 7: p. v . 7 3 r: 3 . p v r.” 

Here the first pair of dots indicates a logical product, while the second pair 

docs not. Thus the scope of the second pair of dots passes over the first pair, 

ami back until we reach the three dots after the assertion-sign. 

Other uses of dots follow the same principles, and will be explained as 

they are introduced. In reading a proposition, the dots should be noticed 



>1 PKFIXITIOKS II 

tij-st-, as they show its structmv. In a proposition containing s«-\vrnl signs <<l 

implication or equivalence. the one with the greatest nniuher of «l«*ts Im-I'oiv 

or alter it is the principal one: everythin*; that goes he lore this one is stated 

l>y the proposition to imply or he equivalent to everyth in** that cmnes alter it. 

Definitions. A definition is a declaration that a certain newlv-i lit rod need 

symbol or combination of symbols is to mean the same as a certain other 

combination of symbols of which the meaning i> already known. Oi. if the 

defining combination of symbols is one which only acquires meaning when 

combined in a suitable manner with other symbols*. what is meant is that 

any combination of symbols in which the newly-defined symbol or combination 

of symbols occurs is to have that meaning (if any) which results from substi¬ 

tuting the defining combination of symbols for the newly-defined symbol or 

combination of symbols wherever the latter occurs. We will give the names 

of definiendum and definiens respectively to what is defined and to that which 

it is defined as meaning. We express a definition by putting the definiendum 

to the left and the definiens to the right, with the sign ** —” between.and the 

letters “Df” to the right of the definiens. It is to be understood that the 

sign "=a” and the letters “Df” are to be regarded as together forming one 

symbol. The sign " — ” without the letters "Df ” will have a different meaning, 

to be explained shortly. 

An example of a definition is 

Df. 

It is to be observed that a definition is, strictly speaking, no part of the 

subject in which it occurs. For a definition is concerned wholly with the 

symbols, not with what they symbolise. Moreover it is not true or false, 

being the expression of a volition, not of a proposition. (For this reason, 

definitions are not preceded by the assertion-sign.) Theoretically, it is 

unnecessary ever to give a definition: we might always use the definiens 

instead, and thus wholly dispense with the definiendum. Thus although we 

employ definitions and do not define “definition,'’ yet "definition” does not 

appear among our primitive ideas, because the definitions are no part of our 

subject, but are, strictly speaking, mere typographical conveniences. Prac¬ 

tically, of course, if we introduced no definitions, our formulae would very soon 

become so lengthy as to be unmanageable; but theoretically, all definitions are 

superfluous. 

In spite of the fact that definitions are theoretically superfluous, it is 

nevertheless true that they often convey more important information than is 

contained in the propositions in which they are used. This arises from two 

causes. First, a definition usually implies that the definiens is worthy of 

careful consideration. Hence the collection of definitions embodies our choice 

'•This case will be fully considered in Chapter III of the Introduction. It need not further 

concern ue at present. 
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«»t subjects ami our judgment as to what is most important. Secondly, when 

what is defined is (sis often occurs) something already familiar, such ns cardinal 

or ordinal numbers, the definition contains an analysis of a cotnniou idea, and 

may therefore expre->notable advance. (’antor’s definition of the continuum 

illustrate* this: his definition amounts to the statement that what he is de¬ 

fining is the object which has the proju-rlies commonly associated with the 

word continuum, though what precisely constitutes these properties had 

Hot before been known. In such cases, a definition is a " making definite it 

gives definiteness m, idea which had previously been mole or less vague. 

I'oi- tlu se reasons, it will be found, in what follows, that the definitions 

aie what i* mo>l important, and what most deserves the reader’s prolonged 

attention. 

Some impel t int remarks must be made respecting the variables occurring 

in the i/i'liiurn.s ami the ilcjinienihini. Hut these will la- deferred till the 

icu ion of an "apparent variable' lias been introduced, when the subject can be 

considered as a whole. 

Sum,nun/ of U,uj statements. There are. in the above, three primi¬ 

tive ideas which are not ••defined’* but only descriptively explained. Their 

piimitivcncss is only relative to our exposition of logical connection and is 

not absolute; though of course such an exposition gains in importance ac- 

cording to the simplicity of its primitive ideas. These ideas are symbolised 

by "'>-/> and /»v 7." and by ,,K* prefixed to a proposition. 

Three definitions have been introduced: 

/>•'/. = pw ^1/) I)f. 

. = ,^p Viy Df. 

y# = #y . =» .yOr/.ry Dyj ])f. 

Primitive propositions. Some propositions must be assumed without proof, 

since all inference proceeds from propositions previously asserted. These, as 

far as they concern the functions of propositions mentioned above, will be 

found stated in *1. where the formal and continuous exposition of the subject 

commences. Such propositions will be called “primitive propositions.” These, 

like the primitive ideas, are to some extent a matter of arbitrary choice; though, 

as in the previous ease, a logical system grows in importance according as the 

primitive propositions are few and simple. It will be found that owing to the 

weakness of the imagination in dealing with simple abstract ideas no very 

great stress can be laid upon their obviousness. They are obvious to the in¬ 

structed mind, but then so are many propositions which cannot be quite true, 

:ls being disproved by their contradictory consequences. The proof of a logical 

system is its adequacy and its coherence. That is: (1) the system must embrace 

among its deductions all those propositions which we believe to be true and 

capable of deduction from logical premisses alone, though possibly they may 
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require some slight, limitation in the form of an increased stringency of enun¬ 

ciation; and (2) the system must lead to no contradictions, namely in pursuing 

our inferences we must never be led to assort both /» and not-/>. i.e. both " h . p" 

mul "b . ~/>” cannot legitimately appear. 

The following are the primitive propositions employed in the calculus of 

propositions. The letters “Pp" stand for ‘•primitive proposition." 

(1) Anything implied by a true premiss is true Pp. 

This is the rule which justifies inference. 

(2) h:pvp.D./> Pp. 

i.e. if/) or p is true, then p is true. 

(3) b : q. D . p v q Pp. 

i.e. if q is true, then p or q is true. 

(4) I~:pvq.D.qvp Pp, 

i.e. if p or q is true, then q or p is true. 

(5) b :pv(qvr). D .q v(pvr) Pp, 

t.e. if either p is true or “q or r” is true, then either 7 is true or “p or r” is 
true. 

(<») b:.qDr.D:pvq.D.pvr Pp, 

i.e. if q implies r, then "p or 7” implies ”p or r.” 

(7) Besides the above primitive propositions, we require a primitive pro¬ 

position called "the axiom of identification of real variables.” When we have 

separately asserted two different functions of x, where x is undetermined, ii 

is often important to know whether we can identify the x in one assertion 

with the x in the other. This will be the case—so our axiom allows us to 

infer if both assertions present x as the argument to some one function, that 

is to say, if (f>x is a constituent in both assertions (whatever propositional func¬ 

tion 0 may be), or, more generally, if <f>(x, y, z,...) is a constituent in one 

assertion,and <t> (x, u, v,...) is a constituent in the other. This axiom introduces 

notions which have not yet been explained; fora fuller account, see the remarks 

accompanying *3 03, *17, *1 71, and *1 72 (which is the statement of this 

axiom) in the body of the work, as well as the explanation of propositional 

functions and ambiguous assertion to be given shortly. 

Some simple propositions. In addition to the primitive propositions we 

have already mentioned, the following are among the most important of the 

elementary properties of propositions appearing among the deductions. 

The law of excluded middle: 
b .p v~p. 

This is *2-11 below. We shall indicate in brackets the numbers given to the 

following propositions in the body of the work. 

The law of contradiction (*3*24): 

h . (p . ~/>). * 
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The law of double negation (*413): 

I" • /> = M •>-/>). 

I lie principle ot transjtontion, i.e. "if /> implies 7, then not-9 implies not-/)," 

•in‘1 'ice versa: this principle lias various forms, namely 

(*4 I) I*: /O. 'N «y D v 

<*4-11) b :/» =#y. = 

I*4' 14) I- :./>. */. D ~r. D . v«y, 

as well as others which are variants of these. 

The law of tautology, in the two forms: 

(*4 24) I- :y#. 5 ./»./#, 

(*4 2.>) h :/>. = ./) v/>. 

P is true is equivalent to ‘ /j is true and p is true." as well as to "p is true 

or p is true." Fr.a formal point of view, it is through the law of tautology 

and Its conseipiences that the algebra of logic is chielly distinguished from 

ordinary algebra. 

The law of absorption: 

(*471) h.y)D)y.s:yi. = .yj.(y, 

' *• > implies 7" i> equivalent to "p is equivalent to p. 7." This is called the 

law of absorption In-cause it shows that the factor 7 in the product is absorbed 

by the fact or /#, it /1 implies 7. This principle enables us to replace an impli¬ 

cation (/O7) by an equivalence (/;. = ./>.7) whenever it is convenient to 
llo St I 

An analogous and very important principle is the following: 

(*4 73) h 7 . D :/). = ./». 7. 

Logical addition and multiplication of propositions obey the associative 

and commutative laws, and the distributive law in two forms, namely 

<*4 4) h :./). 7 v r. = : p . 7 . v . />. r. 

(*4 41) h y». v . 7 , /•: = ; y/ v 7. yj v r. 

The second of these distinguishes the relations of logical addition and multi¬ 

plication from those of arithmetical addition and multiplication. 

Propositional functions. Let <f>x be a statement containing a variable x 

ami such that it becomes a proposition when x is given any fixed determined 

meaning. I hen 0.# is called a ••propositional function”; it is not a proposition, 

since owing to the ambiguity of .r it really makes no assertion at all. Thus 

“j- is hurt really makes no assertion at all. till we have settled who x is. Yet 

owing to the individuality retained by the ambiguous variable x, it is an am¬ 

biguous example from the collection of propositions arrived at by giving all 

possible determinations to .r in “x is hurt” which yield a proposition, true or 

lalse. Also it \r is hurt” and "y is hurt" occur in the same context, where y is 
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another variable, then ncwnliug to the .h-U-imi,unions giv,... :1,„| ,, ,|„.v 

can be settled to be (possibly) the same ,motion or (possibly) ,lilt, 

propositions. But apart from somedeterminatio., give. to.,a,id ,A Ma y relain 

in that context, their ambiguous .lirterentiation. Thus "... is hint" is an am¬ 

biguous ••yalue" of a propositional lunetion. When we wish to sin-alt ol 'ihe 

propositional function corresponding to is hurt" we shall write ".?■ is hurt " 

Inis a is hurt is the propos.tional lunetion and is hurt" is an nmbig,.. 

value ol that function. Accordingly though ".r is hurt" and -,/ is hurt" •/„„ 

Sa'"e co'"e,t can b'- distinguished, is hurt" and ' is hurt" convey 

no distinction of meaning at all More generally. 0., is an ambiguous value ol 

the propositional function 0.7, and when a definite signification „ is substituted 
ror .r, <pa is nil unambiguous value of 0.7. 

Propositional functions are the fundamental kind from which the more usual 

kinds of function, such as ••sin.r" or "log.," or "the father of are derive,I. 

I esc derivative functions are considered later, and are called "descriptive 

functions. The functions of propositions considered above me a particular 
case of propositional functions. 1 

The range of values and total variation. Thus corresponding to anv propo¬ 

rtional function 0.?, there is a range, or collection, of values, consisting of all 

the propositions (true or false) which can be obtained by giving every possible 

determmation to * in 0a-. A value of a- for which 0., is true will bo said to 

satisfy 0.?. Now in respect to the truth or falsehood of propositions of this 

range three important cases must be noted and symbolised. These cases are 

given by three propositions of which one at least must be true. Either (1) all 

propositions of the range are true, or (2) some propositions of the range are 

(1) "? Pr^P°s,tion of the ranSe is The statement (1) is symbolised 
*>y (*).<K and (2) is symbolised by “(a*). 0*” No definition is given of 

hese two symbols, which accordingly embody two new primitive ideas in our 

system. The symbol "(ar) . 0x” may be read “0* always.” or “0* is always true,” 

or 0* ,s true for all possible values of The symbol “(3*).0*” may be 

read “there exists an a: for which <f>x is true ” or “there exists an .r satisfying 

<PA and thus conforms to the natural form of the expression of thought. 

Proposition (3) can be expressed in terms of the fundamental ideas now on 

hand. In order to do this, note that - ~ <f>x” stands for the contradictory of 0*. 
Accordingly ~ 05 is another propositional function such that each value of 05 

contradicts a value of ~ 05, and vice versa. Hence “(*). ~ 0*” symbolises the 

proposition that every value of 05 is untrue. This is number (3) as stated above. 

. Ifc ls aQ obvious error, though one easy to commit, to assume that cases 

U) and (3) are each other’s contradictories. The symbolism exposes this fallacy 

at once, for (1) is (x).<px, and (3) is (x).~<f>x, while the contradictory of (1) is 

~ K®). 0a;(. For the sake of brevity of symbolism a definition is made, namely 

~ (;r). <f>x. = . ~ {(*) . 0xj Df. 
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Definit ions of which the object is to gain some trivial advantage in brevity 

by a slight adjustment of symbols will be said to be of “merely symbolic import," 

in contradistinction to those definitions which invite consideration of an im¬ 

portant idea. 

The proposition (x). <f>r is called the “total variation ‘ of the function tjjr. 

For reasons which will lie explained in Chapter II. we do not take negation 

as a primitive idea when proposition.** of the forms (x). <f>j and (3x) .«/>.» are 

concerned, but we define the negation of (x).^x, i.e. of "$x is always true," as 

being ' <£ / is sometimes false, i.e. "(W). ^ <f>>and similarly we define the 

negation of (j|x). as being (x). Thus wc put 

^ ;(x) . <Jm■] . ss . ($|.r) . <f>.r l)f, 

^ . i.r) . ^ (f,.r |)f. 

In like manner wc define a disjunction in which 011c of the propositions is 

of the form ' (.r). <£./ or * (gx). tf).r in terms of a disjunction of propositions 

not of this form, putting 

(x). <p.r. v . y»: ■.(d.f'V/) Df, 

i.e. “either <f>.< is always true, or y* is true" is to mean '“<f>.r or/>’ is always true." 

with similar definition^ in other cases. This subject is resumed in Chapter II, 

and in *1) in the body of the work. 

Apparent variables. The symbol "(x). <f>r■" denotes one definite proposition, 

and there is no distinction in meaning between “(.r). <f>.i•" and "(//)• <f>‘/ when 

they occur in the same context. Thus the “x * in "(x). is not an ambiguous 

constituent of any expression in which "(x). ^r" occurs; and such an ex¬ 

pression does not cease to convey a determinate meaning by reason of the 

ambiguity of the x in the The symbol “(.r). <f>.r" has some analogy to 

the symbol 
•. .6 

I dx 

for definite integration, since in neither case is the expression a function of#. 

The range of x in “(x).<£./ or "(3*r). <t*x“ extends over the complete 

field of the values of x for which has meaning, and accordingly the 

meaning of ”(x).<f>x" or "(Hr)>0-r" involves the supposition that such n field 

is determinate. The x which occurs in “(x).</>x” or “(%jx). «/»x" is called 

(following Penno) an “apparent variable.” It follows from the meaning of 

“ • </>•' that the x in this expression is also an apparent variable. A 

pro|x>sit.ion in which x occurs as an apparent variable is not a function of x. 

Thus e.g. “(x).x = x" will mean “everything is equal to itself.” This is an 

absolute constant, not a function of a variable x. This is why the x is called 

an apparent variable in such cases. 

Besides the "range" of x in “(x).<£x" or which is the field 

of the values that x may have, we shall speak of the "scope" of x, meaning 
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the function ot which all values or some value are being affirmed. If we are 

asserting all values (or some value) of "*r." " is the scope of.r; if we are 

asserting all values (or some value) of "</uOp." "<f>.cDp" is the scope of .r; 

if we are asserting all values (or some value) of "<f>x D yjrx,” “<f>.v D y/r.r" will be 

the scope of x, and so on. The scope of x is indicated by the number of dots 

after the "(x) ’ or "(gpr)”; that is to say, the scope extends forwards until 

we reach an equal number ot dots not indicating a logical product, or a greater 

number indicating a logical product, or the end of the asserted proposition in 

which the “(x)” or “(3-0” occurs, whichever of these happens lirst*. Thus c.g. 

*‘(.r) : <f>x. D . +x” 

will mean “<f>x always implies ^x,” but 

.D.*x" 

will mean “if <f>x is always true, then yfrx is true for the argument x.” 

Note that in the proposition 

(x) . <f>x . D . yjrx 

the two x’s have no connection with each other. Since only one dot follows 

the x in brackets, the scope of the first x is limited to the u<f>x'’ immediately 

following the x in brackets. It usually conduces to clearness to write 

(x) . <f>x . D . yjry 

rather than (x) . <f>x . D . yfrx, 

since the use of different letters emphasises the absence of connection between 

the two variables; but there is no logical necessity to use different letters, 

and it is sometimes convenient to use the same letter. 

Ambiguous assertion and the real variable. Any value “«/»x” of the function 

<f& can be asserted. Such au assertion of an ambiguous member of the values 

of <f,ai is symbolised by 

“Ktf.x.” 

Ambiguous assertion of this kind is ^primitive idea, which cannot be defined 

in terms of the assertion of propositions. This primitive idea is the one which 

embodies the use of the variable. Apart from ambiguous assertion, the con¬ 

sideration of “<f>x," which is an ambiguous member of the values of <px, would 

be of little consequence. When we are considering or asserting “<£x,” the 

variable x is called a “ real variable.” Take, for example, the law of excluded 

middle in the form which it has in traditional formal logic: 

“ a is either b or not 6.” 

Here a and b are real variables: as they vary, different propositions are 

expressed, though all of them are true. While a and b are undetermined, as in 

the above enunciation, no one definite proposition is asserted, but what is 

asserted is any value of the propositional function in question. This can only 

• This agrees with the roles for the occurrences of dots of the type of Group II as explained 
above, pp. 9 and 10. 



18 IXTRODt'CTION [CHAP. 

be legitimately asserted if. whatever value may be chosen, that value is true, 

i.e. if all the value*! arc true. Thus the above form of the law of excluded 

middle is equivalent to 

“ (*/. h). a is either b or not 

i.e. t.» “ it is always true that a is either b or not. b.' But these two, though 

equivalent, arc not identical, and we shall find it necessary to keep them 

distinguished. 

When we assert something containing a real variable, as in e.g. 

we are asserting ##«*/value of a propositional function. When we assert some¬ 

thing containing an apparent variable, as in 

or “K(5J/).jbi;' 

we are asserting, in the first case all values, in the second case some value 

(undetermined), of the propositional function in question. It is plain that 

we can only legitimately assort11 unit value" if till values are true; for other¬ 

wise. since the value of the variable remains to be determined, it might he so 

determined as to give a false proposition. Thus in the above instance, since 

we have 
h . x ss .r 

we may infer b . (x). x = x. 

And generally, given an assertion containing a real variable x. we may trans¬ 

form the real variable into an ap|urcnt one by placing the x in brackets at 

the beginning, followed by as many dots as there arc after the assertion-sign. 

When we assert something containing a real variable, wc cannot strictly 

be said to be asserting a proposition, for we only obtain a definite proposition 

by assigning a value to the variable, and then our assertion only applies to 

one definite case, so that it has not at all the same force as before. When what 

we assert contains a real variable, we arc asserting n wholly undetermined one 

of all the propositions that result from giving various values to the variable. 

It will be convenient to speak of such assertions as asserting a propositional 

function. The ordinary formulae of mathematics contain such assertions; for 

example 
“sin3.r + cos’1” 

does not assert this or that particular case of the formula, nor does it assert, 

that the formula holds for all possible values of x, though it is equivalent to 

this latter assertion; it simply asserts that the formula holds, leaving x wholly 

undetermined; and it is able to do this legitimately, because, however x may 

be determined, a true proposition results. 

Although an assertion containing a real variable does not, in strictuess, 

us>*ert a proposition, yet it will be spoketi of as asserting a proposition except 

when the nature of the ambiguous assertion involved is under discussion. 



Definition and real variables. When the dejiniens contains one or more 

real variables, the deriniendnin must also contain them. For in this case we 

have a tunction ot the real variables, and the deti niemlu in must have the same 

meaning as the definiens for all values of these variables, which requires that 

the symbol which is the definiendnm should contain the letters representing 

the real variables. This rule is not always observed by mathematicians, ami 

its infringement has sometimes caused important- confusions of thought, 

notably in geometry and the philosophy of space. 

In the definitions given above of "p . ij" and " p D ij" and "p = ij," p and 7 

are real variables, and therefore appear on both sides of the definition. In 

the definition ot j(x) . 4>r\ " only the function considered, namely </>?, is a 

real variable; thus so far ns concerns the rule in <piestion, .#• need not appear 

on the left. But when a real variable is a function, it is necessary to indicate 

how the argument is to be supplied, and therefore there are objections to 

omitting an apparent variable where (as in the case before us) this is the 

argument to the function which is the real variable. This appears more 

plainly if, instead of a general function <£.?, we take some particular function, 

say and consider the definition of ^ |(.r) . x = «J. Our definition gives 

~ {(x) . x — a}. — . (gx) . ~ (x = a) Df. 

But if we had adopted a notation in which the ambiguous value "x = r/," 
containing the apparent variable x, did not occur in the definiendum, we 

should have had to construct a notation employing the function itself, namely 

“£ = a." This does not involve an apparent variable, but would be clumsy in 

practice. In fact we have found it convenient and possible—except in the 

explanatory portions—to keep the explicit use of symbols of the type 

either as constants [e.g. 5 = a) or as real variables, almost entirely out of this 
work. 

Propositions connecting real and apparent variables. The most important 

propositions connecting real and apparent variables are the following: 

(1) “When a propositional function can be asserted, so can the proposition 

that all values of the function are true.” More briefly, if less exactly, “ what 

holds of any, however chosen, holds of all." This translates itself into the rule 

that when a real variable occurs in an assertion, we may turn it into an apparent 

variable by putting the letter representing it in brackets immediately after 

the assertion-sign. 

(2) “ What holds of all, holds of any," i.e. 

h : (x) . <f>x. D . tf>y. 

This states “if <f>x is always true, then <f>y is true.” 

(3) “ If (^y i8 true, then <f>x is sometimes true,” i.e. 

\-z<f>y.D. (gx). <*>x. 

ST 
y Acc. J\'o;___ 
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Ad asserted proposition of the form " (gx). <f>x ” expresses an "existence- 

theorem,” namely " there exist* an x for which <f>.r is true.” The above pro¬ 

position gives what is in practice the only way of proving existence-theorems: 

we always have to find some particular »/ for which 4>y holds, and thence to 

infer " (g.r). If we were to assume what is called the multiplicative 

axiom, or the equivalent axiom enunciated by Zermelo, that would, in au 

important class of cases, give an existence-theorem where no particular instance 

of its truth can he found. 

In virtue of '• Y : (x). $x. D . <f>y" and " b : 4>y. D . (gx). $x," we have 

* 1-: (./). (f>r. D . (gx). tfyr” i.e. *' what is always true is sometimes true." This 

would not he the case if nothing existed; thus our assumptions contain the 

assumption that there is something. This is involved in the principle that 

what holds of all, holds of any; for this would not he true if there were no 

" any/* 

(4) "If <f)j is always true, and yjr.r is always true, then *<£x .yjrx ’ is always 

true," i.e. 

h !. (x) . 4>.r : (x) . yfrx : D . (x) . <t>j . 

(This requires that <f) and yfr should be functions which take arguments of the 

same ty/ie. We shall explain this requirement at a later stage.) The converse 

also holds; i.e. we have 

h (x) . 4>.r . yfrx.D : (x) . <f>j : (.r). yjrx. 

It is to some extent optional which of the prop>sitions connecting real 

and apparent variables are taken as primitive propositions. The primitive 

propositions assumed, on this subject, in the body of the work (*9), are the 

following: 

(1) b:$x.D.(g 

(2) V :<t>j-v<f>y. D.(g*).<£-, 

i.e. if either <fu• is true, or <f>y is true, then (g*). <f>c is true. (On the necessity 

for this primitive proposition, see remarks on *911 in the body of the work.) 

(3) If we can assert tfty, where y is a real variable, then we can assert 

(x). <ftx\ i.e. what holds of any, however chosen, holds of all. 

Formal implication and formal equivalence. When an implication, say 

tf>x .D . \frx, is said to hold always, i.e. when (x): tf>x. D . yjr.r, we shall say that 

<f>x formally implies yjr.c; and propositions of the form “ (x) : <f>x. D . >/rx” will 

be said to state formal implications. In the usual instances of implication, 

such as " ‘ Socrates is a man * implies * Socrates is mortal/ ” we have a propo¬ 

sition of the form " <f>x .0. yf/x " in a case in which " (x): <f>x. D . yfrx ” is true. 

In such a case, we feel the implication as a particular case of a formal impli¬ 

cation. Thus it has come about that implications which are not particular 

cases of formal implications have not been regarded as implications at all. 

There is also a practical ground for the neglect of such implications, for, speaking 
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generally, they can only be knoini when it is already known either that their 

hypothesis is false or that their conclusion is true; and in neither of these 

cases do they serve to make us know the conclusion,since in the first, case the 

conclusion need not be true, and in the second it is known already. Thus 

such implications do not serve the purpose for which implications are chiefly 

useful, namely that of making us know, by deduction, conclusions of which we 

were previously ignorant. Formal implications, on the contrary, do serve this 

purpose, owing to the psychological fact that we often know "(.r):</>./•.D.x/r.r'* 

and <t>i/, in cases where yjry (which follows from these premisses) cannot easily 

be known directly. 

These reasons, though they do not warrant the complete neglect of impli¬ 

cations that are not instances of formal implications, are reasons which make 

formal implication very important. A formal implication states that, for all 

possible values of .r, if the hypothesis <f>.r is true, the conclusion yfrx is true. 

Since " <fxc. D . yfrx" will always be true when <f>.v is false, it is only the values 

of x that make tf>x true that are important in a formal implication ; what is 

effectively stated is that, for all these values, yfrx is true. Thus propositions 

of the form "all a is /9,” “ no a is /9" state formal implications, since the first 

(as appears by what has just been said) states 

(x) : x is an a . D . x is a /3, 

while the second states 

(x) : x is an a . D . x is not a /3. 

And any formal implication " (x) : <f>x . D . yjrx " may be interpreted as : “All 

values of x which satisfy* <f>x satisfy yfrxwhile the formal implication 

“ 0*0 : <f>x. D ■ yfrx ” may be interpreted as: “ No values of x which satisfy <f>x 

satisfy ^x.M 

We have similarly for "some a is /9 ” the formula 

(gx) . x is an a . x is a /9, 

and for " some a is not /3 ” the formula 

(gx) . x is an a . x is not a /9. 

Two functions <f>x, yfrx are called formally equivalent when each always 

implies the other, i.e. when 
(x) : <f>x . = . yjrx, 

and a proposition of this form is called a formal equivalence. In virtue of 

what was said about truth-values, if <f>x and yjrx are formally equivalent, either 

may replace the other in any truth-function. Hence for all the purposes of 

mathematics or of the present work, $2 may replace y\r2 or vice versa in any 

proposition with which we shall be concerned. Now to say that <f>x and yjrx 

are formally equivalent is the same thing as to say that <f>2 and yfr2 have the 

8ame extension, i.e. that any value of x which satisfies either satisfies the other. 

• ▲ value of x is said to tatiafy or <p2 when *x is true for that value of x. 
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Thus wlu-nevt-r a constant function occurs in our work, the truth-value of the 

proposition in which it occurs depends only upon the extension of the function. 

A proportion containing a function an«l having this property (i.e. that its 

truth-value depends only ujion the extension of (f>3) will be called an exten- 

sional function of <f>2. Thus the functions of functions with which we shall be 

specially concerned will all lie exlensional functions of functions. 

What has just la-on said explains the connection (noted above) between 

the fact that the functions of profit ions with which mathematics is specially 

concerned are all truth-functions and the fact that mat hematics is concerned 

with extensions rather than intensions. 

(Urnlenient abbreviation. The following definitions give alternative and often 

more convenient notations: 

4>.r . D, . ylfS z = : (.r): 4>x . D . \frx J)f, 

<f>* . ", . yfr.r = . yfex Df. 

This notation " <f>> . D,. y^.r is due to IVano. who. however, has no notation 

lor the general idea "{.•). <f>x." It may be noticed as an exercise in the use 

of dots as brackets that wo might have written 

4>.r yfrx .-.(d.^rD \fr.r Df. 

4>r =, yfr.r. = . (x). <f>r = yfr.r Df. 

In practice however, when <f>x and \fr.r are special functions, it is not possible 

to employ fewer dots than in the first form, and often more are required. 

The following definitions give abbreviated notations for functions of two 

or more variables : 

(•*•.!/) • <f> (r> >j) • - • (■*) : (y) • <t> (•*.!/) I)f. 
and so on for any number of variables; 

<t> (.r, y) . Dx.„ . t (r. y): = : (x-. y): <f> (x*. y). D . yjr (.r. y) Df. 

and so on for any number of variables. 

Identity. The propositional function "x is identical with y ” is expressed by 

* = !!■ 

This will be defined (cf. *13 01). but, owing to certain difficult points involved 

in the definition, we shall here omit it (cf. Chapter II). We have, of course, 

I-. x- = x* (the law of identity), 

Y:x = y. = .y = x, 

Yzx = y.y = z.D.x = 2. 

The first of these expresses the reflexive property of identity: a relation is 

called reflexive when it holds between a term and itself, either universally, or 

whenever it holds between that term and some term. The second of the 

above propositions expresses that identity is a symmetrical relation : a relation 

is called symmetrical if, whenever it holds between x and y, it also holds 
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between y and .r. Tlu* tliiixl proposition express's licit, identity is a transitin' 

relation: a relation is called transitin' it', whenever it holds between .i-and // 

and between y and it holds also between .*• and 

^ 0 shall find that no new definition of t he sign of equality is re*|iiii*«mI in 

mathematics: all mathematical equations in which the sign of equality is used 

in the ordinary way express some identity, and thus use the sign of equality 

in the above sense. 

If x and y are ideutica), either can replace the other in any proposition 

without altering the truth-value of the proposition ; thus we have 

h : x « y . D . <f>.v = <f>y. 

This is a fundamental property of identity, from which the remaining properties 

mostly follow. 

It might be thought that identity would not have much importance, since 

it can only hold between x and y if x and y are different symbols for the same 

object. This view, however, does not apply to what we shall call "descriptive 

phrases," i.e. " the so-and-so." It is in regard to such phrases that identity is 

important, as we shall shortly explain. A proposition such ns " Scott was the 

author of Waverley" expresses an identity in which there is a descriptive 

phrase (namely “ the author of Waverley "); this illustrates how, in such cases, 

the assertion of identity may be important. It is essentially the same case 

when the newspapers say "the identity of the criminal has not transpired." 

In such a case, the criminal is known by a descriptive phrase, namely " the 

man who did the deed," and wc wish to find an x of whom it is true that 

“ ®=the man who did the deed.” When such an x has been found, the identity 

of the criminal has transpired. 

Classes and relations. A class (which is the same as a manifold or aggre¬ 

gate) is all the objects satisfying some propositional function. If a is the class 

composed of the objects satisfying we shall say that a is the class determined 

by ip£. Every propositional function thus determines a class, though if the 

propositional function is one which is always false, the class will be null, 

i.e. will have no members. The class determined by the function <f>$ will be 

represented by 2(</>2)*. Thus for example if <f*x is an equation, z(<f>z) will be 

the class of its roots; if <f>x is “x has two legs and no feathers,” 2(<f>z) will 

be the class of men; if <f>x is “ 0 < x < 1,” 2(<f>z) will be the class of proper 

fractions, and so on. 

It is obvious that the same class of objects will have many determining 

functions. When it is not necessary to specify a determining function of a 

class, the class may be conveniently represented by a single Greek letter. 

Thus Greek letters, other than those to which some constant meaning is 

assigned, will be exclusively used for classes. 

• Any other letter may be used instead of z. 
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There are two kinds of difficulties which arise in formal logic; one kind 

arises in connection with classes and relations and the other in connection 

with descriptive functions. The point of the difficulty for classes and relations, 

so far as it concerns classes, is that a class cannot In- an object suitable as an 

argument to any of it> determining functions. If a represents a class and </>•' 

one of its determining functions [so that a = 3(<fc)]. it is not sufficient that 

<f>a be a false proposition, it must be nonsense. Thus a certain classification 

of what apjK-ar to be objects into things of essentially different types seems 

to be rendered neeessaiy. This whole question is discussed in Chapter II, on 

the theory of typos, and the formal treatment in the systematic exposition, 

which forms the main body of this work, is guided by this discussion. The 

part of the systematic ox|»osition which is specially concerned wit h the theory 

of classes is *20, and in I his Introduction it is discusM-d in Chapter III. It is 

sufficient to note here that, in the complete treatment of *20. we have avoided 

the decision as to whether a class of things has in any sense an existence as 

one object. A decision of this question in either way is indifferent to our logic, 

though pmhaps, if we had regarded some solution which held classes and re¬ 

lations to lie in some real sense objects as 1h>(Ii true and likely to be universally 

received, we might have simplified one or two definitions and a few preliminary 

propositions. <)ur symbols, such as " " and a and others, which represent 

classes and relations, an* merely defined in their use, just as standing for 

5* a* a* 
?x*+ +di’1 

has no meaning apart from a suitable function of x, »/. z on which to operate. 

The result of our definitions is that the way in which we use classes corre¬ 

sponds in general to their use in ordinary thought and speech; and whatever 

may be the ultimate interpretation of the one is also the interpretation of 

the other. Thus in fact our classification of types in Chapter II really 

performs the single, though essential, service of justifying us in refraining 

from entering on trains of reasoning which lead to contradictory conclusions. 

The justification is that what seem to be propositions arc really nonsense. 

The definitions which occur in the theory of classes, by which the idea ot 

a class (at least in use) is based on the other ideas assumed as primitive, 

cannot be understood without a fuller discussion than can be given now 

(cf. Chapter II of this Introduction and also *20). Accordingly, in this pre¬ 

liminary survey, we proceed to state the more important simple propositions 

which result from those definitions, leaving the reader to employ in his mind 

the ordinary unanalysed idea of a class of things. Our symbols in their usage 

conform to the ordinary usage of this idea in language. It is to be noticed 

that in the systematic exposition our treatment of classes and relations requires 

no new primitive ideas and only two new primitive propositions, namely the 

two forms of the “Axiom of Reducibility " (cf. next Chapter) for one and two 

variables respectively. 
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The propositional function **.r is a member of t he class a" will be oxpivsscd, 

following Peano, by the notation 

.i* e a. 

Here € is chosen as the initial of the won I tVti. ".rco1 

an a. Thus "x t nmn” will mean ".r is a man." ami so on. 

convenience we shall put 

,i'*vfa. = .<v(,rfa) l>f. 

•r» y e a . = . .v € a . / e a Df. 

may be read " x is 

For t ypograph ic:11 

For "class” we shall write **Cls'’; thus “ a € CIs " means a is a class." 

We have 

h : .r € 3 (</>-) . = - <£*\ 

i.e. u,x is a member of the class determined by <f>z' is equivalent to './• 

satisfies <f>2,' or to ' <f>x is true.' ” 

A class is wholly determinate when its membership is known, that is, there 

cannot be two different classes having the same membership. Thus if <f>x, yjrx 

are formally equivalent functions, they determine the same class; for in that 

case, if a; is a member of the class determined by <f>2, and therefore satisfies <f>.v, 

it also satisfies yfrx, and is therefore a member of the class determined by yjrfi. 

Thus we have 

h 2{<f>z)*=z(yfrz). = : <f>x . =, . yfrx. 

The following propositions are obvious and important: 

h a = 3 (<f>z) . = : x € a. =x . <f>x, 

i.e. a is identical with the class determined by when, and only when, "x is 

an a” is formally equivalent to <px; 

h:.a = /9. = :a:ea. =«.*€£, 

i.e. two classes a and /9 are identical when, and only when, they have the same 

membership; 
V ,&(xc a) = a, 

i.e. the class whose determining function is “ a: is an a ” is a, in other words, 

a is the class of objects which are members of a; 

b . 3 (<f>z) e CIs, 

i.e. the class determined by the function <f>2 is a class. 

It will be seen that, according to the above, any function of one variable 

can be replaced by an equivalent function of the form " x e a.” Hence any 

extensional function of functions which holds when its argument is a function 

of the form “Sea,” whatever possible value a may have, will hold also when 

its argument is any function <f>2. Thus variation of classes can replace varia¬ 

tion of functions of one variable in all the propositions of the sort with which 

we are concerned 

-2 ; - 
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In an exactly analogous manner we introduce dual or dyadic relations, 

i.e. relations between two terms. Such relations will be called simply 

"relations"; relations between more than two terms will he distinguished as 

multifile relations, or (when the number of their terms is specified) as triple, 

«|iiadruple,...relations, or as triadic, tetradic_relations. Such relations will 

not concern us until we come to(!eometry. For the present, the only relations 

we are concerned with are dual relations. 

Relations like classes, are to be taken in e.>tension, i.c. if li and .S’ are 

relations which hold between the same pairs of terms, 11 and .S' are to be 

identical. We may regard a relation, in the sense in which it is required for 

our purjM.ses, as a class of couples: i.e. the couple (x, y) is to be one of the 

class of couples constituting the relation li if x has the relation R to y*. 

This view of relations as classes of couples will not, however, be introduced 

into our symbolic treatment, ami is only mentioned in order to show that it 

is possible so to understand the meaning of the word relation that a relation 

shall Ik* determined by its extension. 

Any function <f> ( ».//) determines a relation li between x and y. If we 

regard a relation as a class of couples, the relation determined by <f>(x,y) is 

the class of couples y) for which <p u*. //) is true. The relation determined 

by the function </>(.#-, y) will Ik- denoted by 

sy4> {x, y). 

We shall use a capital letter for a relation when it is not necessary to specify 

the determining function. Thus whenever a capital letter occurs, it is to be 

understood that it stands for a relation. 

The propositional function " x has the relation li to y " will bo expressed 

by the notation 

xliy. 

This notation is designed to keep as near as possible to common language, 

which, when it has to express a relation, generally mentions it between its 

terms, as in “ x loves y,“ " x equals y." “ x is greater than y," and so on. For 

“ relation " we shall write ’* Rel thus "Re KelM means "li is a relation." 

Owing to our taking relations in extension, we shall have 

h U)* (x,y). = :<f> (x, y) ^(x, y), 

i.e. two functions of two variables determine the same relation when, and only 

when, the two functions are formally equivalent. 

We have V . z \xy<f> (x, y)\w.= .<f> (z, w), 

• Such n couple has a tense, i.e. Ihe couple (x, y) is different from the couple (y, x), unless 

x = y. Wo shall call it a "couple with sense,” to distinguish it from the class consisting of x 

and y. It may also be called an ordered couple. 
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i.t*. has to ir the ivlation determined by the function <£(.#•. //)" is equivalent 

to <£ (j, «»>; 

H A‘ = .iy/</> (.r, //) . = : .1 Hi/ . =x „ . if> ^.»\ #/). 

I- A* = £ . = : .#• A*// . =x. y • •* «S//. 

^ • *«V? (•• !*•/) = A*, 
h . J.rv<#» f.r, //)) t* l\el. 

These propositions are analogous to those previously given for classes. It 

results from them that any function of two variables is formally equivalent. to 

some function of the form a*Kg; hence, in extensional functions of two variables, 

variation of relations can replace variation of functions of two variables. 

Both classes and relations have properties analogous to most of those of 

propositions that result from negation and the logical sum. The logical prod net 

of two classes a and 0 is their common part, i.e. the class of terms which are 

members of both. This is represented by a n 0. Thus we put 

a r» = a . .v e 0) Df. 

This gives us hs/ean^.s.. vea.xe 0. 

i.e. “ x is a member of the logical product of a and 0 ” is equivalent to the 

logical product of "a: is a member of a ” and “ x is a member of 0." 

Similarly the logical sum of two classes a and 0 is the class of terms which 

arc members of either; wc denote it by a v# 0. The definition is 

a w 0 = 2 (x € a . v . x e 0) Df, 

and the connection with the logical sum of propositions is given by 

The negation of a class a consists of those terms x for which "xea" can 

be significantly and truly denied. We shall find that there are terms of other 

types for which "xea” is neither true nor false, but nonsense. These terms 

are not members of the negation of a. 

Thus the negation of a class a is the class of terms of suitable type which 

are not members of it, i.e. the class £(x~ea). We call this class “—a ” (read 

“not-a”); thus the definition is 

— a = 5 (x~e a) Df, 

and the connection with the negation of propositions is given by 

I- : x e — a . = . x~e a. 

In place of implication we have the relation of inclusion. A class o is said 

to be included or contained in a class 0 if all members of a are members of 0, 

i.e. if x e a . Dx . x e 0. We write “ a C 0 ” for “ a is contained in 0.” Thus we 

put 
aC0. = zxea.Dx.xe0 Df. 

a* 
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Most of the formulae concerning p. q. p v 7, ~p. /O7 remain true if we 

substitute a r\ 0, a v 3. - a. a C /3. In place of equivalence, we substitute 

identity: for " /»= 7 " was defined as “ p D 7.7 D y>," but " a C /3. /9 C a ’’ gives 

' .tea . =x whence a = &. 

The follow ing are some propositions concerning classes which arc analogues 

of propositions previously given concerning propositions: 

l-.o a/}*-(-qo-3), 

i.e. the common part of a and /3 is the negation of" not-a or not-/3 

h .re(a v -a), 

i.e. " .r is a member of a or not-a ; 

1- • X'W (a r\ - a). 

i o. " .<• is not a member of l»oth a and not-a 

Ka--(-a), 

h:aC/3. = .-£C-a. 

H:a-/9.s.-a--/9, 

ha=oftfl, 

ho*flva. 

The two lust arc the two forms of the law of tautology. 

The law of absorption holds in the form 

h:aC/3. = .a = an/3. 

Thus for example "all Cretans are liars” is equivalent to "Cretans arc 

identical with lying Cretans." 

Just as we have h : p D 7.7 D r. D . p D r, 

so we have \-:aC0.0Cy.'2.aCy. 

This expresses the ordinary syllogism in Barbara (with the premisses 

interchanged); for "aC/3" means the same as "all a's are /9's,” so that the 

above proposition states: "If all a's are /3's, and all /3's are 78, then all a's 

are y’s.” (It should be observed that syllogisms are traditionally expressed 

with " therefore," as if they asserted both premisses and conclusion. This is, 

of course, merely a slipshod way of speaking, since what is really asserted is 

only the connection of premisses with conclusion.) 

The syllogism in Barbara when the minor premiss has an individual 

subject is 

t'ixe&.fiCy.O.xey, 

e.rj. " if Socrates is a man. and all men are mortals, then Socrates is a 

mortal." This, as was pointed out by Peano, is not a particular case of 

"aC/3./3C7.D.aC 7," since " x € /9 " is not a particular case of “ a C 

This point is important, since traditional logic is here mistaken. The nature 

and magnitude of its mistake will become clearer at a later stage. 
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For relations, wo have precisely analogous definitions and propositions. 

We put 
A* rt.S’ = .rf/ (.r/\i/. jr&ijS I)f, 

which leads to l- : jr(lt f\ S) //. = . xRy . xSy. 

Similarly Rv S = .?// . v . .rSy) Df. 

- R = xy \~(xRy)\ Df. 

i? C .S'. = : .rA*y . Dx> v . .cSy Df. 

Generally, when we require analogous but different symbols for relations 

and for classes, we shall choose for relations the symbol obtained by adding 

a dot, in some convenient position, to the corresponding symbol for classes. 

(The dot must not be put on the line, since that would cause confusion with 

the use of dots as brackets.) But such symbols require and receive a special 

definition in each case. 

A class is said to exist when it has at least one member: "o exists" is 

denoted by “ g ! a." Thus we put 

a!a.«.(a*).*e« Df. 

The class which has no members is called the “ null-class," and is denoted by 

“A.” Any propositional function which is always false determines the null- 

class. One such function is known to us already, namely " x is not identical 

with x,” which we denote by “ x^x." Thus we may use this function for de¬ 

fining A, and put 
A = £(***) Df. 

The class determined by a function which is always true is called the 

universal classy.nd is represented by V; thus 

V = £(* = *) Df. 

Thus A is the negation of V. We have 

h . (x) .xeV, 

te- « is a member of V ’ is always true and 

h . (x) . x~c A, 

ie. ‘"a; is a member of A’ is always false." Also 

h : a = A . = . ~g ! a, 
te- “a is the null-class” is equivalent to “a does not exist.” 

For relations we use similar notations. We put 

a i R - —. (a*, y) • xRy> 
l-e- “glil” means that there is at least one couple x, y between which 

the relation R holds. A will be the relation which never holds, and V the 

relation which always holds. V is practically never required; A will be the 

relation a£) {x =f= x. y + y). We have 

h .(x, y).~(iAy), 

and \-:R = A. = .~nlR. 
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There are no classes which contain objects of more than one type. Ac¬ 

cordingly there is a universal class and a null-class proper to each type of 

object. But these syinlxil* need not be distinguished, since it will be found 

that there is no possibility of confusion. Similar remarks apply to relations. 

Ih'scii/itions. By a **description" we mean a phrase of the form "the 

so-and-so" or of some equivalent form. For the present, we confine our 

attention to the in the singular. We shall use this word strictly, so as to 

imply uniqueness: e.y. we should not say ".I is the son of IS" if H had other 

sons besides ,|. Thus a description of the form “the so-and-so’ will only 

have an application in the event of then* being one so-and-so and no more. 

Hence a description requires s*»me promotional function <f>7 which is satisfied 

by mu* value of .r and by no other values; then “the x which satisfies <f>r 

is a description which definitely describes a certain object, though we may 

not know what object it dcscrilies. For example, if y is a man, " x is the 

father of y" must be true for one, and only one, value of x. Hence "the 

lather of y is a description of a certain man, though we may not know what 

man it describes. A phrase containing “ the " always presupposes some initial 

propositional function not containing " the "; thus instead of ".r is the father 

of y" we ought to take as our initial function " x begot y then “ the father 

of //’’ means the one value of x which satisfies this propositional function. 

If <f)7- is a propositional function, the symbol “(i.r)(<£./)’’ is used in our 

symbolism in such a way that it can always be read as "the x which satisfies 

</>/•.’’ But we do not define "(lx)(<t>x)" as standing for " the x which satisfies 

0r," thus treating this last phrase as embodying a primitive idea. Every use 

of "(ix)(<t>x),'‘ where it apparently occurs as a constituent of a proposition 

in the place of an object, is defined in terms of the primitive ideas already 

on hand. An example of this definition in use is given by the proposition 

" E!(!.»•)which is considered immediately. The whole subject is treated 

more fully in Chapter III. 

The symbol should be compared and contrasted with " x(<f>x) ’’ which in 

use can always be read as " the .r’s which satisfy Both symbols arc in¬ 

complete symbols defined only in use, and as such arc discussed in Chapter III. 

The symbol " x(tftx)" always has an application, namely to the class determined 

by (fjr; but u(ix)($x)" only has an application when tf>x is only satisfied by 

one value of x, neither more nor less. It should also be observed that the 

meaning given to the symbol by the definition, given immediately below, of 

E! (ix)(<t>x) dues not presuppose that we know the meaning of "one." This is 

also characteristic of the definition of any other use of (ix)(<f>x). 

We now proceed to define " E! (ix)(^x)” so that it can be read “ the x 

satisfying <f>r exists." (It will be observed that this is a different meaning ot 

existence from that which we express by "3.") Its definition is 

E! (tx)(<f>x). = : (3c): <f>x. =x .x = c Df, 
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t.e. “ the .v satisfying <f>r exists " is to mean 

is true when .r is c but not otherwise.” 

'* there is an object c such that </>./• 

The following are equivalent forms: 

H h! (hr) {<$>••'). = : (ye): tfn:: </>.#•. Dr . .#• = c, 

H E! (hr) (<f>.r) . = : (gc) . <f>c z <f>.r . </>y . Dr y . .r = #/. 

b E! t IJ-) » ). = : (yrl: </>»•: .r + c . Dr . ~<£./. 

The last of these states that ** the x satisfying <f>x exists" is equivalent t«> 

“there is an object c satisfying <f>.r, anil every object other than c does not 

satisfy <£.T» ” 

The kind of existence just defined covers a great many cases. Thus fbi 

example “ the most perfect Being exists " will mean : 

(gc) : .r is most perfect. 5, . .?• = c, 

which, taking the last of the above equivalences, is equivalent to 

(gc) : c is most perfect: x + c. Dx . x is not most perfect. 

A proposition such as “Apollo exists" is really of the same logical form, 

although it docs not explicitly contain the word the. For “Apollo" means 

really “ the object having such-and-such properties," say “ the object having 

the properties enumerated in the Classical Dictionary*.” If these properties 

niake up the propositional function <f>x, then “Apollo" means “(?.r) (<£a)," 

and “Apollo exists" means “El (ix) (<f>x)." To take another illustration, 

" the author of Waverley" means “ the man who (or rather, the object which) 

wrote Waverley." Thus “ Scott is the author of Waverley " is 

Scott ■= (lx) (x wrote Waverley). 

Here (as we observed before) the importance of identity in connection with 

descriptions plainly appears. 

The notation “ (ix) (<f>x),” which is long and inconvenient, is seldom used, 

being chiefly required to lead up to another notation, namely “R'y," meaning 

" object having the relation R to y." That is, we put 

R‘y = (lx)(xRy) Df. 

The inverted comma may be read “of." Thus “R‘y” is read “the R of y.” 

Thus if R is the relation of father to son, “i2‘y” means “the father of y"; 

if R is the relation of son to father, means “the son of y,” which will 

only “ exist ” if y has one son and no more. R*y is a function of y, but not 

a propositional function; we shall call it a descriptive function. All the 

ordinary functions of mathematics are of this kind, as will appear more fully 

in the sequel. Thus in our notation, “siny" would be written “sin *y," and 

sin would stand for the relation which sin ‘y has to y. Instead of a variable 

descriptive function fy, we put R‘y, where the variable relation R takes the 

The same principle applies to many uses of the proper names of existent objects, e.g. to all 

UBee of proper names for objects known to the speaker only by report, and not by personal 
acquaintance. 
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place of the variable function f A descriptive function will in general exist 

while y belongs to a certain domain, but not outside that domain : thus if "'e 

are dealing with positive rationals. y/y will be significant if y is a perfect 

square, but not otherwise; if we are dealing with real numbers, and agree 

that “ \ //' is to mean the fugitive square root (or, is to mean the negative 

square root), N'y will be significant provided y is positive, but not otherwise: 

and so on. Thus every descriptive function has what we may call a “domain 

of definition " «»r a “domain of existence.'’ which may be thus defined: If the 

function in question is R‘y, its domain of definition or of existence will be 

the class of those arguments y for which we have E! !(*•/, t.r. for which 

K!(l.i )(.i7ty). i.e. for which there is one .r. and no more, having the relation 

li to y. 

11 R is any relation, wo will sp.ak of 11* y as the “ associated descriptive 

function.” A great many of the constant relations which we shall have occasion 

to introduce arc only or chiefly im|K>rtant on account of their associated descrip¬ 

tive functions. In such cases, it. is easier (though less correct) to begin by 

assigning tin- meaning of the descriptive function, and to deduce the meaning 

of the relation from that of the descriptive function. This will be done in the 

following explanations of notation. 

\’m ious descri/itive functions of mint ions. If li is any relation, the converse 

of R is the relation which holds between y and x whenever 11 holds between 

.*• and y. Thus yrenter is the converse of less, before of after, cause of effect 
NO 

husband of wife, etc. The converse of li is written * Cnv‘7? or li. The defi¬ 

nition is 

R - xy (yRx) Df, 

Cnv‘7? = li I)f. 

The second of these is not a formally correct definition, since we ought to 

define “ Cnv ” and deduce the meaning of Cnv*R. But it is not worth while 

to adopt this plan in our present introductory account, which aims at simplicity 

rather than formal correctness. 

A relation is called symmetrical if li = li, i.e. if it holds between y and x 

whenever it holds between x and y (and therefore vice versa). Identity, 

diversity, agreement or disagreement in any respect, are symmetrical relations. 

A relation is called asymmetrical when it is incompatible with its converse, 

i.e. when Rr\ li = A, or, what is equivalent, 

xi?y.Dx>y.~(y/tr). 

Before and after, greater and less, ancestor and descendant, are asym¬ 

metrical, as are all other relations of the sort that lead to series. But there are 

many asymmetrical relations which do not lead to series, for instance, that of 

* The second of those notations is taken from Schroder’s Algebra und Logik der Relative. 
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wifo's brother*. A relation may be neither symmetrical nor asymmetrical; 

or example, this holds of the relation of inclusion between classes: aC ami 

fCa will^oth true if a = fS, but otherwise* only one of them, at most, will 

be true. The relation brother is neither symmetrical nor asymmetrical, for if 

.r is the brother of y. y may be either the brother or the sister of .r. 

In the propositional function xRyt we call .r the referent and y the re/atum. 

1 he class X(xRy\ consisting of all the Ss which have the relation A‘ to y. is 

billed the class of referents of y with respect to i*; the class 7) (xRy), consisting 

of all the y’s to which .r has the relation R, is called the class of relata of .r 

with respect to R, These two classes are denoted respectively by R‘y and 77‘.c. 
rh us 

7?y = (xRy) Df. 

Df. 

The arrow runs towards y in the first case, to show that we are concerned 

with things having the relation R to y; it runs away from a- in the second 

case, to show that the relation R goes from x to the members of T^r. It runs 

in fact from a referent and towards a relatum. 

The notations R‘y, R*x are very important, and are used constantly. If 

R is the relation of parent to child, R‘y = the parents of y, Ji*x = the children 
of We have 

b : x « RU xRij 

and b : y € R‘x . = . xRy. 

These equivalences are often embodied in common language. For example, 

we say indiscriminately ux is an inhabitant of London ” or “a: inhabits London.” 

we put "R” for "inhabits,” "x inhabits London” is “xR London," while "x 

is an inhabitant of London ” is London.” 

Instead of R and R we sometimes use sglR, gs‘R, where *' sg ” stands for 

sagitta,” and “ gs ” is “ sg ” backwards. Thus we put 

sg‘R = ~R Df, 

gs*R=*R Df. 

These notations are sometimes more convenient than an arrow when the 

re ation concerned is represented by a combination of letters, instead of a 

single letter such as R. Thus e.g. we should write sg‘(R r* S), rather than put 

an arrow over the whole length of (R r\ S). 

The class of all terms that have the relation R to something or other is 

°a led the domain of R. Thus if R is the relation of parent and child, the 

lh .Tl11,8 rektion not strictly asymmetrical, but is so except when the wife’s brother is also 

e sister’s husband. In the Greek Church the relation is strictly asymmetrical. 

R&W i 3 
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domain of R will he the class of parents. We represent the domain of R by 

"\yR." Thus we put 
i>‘/f=*kay).wty: Df. 

Similarly the class of all terms to which something or other has the relation 

R is calleil the converse domain of R; it is the same as the domain of the 

converse of R. The converse domain of R is represented by “CVR thus 

(I‘R = y !<g.r). rR>/[ Df. 

The sum of the domain and the converse domain is called the field, and is 

represented by C*R: thus 
C*R= 0‘/e w (|‘/e Df. 

The field is chi.-Hy important in connection with series. If R is the ordering 

relation of a series, tuR will be the class of terms of the series. I)*/? will be all 

tie* terms except the last (if any), and <1 'R will be all the terms except the 

first (if any). The first term, if it exists, is the only member of D*R n — d*R, 

since it is the only term which is a predecessor but not a follower. Similarly 

the last term (if any) is the only member of (I'Kn-D1//. The condition 

that a series should have no end is <l‘/f C 1 VR. i.e. “every follower is a pre¬ 

decessor"; the* condition for no beginning is D‘PC(l4/f. These conditions 

are equivalent respectively to !)*/( * C‘R and <I4/( = CUR. 

The relative /noilnet of two relations R and S is the relation which holds 

between .r and z when there is an intermediate term y such that x has the 

relation R to y and y has the relation .S' to z. The relative product of R and 

S is represented by R .V; thus we put 

R S = rz |(gy). xRy . ySz| Df, 

whence \- :x{R S) z . = . (gy).xRy.ySz. 

Thus " paternal aunt” is the relative product of sister and father; “paternal 

grandmother” is the relative product of mother and father; " maternal grand¬ 

father" is the relative product of father and mother. The relative product is 

not commutative, but it obeys the associative law, i.e. 

h.{l>\Q)\R-P\(Q\R). 

It also obeys the distributive law with regard to the logical addition of 

relations, i.e. we have 

KP|(Qv/tf)-(PiQ)«<P|P). 
MQw/?)iP = (Q|P)c,(fl|P). 

But with regard to the logical product, we have only 

h.P!(QA«)C(/>|Q)n(P|/JX 
MQA*)|PG(Q|P)A(Q|/0. 

The relative product does not obey the law of tautology, i.e. we do not 

have in general R R = R. We put 

fr=R\R Df. 
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Thus paternal grandfather = (father)3, 

maternal grandmother = (mother)3 

A relation is called transitive when RSGR. i.e. when, if xRy and i/R:, we 

always have xRz, i.e. when 

xRy . yRz . . .vRz. 

Relations which generate series are always transitive; thus e.g. 

•** > If • •/ > 

If P is a relation which generates a series. P may conveniently be read 

precedes ; thus uxPg. yPz . D ,xPz" becomes “ if .v precedes yarn! y 

precedes z, then .r always precedes z." The class of relations which generate 

series are partially characterized by the fact that they are transitive and 

asymmetrical, and never relate a term to itself. 

If P is a relation which generates a series, and if we have not merely P:Q P, 

but P- = P, then P generates a series which is compact (iiberall dicht), i.e. such 

that there are terms between any two. For in this case we have 

xPz . D . (ay) . xPy . yPz, 

i.e. if x precedes z, there is a term y such that x precedes y and y precedes z, 

i.e. there is a term between x and z. Thus among relations which generate 

series, those which generate compact series are those for which P* =» P. 

Many relations which do not geuerate series are transitive, for example, 

identity, or the relation of inclusion between classes. Such cases arise when 

the relations are not asymmetrical. Relations which are transitive and sym¬ 

metrical are an important class: they may be regarded as consisting in the 

possession of some common property. 

Plural descriptive functions. The class of terms x which have the relation 

R to some member of a class a is denoted by R“a or R/a. The definition is 

R“a = £{('ay).yca.xRy\ Df. 

Thus for example let R be the relation of inhabiting, and a the class of towns; 

then R“a = inhabitants of towns. Let R be the relation “ less than " among 

rationals, and a the class of those rationals which are of the form 1 — 2~n, for 

integral values of n; then R**a will be all rationals less than some member 

of a, i.e. all rationals less than 1. If P is the generating relation of a series, 

and a is any class of members of the series, P“a will be predecessors of as, i.e. the 

segment defined by cl If P is a relation such that P*y always exists when 

yea, P“a will be the class of all terms of the form P*y for values of y which 

are members of a; i.e. 
P“a = £ ((ay). y e a . x = P‘y). 

Thus a member of the class “ fathers of great men ” will be the father of y, 

where y is some great man. In other cases, this will not hold; for instance, 

let P be the relation of a number to any number of which it is a factor; then 

3—2 
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P“ (oven numbers) = factors of even numbers, but this class is not composed 

of terms of the form "the factor of .r, where .r is an even number, because 

numbers do not have only one factor apiece. 

Unit classes. The class whose only member is .r might be thought to he 

identical with x, but Peano and Frege have shown that this is not the case. 

(The reasons why this i> not the case will be explained in a preliminary way 

in Chapter II of the Introduction.) We denote by " C.r" the class whose only 

member is x: thus 

iV = .Ky = .r> Of. 

i.e. " Ux ' means "the class of objects which are identical with x." 

The class consisting ot x and »/ will be i*x\j i‘u; the class got by adding 

x to a class a will be a v i*x: tin- class got by taking away x from a class a 

will be a - Us. (We write a — & as an abbreviation for a n — /9.) 

It will be observed that unit classes have been defined without reference 

to the number 1 ; in fact, we use unit classes to define the number 1. This 

number is defined as the class of unit classes, i.e. 

1 m a |(gx). a = f‘x) l)f. 
This leads to 

b a c I . = : (ax): y « a . =„. \j - x. 

From this it appears further that 

l~: a < 1 . = . E !(»/)(/*«), 

whence h : 2 (<f>z) « 1 . ■ . E! (ix) (tf>x), 

i.e. " 2 is a unit class " is equivalent to " the x satisfying <f>? exists.” 
v 

If «f 1, t‘a is the only member of a. for the only member of a is the only 

term to which a has the relation i. Thus ut‘a'' takes the place of u(ix)(<l>x)," 

if a stands for z(<f>z). In practice, "l‘a’’ is a more convenient notation than 

"(f-r)(</>' ). and is generally used instead of "(u)(<f>x).'' 

The above account has explained most of the logical notation employed 

in the present work. In the applications to various parts of mathematics, 

other definitions arc introduced; but the objects defined by these later defi¬ 

nitions belong, for the most part, rather to mathematics than to logic. The 

rentier who has mastered the symbols explained above will find that any 

later formulae can be deciphered by the help of comparatively few additional 

definitions. 



CHAPTER II 

THE THEORY OF LOGICAL TYPES 

The theory of logical typos, to bo explained in the present Chapter, re¬ 

commended itself to us in the first instance by its ability to solve certain 

contradictions, of which the one best known to mathematicians is Burali-Fortis 

concerning the greatest ordinal. But the theory in question is not wholly 

dependent upon this indirect recommendation: it has also a certain consonance 

with common sense which makes it inherently credible. In what follows, we 

shall therefore first set forth the theory on its own account, and then apply it 

to the solution of the contradictions. 

I. The Vicious-Circle Principle. 

An analysis of the paradoxes to be avoided shows that they all result from 

a certain kind of vicious circle*. The vicious circles in question arise from 

supposing that a collection of objects may contain members which can only be 

defined by means of the collection as a whole. Thus, for example, the collection 

of propositions will be supposed to contain a proposition stating that " all 

propositions are either true or false.” It would seem, however, that such a 

statement could not be legitimate unless “all propositions” referred to some 

already definite collection, which it cannot do if new propositions are created 

by statements about “all propositions.” We shall, therefore, have to say that 

statements about “all propositions” are meaningless. More generally, given 

any set of objects such that, if we suppose the set to have a total, it will con¬ 

tain members which presuppose this total, then such a set cannot have a total. 

By saying that a set has “no total,” we mean, primarily, that no significant 

statement can be made about “all its members.” Propositions, as the above 

illustration shows, must be a set having no total. The same is true, as we shall 

shortly see, of propositional functions, even when these are restricted to such 

as can significantly have as argument a given object a. In such cases, it is 

necessary to break up our set into smaller sets, each of which is capable of a 

total. This is what the theory of types aims at effecting. 

The principle which enables us to avoid illegitimate totalities may be 

stated as follows: “Whatever involves all of a collection must not be one of 

the collection”; or, conversely: “If, provided a certain collection had a total, 

it would have members only definable in terms of that total, then the said 

collection has no total.” We shall call this the “vicious-circle principle,” be¬ 

cause it enables us to avoid the vicious circles involved in the assumption of 

illegitimate totalities. Arguments which are condemned by the vicious-circle 

* See the last section of the present Chapter. Cf. also H. Poincar^, “ Les math^matiques et 

la iogiqne,'* Revue de M€taphysique et de Morale, Mai 1906, p. 307. 
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I»rinci|»l«- will hi* called ”\ i« i«.n<-cirr|.- fallacies." Such arguments, in certain 

circninstaii« «-s. may had to contradictions. hut it often happens that the con¬ 

clusion** t«» which th#*y !• ■;»•! ar«• in fact true, though the arguments are 

fallacious. Take. f.»r example, the law of excluded middle, in the form "all 

propositions are it no or false.” If from this law we argue that, because the 

law of excluded middle is a pro|M»ition, therefore the law of excluded middle 

is true or false. wv iiicm a vicious-circle fallacy. "All propositions" must he 

in some wav limited In-foie it Im-couh-s a legitimate totality, and any limita¬ 

tion which makes it legitimate must make anv statement about the totality 

tail outside the totality. Similarly, the imaginary sceptic, who asserts that 

knows nothing, and is refuted by In-ing asked if he knows that he knows 

nothing, lias asserted iiohscum-, and has been fallaciously refuted by an 

argument which involves a vicious-circle fallacy. In order that the sceptic's 

ass, rtion may Income significant, it is necessary to place some limitation 

upon the things of which he is asserting his ignorance, because the things 

of which it is possible to be ignorant form an illegitimate totality. But ns 

s»h.ii as a suitable limitation has been placed by him upon the collection of 

propositions of which he is asserting his ignorance, the proposition that he is 

ignorant of every member of this collection must not itself be one of the 

collection. Hence any significant scepticism is not open to the above form of 

refutation. 

The paradoxes of symbolic logic concern various sorts of objects: propo- 

Mtions. classes, cardinal and ordinal numbers, etc. All these sorts of objects, 

as we shall show, represent illegitimate totalities, and are therefore capable of 

giving rise to vicious-circle fallacies. But by means of the theory (to be 

explained in Chapter III) which reduces statements that are verbally con¬ 

cerned with classes and relations to statements that are concerned with 

propositional functions, tin* paradoxes arc reduced to such as are concerned 

with propositions ami propositional functions. The paradoxes that concern 

propositions are only indirectly relevant to mathematics, while those that 

more nearly concern the mathematician arc all concerned with propositional 

functions. We shall therefore proceed at once to the consideration of propo¬ 

sitional functions. 

II. The Xutnre of Propositionul Functions. 

By a "propositional function" we mean something which contains a 

variable x, and expresses a proposition as soon as a value is assigned to .r. 

'I hat is to say, it differs from a proposition solely by the fact that it is 

ambiguous: it contains a variable of which the value is unnssigned. It agrees 

with the ordinary functions of mathematics in the fact of containing an 

unnssigned variable; where it differs is in the fact that the values of the 

function are propositions. Thus e.y. "x is a man" or "sin x= 1 " is a propo¬ 

sitional function. We shall find that it is possible to incur a vicious-circle 
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fallacy at. the very outset, by admitting as |x>ssible arguments to a propositional 

function terms which presuppose the function. This form of the fallacy is wrv 

instructive, and its avoidance leads, as we shall see. to the hierarchy of types. 

The question as to the nature of a function* is by no means an easy one. 

It would seem, however, that the essential characteristic of a function is 

ambiguity. JTnke, for example, the law of identity in the form "A is A," which 

is the form in which it is usually enunciated. It is plain that, regarded 

psychologically, we have here a single judgment. But what are we to say of 

the object of the judgment i We are not judging that Socrates is Socrates, 

nor that Plato is Plato, nor any other of the definite judgments that arc 

instances of the law of identity. Yet each of these judgments is, in a sense, 

within the scope of our judgment. We are in fact judging an ambiguous 

instance of the propositional function "A is A." We appear to have a single 

thought which does not have a definite object, but has as its object an 

undetermined one of the values of the function "A is A." It is this kind of 

ambiguity that constitutes the essence of a function. When we speak of "<f>x” 

where x is not specified, we mean one value of the function, but not a definite 

one. We may express this by saying that "tfrx" ambiguously denotes <f>at <f>b, (f>c, 

etc., where <f>a, <f>b, <f>c, etc., are the various values ofu<f>x." 

When we say that “<£x” ambiguously denotes <f>a, 4>b, tf>c, etc., we mean 

that “tfrx” means one of the objects (f>a, <f>b, <f>c, etc., though not a definite 

one, but an undetermined one. It follows that only has a well-defined 

meaning (well-defined, that is to say, except in so far as it is of its essence to 

be ambiguous) if the objects <f>a, <f>b, <f>c, etc., are well-defined. That is to say, 

a function is not a well-defined function unless all its values are already well- 

defined. It follows from this that no function can have among its values 

anything which presupposes the function, for if it had, we could not regard 

the objects ambiguously denoted by the function as definite until the function 

was definite, while conversely, as we have just seen, the function cannot be 

definite until its values are definite. This is a particular case, but perhaps the 

most fundamental case, of the vicious-circle principle. A function is what 

ambiguously denotes some one of a certain totality, namely the values of the 

function; hence this totality cannot contain any members which involve the 

function, since, if it did, it would contain members involving the totality, 

which, by the vicious-circle principle, no totality can do. 

It will be seen that, according to the above account, the values of a 

function are presupposed by the function, not vice versa. It is sufficiently 

obvious; in any particular case, that a value of a function does not presuppose 

the function. Thus for example the proposition “ Socrates is human ” can be 

perfectly apprehended without regarding it as a value of the function "x is 

human.” It is true that, conversely, a function can be apprehended without 

.. * "When the word “function ” is used in the sequel, “propositional function" is always meant, 

v^) ther function s will not be in question in the present Chapter. 
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its being necessary to apprehend its values severally and individually. If this 

were not the case, n** function could be apprehended at all, since the number 

of values (true and falsi-) of a function is necessarily infinite and there are 

necessarily possible arguments with which we are unacquainted. What is 

necessary is not that the values should lie given individually and extensionally, 

but that the totality of the values should be given intcnsionally, so that, con¬ 

cerning any aligned object, it is at least theoretically determinate whether or 

not the said object i' a value of the function. 

It is necessity practically D» distinguish the function itself from an 

undetermined value of the function. We may regard the function itself as 

that which ambiguously denotes, while an undetermined value of the function 

is that which is ambiguously denoted. If the undetermined value is written 

wo will write the function itself •<£?." (Any other letter may he used 

in place of j-.) Thus we should sty is a proposition,’ but "<f)7 is a propo¬ 

sitional function." When wo say "<f>r is a proposition ” wc mean to state 

something which is true for every possible value of x. though we do not decide 

what value x is to have. We are making an ambiguous statement about any 

value oi the function. But when we say •* <f>x is a function," wc are not making 

an ambiguous statement. It would be more correct to say that we are making 

a statement about an ambiguity, taking the view that a function is an am¬ 

biguity. The function itself. <fy7. is the single thing which ambiguously denotes 

its many values; while </»». where x is not specified, is one of the denoted 

objects, with the ambiguity belonging to the manner of denoting. 

We have seen that, in accordance with the vicious-circle principle, the 

values of a function cannot contain terms only definable in terms of the 

function. Now given a function 4>x. the values for the function* are all pro¬ 

positions of the form <p.r. It follows that there must be no propositions, of 

the form <f>x, in which x has a value which involves <f>x. (If this were the case, 

the values of the function would not all be determinate until the function 

was determinate, whereas we found that the function is not determinate unless 

its values are previously determinate.) Hence there must be no such thing as 

the value for <f>7 with the argument <f>x, or with any argument which involves 

<f>2. That is to say, the symbol "<f> (<f>x)" must not express a proposition, as 

docs if (f>a is a value for <f>7. In fact "<£ (<£.?)’’ must be a symbol which 

does not express anything: we may therefore say that it is not significant. Thus 

given any function 4>7, there are arguments with which the function has no 

value, as well as arguments with which it has a value. We will call the 

arguments with which <f»x has a value "possible values of x.” We will say 

that 4>x is "significant with the argument x" when <f>x has a value with the 

argument x. 

• We shall speak in this Chapter of "valuesfor $&" and of "values of $x%'' meaning in each 

case the same thin*, namely $a, $b, $c, etc. The distinction of phraseology serves to avoid 

ambiguity where several variables are concerned, especially when one of them is a function. 
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When it is said that r.ij. " <f> is meaningless, ami fhoivfoiv n«*ith«*r 

true nor false, it is necessary to avoid a misunderstanding. If•</> (</>?)" wmv 

interpreted as meaning "the value for <f>: with the argument <J>: is true.'* 

that would be not meaningless, but false. Il is false for the same reason for 

which “the King of France is bald" is false, namely because there is no such 

thing as “the value tor <f>7 with the argument Hut- when, with some 

argument a, wo assert <f>a, we are not meaning to assert “the value for </>.»• wit h 

the argument a is true ": we are meaning to assert the actual proposition 

which is the value for d>7 with the argument a. Thus for example if <f>7 is 

“.«• is a man,” «/> (Socrates) will be “Socrates is a man," not "the value lor 

the function '.7 is a man,' with the argument Socrates, is true." Thus 

in accordance with our principle that “<£(<£?)" is meaningless, we cannot 

legitimately deny “the function ‘7 is a man’ is a man.” because this is 

nonsense, but we can legitimately deny “the value for the function '7 is a 

man’ with the argument '7 is a man' is true," not on the ground that the 

value in question is false, but on the ground that there is no such value for 

the function. 

We will denote by the symbol u{x) . 4>x” the proposition “<£.»• always*," 

xe. the proposition which asserts all the values for <f>7. This proposition 

involves the function <f>7, not merely an ambiguous value of the function. The 

assertion of <f>x, where x is unspecified, is a different assertion from the one 

which asserts all values for <f>7, for the former is an ambiguous assertion, 

whereas the latter is in no sense ambiguous. It will be observed that u(x).<f>.c" 

does not assert u<f>x with all values of x," because, as we have seen, there must 

be values of x with which “<f>x" is meaningless. What is asserted by “(.z*).<£a" 

is all propositions which are values for <f>7; hence it is only with such values 

of x as make “<f>x” significant, i.e. with all possible arguments, that <f>x is asserted 

when we assert “(a;). <f>x‘' Thus a convenient way to read “(#). <f>xn is “<f>x is 

true with all possible values of x.” This is, however, a less accurate reading 

than "<f>x always,” because the notion of truth is not part of the content of 

what is judged. When we judge “all men are mortal," we judge truly, but 

the notion of truth is not necessarily in our minds, any more than it need be 

when we judge “Socrates is mortal." 

III. Definition and Systematic Ambiguity of Truth and Falsehood. 

Since “(#) . <f>x" involves the function <p7, it must, according to our 

principle, be impossible as an argument to <f>. That is to say, the symbol 

“<f> {(#) . (f>x)" must be meaningless. This principle would seem, at first sight, 

to have certain exceptions. Take, for example, the function “p is false,” and 

consider the proposition “(p) . p is false." This should be a proposition 

asserting all propositions of the form “ p is false.” Such a proposition, we 

* We use “always” as meaning “in all cases,” not “at all times." Similarly “sometimes” 

will mean “in some cases.” 
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should bo inclined to say, must be false, because "p is false” is not always 

true. Hence we should be led to the proposition 

“'(/>). /> is false) is false," 

i.e. we should be led to a proposition in which "(/>)-p is false" is the argu¬ 

ment to the function "p is false," which we had declared to be impossible. 

Now it will be seen that "(/>). P *s false." in the above, purports to be a 

proposition about all prop»sitions, and that, by the general form of the vicious- 

cirele principle, there must be no propositions about all propositions. Never¬ 

theless, it seems plain that, given any function, there is a proposition (true or 

fals«*) asserting all its values. Hence we are led to the conclusion that “p is 

false" and •*// is false' must not always In* the values, with the arguments p 

and //, for a single function " p is false." This, however, is only possible if the 

word "false" really has many different meanings, appropriate to propositions 

of different kinds. 

That the words "true" and "false” have many different meanings, accord¬ 

ing to the kind of proposition to which they arc applied, is not difficult to 

see. Let us take any function tf>r. and let <f»i be one of its values. Let us call 

the sort of truth which is applicable to <fm "first truth." (This is not to assume 

that this would be first truth in another context: it is merely to indicate that 

it is the first sort of truth in our context.) Consider now the proposition 

(•>’)• If this has truth of the sort appropriate to it, that will mean that 

• •very value <f>.r has "first, truth." Thus if we call the sort of truth that is 

appropriate to (x). “second truth." we may define "|(.r).<£.rj has second 

truth" as meaning "every value for <f& has first truth," i.e. r has first 

truth).” Similarly, if we denote by "(3/) . <£.» " the proposition "</>.r sometimes, 

i.e. :is we may less accurately express it. "</>»• with some value of .r," we find 

that (g.r). <f>.r has second truth if there is an .r with which (f>x has first truth ; 

thus wo may define " |(g.r). <*>.r) has second truth" as meaning "some value 

for <f>r has first truth," i.e. "(gx) . (</>.** has first truth)." Similar remarks apply 

to falsehood. Thus "|(.r). has second falsehood" will mean "some value 

for has first falsehood,” i.e. "(gx) . (<f>x has first falsehood)," while 

" !<:-K) • «M has second falsehood" will mean "all values for <f>£ have first 

falsehood," i.e. "(x).{<f>x has first falsehood)." Thus the sort of falsehood that 

can belong to a general proposition is different from the sort that can belong 

to a particular proposition. 

Applying these considerations to the proposition “(p). p is false," we see 

that the kind of falsehood in question must be specified. If, for example, 

first falsehood is meant, the function "p has first falsehood" is only signi¬ 

ficant when p is the sort of proposition which has first falsehood or first 

truth. Hence "(p). p is false” will be replaced by a statement which is 

equivalent to "all propositions having either first truth or first falsehood 

have first falsehood." This proposition has second falsehood, and is not 
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a possible argument to the function “p has first falsehood." Thus the 

apparent exception to the principle that •*$ {(.r). <£.r)" must be meaningless 

disappears. 

Similar considerations will enable us to deal with - n«.t-/i" and with "p or 7.” 

It might seem as if these were functions in which any proposition m iRht 

appear as argument. But this is due to a systematic ambiguity in the mean¬ 

ings of “not" and “or," by which they adapt themselves to propositions of any 

order. To explain fully how this occurs, it will be well to begin with a 

definition of the simplest kind of truth and falsehood* 

The universe consists of objects having various qualities and standing 

in various relations. Some of the objects which occur in the universe are 

complex. When an object is complex, it consists of interrelated parts. Let 

us consider a complex object composed of two parts a and b standing to each 

other in the relation R. The complex object “a-in-the-relation-/2-to-6" may 

be capable of being perceived ; when perceived, it is perceived as one object. 

Attention may show that it is complex ; we then judge that a and b stand in 

the relation Ji. Such a judgment, being derived from perception by mere 

attention, may be called a “judgment of perception." This judgment of 

perception, considered as an actual occurrence, is a relation of four terms, 

namely a and b and Ji and the percipient. The perception, on the contrary, is 

a relation of two terms, namely “a-in-the-rclation-Zi-to-^," and the percipient. 

Since an object of perception cannot be nothing, we cannot perceive “a-in-the- 

relation-ft-to-6” unless a is in the relation R to b. Hence a judgment of 

perception, according to the above definition, must be true. This does not 

mean that, in a judgment which appears to us to be one of perception, we 

are sure of not being in error, since we may err in thinking that our judgment 

has really been derived merely by analysis of what was perceived. But if our 

judgment has been so derived, it must be true. In fact, we may define truth, 

where such judgments are concerned, as consisting in the fact that there is a 

complex corresponding to the discursive thought which is the judgment. That is, ’ 

when we judge ,€ a has the relation R to b," our judgment is said to be true 

when there is a complex “a-in-the-relation-i2-to-6,” and is said to be false 

when this is not the case. This is a definition of truth and falsehood in rela¬ 

tion to judgments of this kind. 

It will be seen that, according to the above account, a judgment does not 

have a single object, namely the proposition, but has several interrelated 

objects. That is to say, the relation which constitutes judgment is not a 

relation of two terms, namely the judging mind and the proposition, but is a 

relation of several terms, namely the mind and what are called the constituents 

of the proposition. That is, when we judge (say) “this is red," what occurs 

is a relation of three terms, the mind, and “this," and red. On the other hand, 

when we perceive “the redness of this,” there is a relation of two terms, namely 
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tin,* mind ami the complex object "the redness of this." When a judgment 

occurs, there is a certain complex entity, composed of the mind and the 

various objects of the judgment. When the judgment is true, in the case of 

the kind ot judgments we have been considering, there is a corresponding 

complex of the ••hjects of the judgment alone. Falsehood, in regard to our 

present class of judgments, consists in the absence of a corresponding complex 

composed of the objects alone. It follows from the above theory that a 

' propnxiiii.n." in the sense in which a proposition is supposed to be the object 

ot a judgment. iN a fal^abstraction, because a judgment has several objects, 

not one. It is the several ness of the objects in judgment (as opposed to 

perception) which ln> led people to speak of thought as “discursive,” though 

they do not appear to have realized clearly what was meant by this epithet. 

Owing to the plurality «»t the objects of a single judgment, it follows that 

what we call a “proposition' (in the sense in which this is distinguished from 

the phrase expressing it) is not a single entity at all. That is to say, the phrase 

which expii's^es a proposition is what we call an "incomplete" symbol*; it 

dni-s not have meaning in itself, but requires some supplementation in order 

to acquire a complete meaning. This fact is somewhat concealed by the 

circumstance that judgment in itself supplies a sufficient supplement, and that 

judgment in itself makes no rcrlml addition to the proposition. Thus “the 

proposition Socrates is human"' uses "Somite* is human" in a way which 

rei|iiires a supplement of some kind Ik*fore it acquires a complete meaning; 

but when I judge “Socrates is human," the meaning is completed by the act of 

judging,and we no longer have an incomplete symbol. The fact that propositions 

are" incomplete symbols ' is important philosophically.and is relevant at certain 

points in symbolic logic. 

The judgments we have been dealing with hitherto are such as arc* of the 

same form as judgments of perception, i.e. their subjects are always particular 

and definite. But there are many judgments which are not of this form. Such 

* are “nil men are mortal," “I met a man,"“some men are Greeks.” Before 

dealing with such judgments, we will introduce some technical terms. 

We will give the* name of “a complex” to any such object as “a in the re¬ 

lation R to b" or “« having the quality 7," or “« and b and c standing in the 

relation Broadly speaking, a complex is anything which occurs in the 

universe and is not simple. We will call a judgment elementary when it 

merely asserts such things as “a has the relation R to b”" a has the quality q" 

or "a and b and c stand in the relation S. ’ Then an elementary judgment is 

true when there is a corresponding complex, and false when there is no corre¬ 

sponding complex. 

But take now such a proposition as “all men are mortal.” Here the 

judgment does not correspond to one complex, but to many, namely “Socrates 

• Sec Chapter III. 
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is mortal, "Plato is mortal, "Aristotle is mortal,'' etc. (For the moment, it 

is unnecessary to inquire whether each of these docs not require further 

treatment before we reach the ultimate complexes involved. For purposes of 

illustration, "Socrates is mortal" is here treated as an elementary judgment, 

though it is in fact not one. as will be explained later. Truly elementary 

judgments are not very easily found.) We do not mean to deny that there 

maybe some relation of the concept man to the concept mortal which maybe 

equivalent to "all men are mortal,'* but in any case this relation is not. the 

same thing as what we affirm when we say that all men are mortal. Our 

judgment that all men are mortal collects together a number of elementary 

judgments. It is not, however, composed of these, since (e.g.) the fact that 

Socrates is mortal is no part of what we assert, as may be seen by considering 

the fact that our assertion can be understood by a person who has never heard 

of Socrates. In order to understand the judgment "all men are mortal,” it is 

not necessary to know what men there are. We must admit, therefore, as a 

radically new kind of judgment, such general assertions as "all men are mortal.” 

We assert that, given that x is human, a: is always mortal. That is, we assert 

"x is mortal" of every x which is human. Thus we are able to judge (whether 

truly or falsely) that all the objects which have some assigned property also 

have some other assigned property. That is, given any propositional functions 

4>x and yjr$, there is a judgment asserting \frx with every x for which we have 

<f>x. Such judgments we will call general judgments. 

It is evident (as explained above) that the definition of truth is different 

in the case of general judgments from what it was in the ease of elementary 

judgments. Let us call the meaning of truth which we gave for elementary 

judgments "elementary truth." Then when we assert that it is true that all 

men are mortal, we shall mean that all judgments of the form "x is mortal,” 

where a: is a man, have elementary truth. We may define this as "truth of 

the second order” or “second-order truth.” Then if we express the proposition 

“all men are mortal” in the form 

"(#) . x is mortal, where a: is a man,” 

and call this judgment p, then "p is true” must be taken to mean "p has 

second-order truth,” which in turn means 

’ “(#) . *x is mortal’ has elementary truth, where x is a man.” 

In order to avoid the necessity for stating explicitly the limitation to 

which our variable is subject, it is convenient to replace the above interpre¬ 

tation of “all men are mortal" by a slightly different interpretation. The 

proposition “all men are mortal” is equivalent to U€x is a man’ implies 'x is 

mortal,’ with all possible values of x.” Here x is not restricted to such values 

are men, but may have any value with which “‘x is a man’ implies 'a; is 

mortal’ ” is significant, i.e. either true or false. Such a proposition is called a 

“formal implication.” The advantage of this form is that the values which the 

variable may take are given by the function to which it is the argument: the 
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values which the variable may take are all those with which the function is 

significant. 

We use the symbol “{.•■). <f>> " to express the general judgment which 

asserts all judgments of the form Then the judgment “all men are 

mortal is equivalent to 

“(j-).'j- is a inau' implies \r is a mortal,”’ 

i.e. (in virtue of the definition of implication) to 

•'(/) ..*• is not a man or x is mortal." 

As we have just seen, the meaning of truth which is applicable to this pro- 

pi icable to “x is a 

.r). <f>r, the sense 

that 

ue w 

» a single corre¬ 
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position is not the same as the meaning of truth which is ap 
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is or may he true. If 4>> is an elementary judgment, it is tr 

tn a correspondin'' complex. But (.r). Ax does not imint t 

It follows from the above that such a proposition as “all the judgments 

made by Kpimenidos are true” will only be prima facie capable of truth if all 

his judgments are of the same order. If they are of varying orders, of which 

the ath is the highest, we may make a assertions of the form "all the judg¬ 

ments of order m made by Epimenides are true." where m has all values up 

to n. But no such judgment can include itself in its own scope, since such a 

judgment is always of higher order than the judgments to which it refers. 

Let us consider next what is meant by the negation of a proposition of 

the form We observe, to begin with, that in some cases,” or 

"(fix sometimes." is a judgment which is on a par with "<fix in all cases, or 

••</»./ always." The judgment "<*m sometimes" is true if one or more values of 

x exist for which <fix is true. We will express the proposition "</> « sometimes 

by the notation “(gx). where "3" stands for “there exists.” and the 

whole symbol maybe read “there exists an x such that </m\” We take the 

two kinds of judgment expressed by “(x).<Jm” and "(3 x). <fix as primitive 

ideas. We also take as a primitive idea the negation of an elementary pro¬ 

position. We can then define the negations of (x). </>x and (gx). <fix. 'll*0 

negation of any proposition p will be denoted by the symbol “~p. Then the 

negation of (x) . <f>x will be defined as meaning 

"(3 x).~£x” m 

and the negation of (gx). (f>x will be defined as meaning “(x) . ~ (fix. ^ “ls> 

in the traditional language of formal logic, the negation of a universal affir¬ 

mative is to be defined as the particular negative, and the negation of the 

particular affirmative is to be defined as the universal negative. Hence the 

meaning of negation for such propositions is different from the meaning o 

negation for elementary propositions. 



SYSTEMATIC AMBIGUITY •17 
n] 

An analogous explanation will apply to disjunction. Consider the state¬ 

ment "either p, or <f>.v always.'' We will denote the disjunction of two 

propositions p, q by "p v 7." Then our statement is "p . v . (./•). We will 

suppose that p is an elementary proposition, and that- <f>.r is always an elemen¬ 

tary proposition. We take the disjunction of two elementary propositions as 

a primitive idea, and we wish to define the disjunction 

"P • v • (•*•) • </>•*•.*’ 

This may be defined as “(x). p v <f>x," i.e. "either p is true, or <f>x is always true” 

is to mean “ lp or <j>x' is always true." Similarly we will define 

"P • v . (a-r> . <f> v" 

as meaning "(g.r) .p v <f>x," i.e. we define “either p is true or there is an x 

for which <f>x is true" as meaning “there is an .r for which eitherp or <f>.v is 

true.’ Similarly we can define a disjunction of two universal propositions: 

(f) • ^*r • v • (y) • will be defined as meaning “(x,y). <f>x v \J/y," i.e. 

either <f>x is always true or yfry is always true” is to mean “*<f>x or \fry‘ is 

always true." By this method we obtain definitions of disjunctions con¬ 

taining propositions of the form (x) . <£.v or (gx). <f>x in terms of disjunctions 

of elementary propositions; but the meaning of "disjunction” is not the same 

for propositions of the forms (#). <f>x, (3-*) . <f*x, as it was for elementary pro¬ 

positions. 

Similar explanations could be given for implication and conjunction, but 

this is unnecessary, since these can be defined in terms of negation and 

disjunction. 

IV. Why a Given Function requires Arguments of a Certain Type. 

The considerations so far adduced in favour of the view that a function 

cannot significantly have as argument anything defined in terms of the 

function itself have been more or less indirect. But a direct consideration 

of the kinds of functions which have functions as arguments and the kinds 

of functions which have arguments other than functions will show, if we are 

not mistaken, that not only is it impossible for a function tf>2 to have itself 

or anything derived from it as argument, but that, if yfrS is another function 

such that there are arguments a with which both "<£a” and are sig¬ 

nificant, then yfrS and anything derived from it cannot significantly be 

argument to </>2. This arises from the fact that a function is essentially 

an ambiguity, and that, if it is to occur in a definite proposition, it must 

occur in such a way that the ambiguity has disappeared, and a wholly 

unambiguous statement has resulted. A few illustrations will make this clear. 

Thus “(x) . which we have already considered, is a function of <f>£; as soon 

as «/>£ is assigned, we have a definite proposition, wholly free from ambiguity. 

But it is obvious that we cannot substitute for the function something which 

is not a function: means “4>x in all cases," and depends for its 

significance upon the fact that there are “cases" of <f>x, i.e. upon the 
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ambiguity which is characteristic of a function. This instance illustrates 

the fact that, when a (unction can occur significantly as argument.something 

which is not a function cannot occur significantly as argument. But con¬ 

versely. when something which is not a function can occur significantly 

as argument, a function cannot occur significantly. Take, e.y. "x is a man. 

ami consider " <f>r is a man." Here there is nothing to eliminate the 

ambiguity which constitutes <f>r\ there is thus nothing definite which is 

said to be a man. A function, in fact, is not a definite object, which could 

be or not b«- a man; ir is a mere ambiguity awaiting determination, and 

in ordt*r that it may occur significantly it must receive the necessary deter¬ 

mination. which it obviously does not receive if it is merely substituted 

for something determinate in a i»ro|>osition•. This argument does not, how¬ 

ever, apply directly as against such a statement as " <f>x) is a man. 

Common sense would pronounce such a statement to be meaningless, blit it 

cannot be condemned on the ground of ambiguity in its subject. Wc need 

here a new objection, namely the following: A proposition is not a single entity, 

but a relation of several; hence a statement in which a proposition appeal's 

as subject will only be significant if it can 1m- reduced to a statement about 

the terms which appear in the proposition. A proposition, like such phrases 

as"the so-and-so.” where grammatically it appears as subject, must be broken 

up into its constituents if wc are to find the true subject or subjectst.. But 

in such a statement as "p is a man." where /> is a proposition, this is not 

]M)ssible. Hence 4>r< >s 51 uian" is meaningless. 

V. The Hierarchy of Functions and J’ropositions. 

Wc are thus led to the conclusion, both from the vicious-circlc principle 

and from direct inspection, that the functions to which a given object a can 

be an argument are incapable of being arguments to each other, and that they 

have no term in common with the functions to which they can be arguments. 

We are thus led to construct a hierarchy. Beginning with a and the other 

terms which can be arguments to the same functions to which a can be argu¬ 

ment, wc come next to functions to which a is a possible argument, and then 

to functions to which such functions are possible arguments, and so on. But 

the hierarchy which has to be constructed is not so simple as might at first 

appear. The functions which can take a as argument form an illegitimate 

totality, and themselves require division into a hierarchy of functions, 'lhis 

is easily seen as follows. Let /(<J>2, x) be a function of the two variables tf>3 

and x. Then if, keeping x fixed for the moment, we assert this with all possible 

values of <f>, we obtain a proposition: 

(<*>) -/(^3, x). 
• Note that statements concerning the significance of a phrase containing "•p: " concern the 

ujmbol ami therefore do not fall under the rulo that the elimination of tlio functional 

ambiguity is necessary to significance. Significance is a property of signs. Cf. pp. 40, 41. 

t Cf. Chapter III. 
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Here, it .r is variable, wo have a function of .r; but as this function involves 

a totality ot values ot <f>~9, it cannot itself be one of the values included in 

the totality, by the vicious-circle principle. It follows that the totality of values 

of tf)s concerned in (<£). /(<£?, x) is not the totality of all functions in which 

x can occur as argument, and that there is no such totality as that of all func¬ 

tions in which .v can occur as argument. 

It follows from the above that a function in which </>* appears as argument 

requires that should not stand for any function which is capable of a 

given argument, but must be restricted in such a way that none of the 

functions which are possible values of should involve any reference to 

the totality of such functions. Let us take as an illustration the definition 

of identity. We might attempt to define 4*.r is identical with y" as meaning 

"whatever is true of x is true of y," i.e. "</>.*• always implies </>//.” But here, 

since we are concerned to assert all values of u<f>.r implies <f>y” regarded as a 

function of </>, we shall be compelled to impose upon <f> some limitation which 

will prevent us from including among values of <f> values in which "all possible 

values of <p” are referred to. Thus for example “x is identical with a" is a 

function of x\ hence, if it is a legitimate value of <f> in “<f>x always implies 

<t>y," we shall be able to infer, by means of the above definition, that if is 

identical with a, and x is identical with y, then y is identical with a. 

Although the conclusion is sound, the reasoning embodies a vicious-circle 

fallacy, since we have taken “(<£). <f>x implies <f>a" as a possible value of <f>x, 

which it cannot be. If, however, we impose any limitation upon </>, it may 

happen, so far as appears at present, that with other values of </> we might 

have <f>x true and <f>y false, so that our proposed definition of identity would 

plainly be wrong. This difficulty is avoided by the "axiom of reducibility,” 

to be explained later. For the present, it is only mentioned in order to 

illustrate the necessity and the relevance of the hierarchy of functions of a 

given argument. 

Let us give the name “a-functions" to functions that are significant for a 

given argument a. Then suppose we take any selection of a-functions, and 

consider the proposition "a satisfies all the functions belonging to the selection 

in question.” If we here replace a by a variable, we obtain an a-function; but 

by the vicious-circle principle this a-function cannot be a member of our 

selection, since it refers to the whole of the selection. Let the selection consist 

of all those functions which satisfy f Then our new function is 

(£)• (/(£*) implies <M- 

where x is the argument. It thus appears that, whatever selection of 

a-funotions we may make, there will be other a-functions that lie outside our 

* When we speak of “values of <p2” it is <p, not *, that is to be assigned. This follows from 

the explanation in the note on p. 40. When the function itself is the variable, it is possible and 

simpler to write <p rather than <p£, except in positions where it is necessary to emphasize that an 

argument must be supplied to secure significance. 

B&w 1 4 
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selection. Such '/-functions, as the al»ove instance illustrates, will always 

arise through taking a function of two arguments. <f>3 and x,and asserting all 

some of the values resulting from varying <f>. What is necessary, therefore, 

in order to avoid vicious-circle fallacies, is to divide our //-functions into 

"types," each of which contain> no functions which refer to the whole of that 

type. 

When something is assorted or denied about all possible values or about 

some (undetermined) possible values of a variable, that variable is called 

after IV.ino. The presence of the words at/ or some in a proposition 

indicates the presence of an apparent variable; but often an apparent variable 

is really present where- language does not at once indicate its presence. Thus 

for example "A is mortal" means "there is a time at which A will die.” Thus 

a variable time occurs as apparent variable. 

The clearest, instances «.f propositions not containing apparent variables 

are such as express immediate judgments of perception, such as "this is red" 

or "this is painful." where "this" is something immediately given. In other 

judgments, even where at first sight no variable appears to be present, it 

olten happens that then- really is one. Take (say) ".Socrates is human." To 

Socrates himself, the won I "Socrates” no doubt stood for an object of which 

ho tt’sw immediately aware, and the judgment "Socrates is human" contained 

no apparent variable. But to us, who only know Socrates by description, tin- 

word Socrates cannot mean what it meant to him; it means rather "the 

person having such-and-such properties," (say)“ the Athenian philosopher who 

drank the hemlock." Now in all propositions about "the so-and-so" there is 

an apparent variable,as will 1m- shown in Chapter III. Thus in what we have 

in mind when we say "Socrates is human" there is an apparent variable, 

though there was no apparent variable in the corresponding judgment as 

made by Socrates, provided we assume that there is such a thing as immediate 

awareness of oneself. 

W hatever may be the instances of propositions not containing apparent 

variables, it is obvious that propositional functions whose values do not contain 

apparent variables arc the source of propositions containing apparent variables, 

in the sense in which the function 0a1 is the source of the proposition (.r). <f>x. 

For the values for <f>x do not contain the apparent variable ./•, which appears 

in (x).tf>x\ it they contain an apparent variable y, this can be similarly 

eliminated, and so on. This process must come to an end, since no proposition 

which we can apprehend can contain more than a finite number of apparent 

variables, on the ground that whatever we can apprehend must be of finite 

complexity. Thus we must arrive at last at a function of as many variables 

as there have been stages in reaching it from our original proposition, and 

this function will be such that its values contain no apparent variables. We 

may call this function the matrix of our original proposition and of any other 
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propositions and tunctions to be obtained l»y turning some ot’ the arguments 

to the function into apparent variables. Thus for example, if we have a matrix- 

function whose values are <f>(.r,y), we shall derive from it 

(y) . <f> (.r, y\ which is a function of .r. 

(.r). <f> (.r, y), which is a function of //. 

$ (*1*. y), meaning “<f> (.r, y) is true with all possible values of .r and y." 

This last is a proposition containing no real variable, i.e. no variable except 

apparent variables. 

It is thus plain that all possible propositions and functions are obtainable 

from matrices by the process of turning the arguments to the matrices into 

apparent variables. In order to divide our propositions and functions into types, 

we shall, therefore, start from matrices, and consider how they are to be divided 

with a view to the avoidance of vicious-circle fallacies in the definitions of the 

functions concerned. For this purpose, we will use such letters as a, b, c, .v, y, z, w, 

to denote objects which are neither propositions nor functions. Such objects 

we shall call individuals. Such objects will be constituents of propositions or 

functions, and will be genuine constituents, in the sense that they do not 

disappear on analysis, as (for example) classes do, or phrases of the form “the 

so-and-so.” 

The first matrices that occur are those whose values are of the forms 

<f>x, yfr (x, y), *(x,y,* ...), 

t.e. where the arguments, however many there may be, are all individuals. 

The functions (f>, yjr, x since (by definition) they contain no apparent 

variables, and have no arguments except individuals, do not presuppose any 

totality of functions. From the functions \fr, x ••• we may proceed to form 

other functions of *, such as (y) . yfr (x, y), (gy) . y/r (x, y), (y, z) . x (*, 'J> *)• 

(y): (a*) • X(x> V*z)> and so on. All these presuppose no totality except that 

of individuals. We thus arrive at a certain collection of functions of x, 

characterized by the fact that they involve no variables except individuals. 

Such functions we will call "first order functions.” 

We may now introduce a notation to express “any first-order function.” 

We will denote any first-order function by “<£!£” and any value for such a 

function by “<£ ! x” Thus "<f> ! x" stands for any value for any function which 

involves no variables except individuals. It will be seen that “<f>! x” is itself 

a function of two variables, namely <f>! 2 and x. Thus <f>! x involves a variable 

which is not an individual, namely <f>! 2. Similarly “(x). <f> l x” is a function 

of the variable <f>! 5, and thus involves a variable other than an individual. 

Again, if a is a given individual, 

“<f>lx implies <f>! a with all possible values of <f>" 

18 a function of x, but it is not a function of the form <ft! x, because it involves 

an (apparent) variable <f> which is not an individual. Let us give the name 

"predicate” to any first-order function <f>! at. (This use of the word “predicate” 



52 INTRODUCTION [CHAP. 

is only proposed for the pur|»oses of the present, discussion.) Then the state¬ 

ment "<f>! .r implies <f> ! a with all possible values of <f>' may be read “all the 

predicates of x are predicates of a. This makes a statement about .r, but does 

not attribute to ./• a prei/icate in the special sense just defined. 

Owing to the introduction of the variable first-order function <f>! 2, we 

now have a new set of matrices. Thus "<£!.r" is a function which contains no 

apparent variables,but contains the two real variables <f>! 3 and x. (It should 

be observed that when <f> is assigned, we may obtain a function whose values do 

involve individuals as apparent variables, for example if <f> lx is (//). yfr(x,y). 

But so long as <f> is variable, <t>! x contains no apparent variables.) Again, 

if o is a definite individual. <f>la is a function of the one variable <f> l z. 

If n and li are definite individuals, implies yfr l b" is a function of the 

t wo variables <f>! 3, yfr ! 3, and so on. We are thus led to a whole set of new 

matrices, 

f (<f>! 2). <n<f>lz,yfrl 2). /’(</>! 2, .#•), and so oil. 

These matrices contain individuals and first-order functions as arguments, but 

(like all matrices) they contain no apparent variables. Any such matrix, if it 

contains more than one variable, gives rise to new functions of one variable 

by turning all its arguments except one into apparent variables. Thus we 

obtain the functions 

(<f>). g (<f> l 3, yfr ! 3). which is a function of yfr ! 3. 

(•') - /’’<0 ! 3. x), which is a function of <f>! 3. 

(</>). /-’(«/>! 3,x), which is a function of .r. 

We will give the name of nee mil-order matrices to such matrices as have 

first-order functions among their arguments, and have no arguments except 

first-order functions and individuals. (It is not necessary that they should 

have individuals among their arguments.) We will give the name of second- 

order functions to such as either are second-order matrices or are derived from 

such matrices by turning some of the arguments into apparent variables. It 

will be seen that either an individual or a first-order function may appear as 

argument to a second-order function. Second-order functions are such as con¬ 

tain variables which are first-order functions, but contain no other variables 

except (possibly) individuals. 

We now have various new classes of functions at our command. In the first 

place, we have second-order functions which have one argument which is a 

first-order function. We will denote a variable function of this kind by the 

notation /*!(<£! 3), and any value of such a function by _/’!(</>! 3). Like 

if)! x, f! (</>! 3) is a function of two variables, namely f\ (<£ ! 3) and if>! 3. Among 

possible values of f!(<f>l$) will be <f>! a (where a is constant), (x).<f>lx, 

(yx).if) lx, and so on. (These result from assigning a value to /, leaving 

</> to be assigned.) We will call such functions “predicative functions of 

first-order functions.” 
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In the second place, we have second-order functions of two arguments, one 

of which is a first-order function while t he other is an individual. Let us denote 

undetermined values of such functions by the notation 

/! (0 ! 3. .*•>. 

As soon as x is assigned, we shall have a predicative function of <f>lc. If our 

function contains no first-order function as apparent variable, we shall obtain 

a predicative function of* if we assign a value to <f>! j. Thus, to take the 

simplest possible case, if/! (<f> ! z,x) is <f>! .r.the assignment of a value to </> gives 

us a predicative function of x, in virtue of the definition of " <f> lx." But if 

./-(</>! z, x) contains a first-order function as apparent variable, the assignment 

ot a value to <f>! z gives us a second-order function of x. 

In the third place, we have second-order functions of individuals. These 

will all be derived from functions of the form /'! (<f>! stx) by turning </> into an 

apparent variable. We do not, therefore, need a new notation for them. 

We have also second-order functions of two first-order functions, or of two 

such functions and an individual, and so on. 

We may now proceed in exactly the same way to third-order matrices, 

which will be functions containing second-order functions as arguments, and 

containing no apparent variables, and no arguments except individuals and 

first-order functions and second-order functions. Thence we shall proceed, as 

before, to third-order functions; and so we can proceed indefinitely. If the 

highest order of variable occurring in a function, whether as argument or ns 

apparent variable, is a function of the nth order, then the function in which 

it occurs is of the n + 1th order. We do not arrive at functions of an infinite 

order, because the number of arguments and of apparent variables in a function 

must be finite, and therefore every function must be of a finite order. Since 

the orders of functions are only defined step by step, there can be no process 

of "proceeding to the limit/’ and functions of an infinite order cannot occur. 

We will define a function of one variable as predicative when it is of the 

next order above that of its argument, i.e. of the lowest order compatible with 

its having that argument. If a function has several arguments, and the highest 

order of function occurring among the arguments is the nth, we call the function 

predicative if it is of the n -t- 1th order, i.e. again, if it is of the lowest order 

compatible with its having the arguments it has. A function of several 

arguments is predicative if there is one of its arguments such that, when the 

other arguments have values assigned to them, we obtain a predicative function 

of the one undetermined argument. 

It is important to observe that all possible functions in the above hierarchy 

can be obtained by means of predicative functions and apparent variables. Thus> 

as we saw, second-order functions of an individual x are of the form 

; (<t>) •/! (<*> 1 2. *) or (a*) . /l(<f> l 2, x) OT (<*», +) .f\ (<f> l 2, +! 2, x) or etc., 

where f is a second-order predicative function. And speaking generally, a 
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non-predicative function ot the wth order is obtained from a predicative function 

of the //til order by tinning nil the arguments of the n — 1th order into apparent 

variables. <( )t her arguments also may Im- turned into apparent variables.) Thus 

we need not introduce as variables any functions except predicative functions. 

Moreover, to obtain any function ot one variable ./*, we need not go beyond 

predicative functions ot tiro variables. For the function (yjr). /'!(</>! 2, yfs lz,.r), 

where j is given, is a function of 0! 2 ami ./, and is predicative. Thus it is of 

the form !(0! and therefore (0. yfr)./! <0 ! 3, ! 2,.r) is of the form 

(0). /’! (0 ! 3,./ ». Thus shaking generally, by a succession of steps we find that, 

if 0! a is a predicative function of a sufficiently high order, any 

predicative function of.#- will be of one of the two forms 

assigned non- 

(0) ./’!(</»! f/..r), <'.|0). /’! (0! «,*•), 

where F is a predicative function of 0 ! n and ./-. 

I'he nature of the above hierarchy of functions maybe restated as follows. 

A function, as we saw at an earlier stage, prestip|x»scs as part of its meaning 

the totality of its values, or, what comes to the same thing, the totality of 

its possible mguments. The arguments to a function may be functions or 

propositions or individuals. (It will be remembered that individuals were 

defined as whatever is neither a proposition nor a function.) For the present 

we neglect the case in which the argument to a function is a proposition. 

Consider a function whose argument is an individual. This function pre¬ 

supposes the totality of individuals: but unless it contains functions as 

apparent variables, it does not presuppose any totality of functions. If, 

however, it does contain a function as apparent variable, then it cannot 

be defined until some totality of functions has been defined. It follows that 

we must first define the totality of those functions that have individuals 

as arguments and contain no functions as apparent variables. These are 

the predicative functions of individuals. Generally, a predicative function 

of a variable argument is one which involves no totality except that of 

the possible values of the argument, and those that are presupposed by any 

one of the possible arguments. Thus a predicative function of a variable 

argument is any function which can be specified without introducing new 

kinds of variables not necessarily presupposed by the variable which is the 
argument. 

A closely analogous treatment can be developed for propositions. Pro¬ 

positions which contain no functions and no apparent variables may be called 

elementary propositions. Propositions which are not elementary, which contain 

no functions, and no apparent variables except individuals, may be called 

first-order propositions. (It should be observed that no variables except 

apparent variables can occur in a proposition, since whatever contains a j'eal 

variable is a function, not a proposition.) Thus elementary and first-order 

propositions will be values of first-order functions. (It should be remembered 
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that a function is not a constituent in one of its values: thus for example 

the function is human ” is not a constituent of the proposition “Socrates 

is human. ) Elementary and first-order propositions presuppose no totality 

except (at most) the totality of individuals. The} • are of one or other of the 

three forms 
9! .v; (.r) . <f>! .r; (g.r) . <f>! .r. 

where <f> l x is a predicative function of an individual. If follows that, if /> 

represents a variable elementary proposition or a variable first-order propo¬ 

sition, a function fp is either/(^»! .«•) or/|(.r) . <f>! .«•) or/(<g.r) . cf>! .»•). Thus 

a function of an elementary or a first-order proposition may always be reduced 

to a function of a first-order function. It follows that a proposition involving 

the totality of first-order propositions may be reduced to one involving the 

totality of first-order functions; and this obviously applies equally to higher 

orders. The propositional hierarchy can, therefore, be derived from the 

functional hierarchy, and we may define a proposition of the nth order as 

one which involves an apparent variable of the n — 1th order iu the functional 

hierarchy. The propositional hierarchy is never required in practice, and is 

only relevant for the solution of paradoxes; hence it is unnecessary to go into 

further detail as to the types of propositions. 

VI. The Axiom of Reducibility. 

It remains to consider the “axiom of reducibility.” It will be seen that, 

according to the above hierarchy, no statement can be made significantly 

about “all a-functions,” where a is some given object. Thus such a notion 

as “all properties Of a,” meaning “all functions which are true with the 

argument a,” will be illegitimate. We shall have to distinguish the order 

of function concerned. We can speak of “ all predicative properties of a," “ all 

second-order properties of a,” and so on. (If a is not an individual, but an 

object of order n, “second-order properties of a” will mean “functions of 

order n + 2 satisfied by a.”) But we cannot speak of “ all properties of a.” 

In some cases, we can see that some statement will hold of “ all uth-order 

properties of a,” whatever value n may have. In such cases, no practical 

harm results from regarding the statement as being about “ all properties of 

a,” provided we remember that it is really a number of statements, and not 

a single statement which could be regarded as assigning another property to 

a, over and above all properties. Such cases will always involve some syste¬ 

matic ambiguity, such as that involved in the meaning of the word “truth,” 

as explained above. Owing to this systematic ambiguity, it will be possible, 

sometimes, to combine into a single verbal statement what are really a number 

of different statements, corresponding to different orders in the hierarchy. 

•This is illustrated in the case of the liar, where the statement “all A’s 

statements are false ” should be broken up into different statements referring 

to his statements of various orders, and attributing to each the appropriate 

kind of falsehood. 
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The axiom of rcducibility is introduced in order to legitimate a great 

mass of reasoning, in which, primn facie, we are concerned with such notions 

as “all properties of a " or “all o-functions.’ and in which, nevertheless, it 

seems scarcely possible to suspect any substantial error. In order to state 

tin* axiom, we must first define what is meant by “formal equivalence." Two 

functions </m. 0.2 are said to be * formally equivalent" when, with every possible 

argument x, <f>.r is equivalent to \J/s, i.e. and are either both true or 

both false. Thus two functions are formally equivalent when they arc satisfied 

by the same set arguments. The axiom of rcducibility is the assumption 

that, given any function </>.“. there is a formally equivalent predicative function, 

i.e. there is a predicative function which is true when (f>.r is true and false 

when <f>> is false. In symbols, the axiom is: 

I- : <3^r): <t>> . =,. 0 i-r. 

I'or t\\M variables, wv require a similar axiom, namely: Given any function 

//), there is a formally equivalent predicative function, i.e. 

H : (:•!>/'): 0( r. y>. . 0 ! (.r. //). 

In order to explain t he pm |>oses of the axiom of rcducibility, and the nature 

of the grounds for supposing it true, we shall first illustrate it by applying it 

to some particular cases. 

If we call a predicate of an object a predicative function which is true of 

t hat object, then the predicates of an object are only some among its properties. 

Take for example such a projs.sition as " Napoleon had all the qualities that 

make a great general." We may interpret this as meaning "Napoleon had all 

the predicates that make a great general." Here there is a predicate which is 

an apparent variable. If we put “/(<£ ! 2)" for “0! 2 is a predicate required 

in a great general." our projiositioii is 

(<f>>: f(<f>! 2) implies 0 ! (Napoleon). 

Since this refers to a totality of predicates, it is not itself a predicate of 

Napoleon. 11 by no means follows, however, that there is not some one predicate 

common and peculiar to great generals. In fact, it is certain that there is such 

a predicate. For the number of great generals is finite, and each of them 

certainly possessed some predicate not possessed by any other human being 

—for example, the exact instant of his birth. The disjunction of such predicates 

will constitute a predicate common and peculiar to great generals*. If we 

call this predicate 0-! 2, the statement we made about Napoleon was equi¬ 

valent to 0 ! (Napoleon). And this equivalence holds equally if wo substitute 

any other individual for Nai>oleon. Thus we have arrived at a predicate which 

is always equivalent to the property we ascribed to Napoleon, i.e. it belongs 

to those objects which have this property, and to no others. The axiom of 

rcducibility states that such a predicate always exists, i.e. that any property 

• When u (finite) set of predicates is given by actual enumeration, their disjunction is a 
predicate, because no predicate occurs as apparent variable in the disjunction. 
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of nn object belongs to the same collection of objects as those that possess 

some predicate. 

We may next illustrate our principle by its application to identity. In 

this connection, it has a certain affinity with Leibni/.'s identity of indiscernibles. 

It is plain that, if .r and y are identical, and <f>.v is true, then <f>y is true. Here 

it cannot matter what sort of function <f>.e may be: the statement must hold 

for any function. But we cannot say, conversely: “If, with all values of <f>. 

<px implies <f>y, then .r and .y are identical"; because “all values of </>” is 

inadmissible. If we wish to speak of “all values of <£," we must confine 

ourselves to functions of one order. Wo may confine <f> to predicates, or to 

second-order functions, or to functions of any order we please. But we must 

necessarily leave out functions of all but one order. Thus we shall obtain, so 

to speak, a hierarchy of different degrees of identity. We may say “all the 

predicates of x belong to y," “all second-order properties of x belong to //," 

and so on. Each of these statements implies all its predecessors: for 

example, if all second-order properties of x belong to y, then all predicates 

of x belong to y, for to have all the predicates of x is a second-order property, 

and this property belongs to x. But we cannot, without the help of an axiom, 

argue conversely that it all the predicates of x belong to ;/, all the second-order 

properties of x must also belong to y. Thus we cannot, without the help of 

an axiom, be sure that x and y arc identical if they have the same predicates. 

Leibniz’s identity of indiscernibles supplied this axiom. It should be observed 

that by" indiscernibles” he cannot have meant two objects which agree as to 

dll their properties, for one of the properties of x is to be identical with x, 

and therefore this property would necessarily belong to y if x and y agreed 

in all their properties. Some limitation of the common properties necessary 

to make things indiscernible is therefore implied by the necessity of an axiom. 

For purposes of illustration (not of interpreting Leibniz) we may suppose the 

common properties required for indiscernibility to be limited to predicates. 

Then the identity of indiscernibles will state that if x and y agree as to 

all their predicates, they are identical. This can be proved if we assume the 

axiom of reducibility. For, in that case, every property belongs to the same 

collection of objects as is defined by some predicate. Hence there is some 

predicate common and peculiar to the objects which are identical with x. 

This predicate belongs to x, since x is identical with itself; hence it belongs 

to y, since y has all the predicates of x; hence y is identical with x. It 

follows that we may define x and y as identical when all the predicates of x 

belong to y, i.e. when (<f>) : tf> l x . D . <f>! y. We therefore adopt the following 

definition of identity*: 

= : (<p) : <f> l x . D . <f>! y Df. 

* Note that in this definition the second sign of equality is to be regarded as combining with 

J‘Df" to form one symbol; what ia defined is the sign of equality not followed by the letters “Df.” 

?• :. . .. 
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But apart from the axiom «f reducibility, or some axiom equivalent in this 

connection, we should be compelled to regard identity as indefinable, and to 

admit (what seems impossible) that two objects may agree in all their pre¬ 

dicates without being identical. 

Tin* axiom of reducibility is even more essential in the theory of classes. 

It should be observed, in the first place, that if we assume the existence of 

classes, the axiom of reducibility can be proved. For in that case, given any 

function <f>: of whatever order, there is a class a consisting of just those 

objects which satisfy </>3. Hence is equivalent to “x belongs to a." 

But " x belongs to a ” is a statement containing no apparent variable, and is 

therefore a predicative function of .»•. Hence if we assume the existence ot 

classes, the axiom of reducibility becomes unnecessary. The assumption ot 

the axiom of reducibility is therefore a smaller assumption than the assump¬ 

tion that there are classes. This latter assumption has hitherto been made 

unhesitatingly. However, both on the ground of the contradictions, which 

require a more complicated treatment if classes are assumed, and on the ground 

that it is always well to make tin* smallest assumption required for proving 

our theorems, we prefer to assume the axiom of reducibility rather than the 

existence of classes. But in order to explain the use of tin* axiom in dealing 

with classes, it. is necessary first to explain the theory of classes, which is a 

topic belonging to Chapter III. We therefore postpone to that Chapter the 

explanation of the use of our axiom in dealing with classes. 

It is worth while to note that all the pur|K>ses served by the axiom of 

reducibility are equally well served if we assume that t here is always a function 

of the nth order (where n is fixed) which is formally equivalent to <f>?. what¬ 

ever may be the order of Here we shall mean by "a function of the nth 

order" a function of the nth order relative to the arguments to thus if 

these arguments are absolutely of the /nth order, we assume the existence of 

a function formally equivalent to whose absolute order is the m + nth. The 

axiom of reducibility in the form assumed above takes n = 1, but this is not 

necessary to the use of the axiom. It is also unnecessary that n should be the 

same for different values of ni; what is necessary is that n should be constant 

so long as m is constant. What is needed is that, where extcnsional functions 

of functions are concerned, wc should be able to deal with any n-function by 

means of some formally equivalent function of a given type, so as to be able 

to obtain results which would otherwise require the illegitimate notion of 

“all ({-functions ”; but it does not matter what the given type is. It docs 

not appear, however, that the axiom of reducibility is rendered appreciably 

more plausible by being put in the above more general but more complicated 

form. 

The axiom of reducibility is equivalent to the assumption that “any 
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combination or disjunction of predicates* is equivalent to a single pivdicale,” 

i.e. to the assumption that, if we assert that .r has all the predicates that, 

satisfy a function f (^>! ?), there is some one predicate which will have 

whenever our assertion is true, and will not have whenever it is false, and 

similarly if we assert that .r has some one of the predicates t hat satisfy a function 

.t For by means of this assumption, the orderof anon-predicative function 

can be lowered by one; hence, after some finite number of steps, we shall be able 

to get from any non-predicative function to a formally equivalent predicative 

function. It does not seem probable that the above assumption could be 

substituted for the axiom of rcducibility in symbolic deductions, since its use 

would require the explicit introduction of the further assumption that by a 

finite number of downward steps we can pass from any function to a predicative 

function, and this assumption could not well be made without developments 

that are scarcely possible at an early stage. But on the above grounds it seems 

plain that in fact, if the above alternative axiom is true, so is the axiom of 

redueibility. The converse, which completes the proof of equivalence, is of 

course evident. 

VII. Reasons for Accepting the Axiom of Reducibilitg. 

That the axiom of redueibility is self-evident is a proposition which can 

hardly be maintained. But in fact self-evidence is never more than a part of 

the reason for accepting an axiom, and is never indispensable. The reason 

for accepting an axiom, as for accepting any other proposition, is always 

largely inductive, namely that many propositions which are nearly indubitable 

can be deduced from it, and that no equally plausible way is known by which 

these propositions could be true if the axiom were false, and nothing which is 

probably false can be deduced from it. If the axiom is apparently self-evident, 

that only means, practically, that it is nearly indubitable; for things have 

been thought to be self-evident and have yet turned out to be false. And if 

the axiom itself is nearly indubitable, that merely adds to the inductive 

evidence derived from the fact that its consequences are nearly indubitable : 

it does not provide new evidence of a radically different kind. Infallibility is 

never attainable, and therefore some element of doubt should always attach 

to every axiom and to all its consequences. In formal logic, the element of 

doubt is less than in most sciences, but it is not absent, as appears from the 

fact that the paradoxes followed from premisses which were not previously 

known to require limitations. In the case of the axiom of rcducibility, the 

inductive evidence in its favour is very strong, since the reasonings which it 

permits and the results to which it leads are all such as appear valid. But 

although it seems very improbable that the axiom should turn out to be false, 

* Here the combination or disjunction is supposed to be given intensionully. If given exten- 

sionally (t.e. by enumeration), no assumption is required; but in this case the number of 

predicates concerned mast be finite. 
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it is by no means improbable that it should be found to be deductible from 

some other more fundamental and more evident axiom. It is possible that the 

use of the vicious-circle principle, as embodied in the above hierarchy of types, 

is more drastic than it need be, and that by a less drastic use the necessity 

for the axiom might be avoided. Such changes, however, would not render 

anything false which had been asserted on the basis of the principles explained 

above: they would merely provide easier proofs of the same theorems. There 

would seem, therefore, to Ik* but the slenderest ground for fearing that the 

use of (he axiom of redueibility may load us into error. 

V 111. The Contradictions. 

We are now in a position to show how the theory of types affects the 

.solution of the contradictions which have beset mathematical logic. For this 

purpose, we shall begin by an enumeration of some of the more important and 

illustrative of these contradictions, and shall then show how they all embody 

vicious-circle fallacies, and are therefore all avoided by the theory of types. It 

will he noticed that these paradoxes do not relate exclusively to the ideas of 

numher and (plantiiy. Accordingly no solution can be adequate which seeks 

to explain them merely as the result of some illegitimate use of these ideas. 

The solution must he sought in sonic such scrutiny of fundamental logical 

ideas as has been attempted in the foregoing pages. 

(I) The oldest contradiction of the kind in question is the Rpimenides. 

lCpiineiiides the ('retail said that all Cretans were liars, and all other state¬ 

ments made by ('retans were certainly lies. Was this a lie? The simplest form 

of this contradiction is afforded by the man who says "I am lying”; if he is 

lying, lie is speaking the truth, and vice versa. 

(*2> Let iv he the class of all those classes which are not members of 

themselves. Then, whatever class .r may be, "x is a ir" is equivalent to “.r is 

not an .r.” Hence, giving to x the value tv, "w is a w” is equivalent to 

" to is not a to." 

(.'*) Let T be the relation which subsists between two relations R and 6* 

whenever R does not have the relation R to S. Then, whatever relations 

R and S may be. " R has the relation T to S" is equivalent to "R does not 

have the relation R to S." Hence, giving the value T to both R and S, 

"T has the relation T to T" is equivalent to "T does not have the relation 
'it . 'it »* 
1 to /. 

(4) Burali-Forti's contradiction* may be stated as follows: It can be 

shown that every well-ordered scries has an ordinal number, that the series of 

ordinals up to and including any given ordinal exceeds the given ordinal by 

one, and (on certain very natural assumptions) that the scries of all ordinals 

(in order of magnitude) is well-ordered. It follows that the series of all 

• "Unu questiono sui mimcri trnnsfiniti,” JRendieonti del circolo maUmatico di Palermo, Vol. 

xi. (1897). See -258. 



ENUMERATION OF CONTRADICTION'S <)1 n] 

ordinals has an ordinal number, fl say. But in that case the series of all 

ordinals including H has the ordinal number 11 + 1. which must be greater 

than 12. Hence fl is not the ordinal number of all ordinals. 

(5) The number of syllables in the English names of finite integers 

tends to increase as the integers grow larger, and must gradually increase 

indefinitely, since only a finite number of names can be made with a given 

finite number ot syllables. Hence the names of some integers must consist of 

at least nineteen syllables, and among these there must be a least. Hence "the 

least integer not nameable in fewer than nineteen syllables" must denote a 

definite integer; in fact, it denotes 111,777. But “the least integer not 

nameable in fewer than nineteen syllables" is itself a name consisting of 

eighteen syllables; hence the least integer not nameable in fewer than nine¬ 

teen syllables can be named in eighteen syllables, which is a contradiction*. 

(6) Among transfinite ordinals some can be defined, while others can not; 

for the total number of possible definitions is N0f, while the number of trans¬ 

finite ordinals exceeds N0. Hence there must be indefinable ordinals, and 

among these there must be a least. But this is defined as “ the least indefinable 

ordinal," which is a contradiction*. 

(7) Richard’s paradox§ is akin to that of the least indefinable ordinal. It 

is as follows: Consider all decimals that can be defined by means of a finite 

number of words; let E be the class of such decimals. Then E has N0 terms; 

hence its members can be ordered as the 1st, 2nd, 3rd. Let N be a number 

defined as follows: If the fith figure in the nth decimal is p, let the nth 

figure in N be p + 1 (or 0, if p = 9). Then N is different from all the members 

of E, since, whatever finite value n may have, the nth figure in N is different 

from the nth figure in the nth of the decimals composing E, and therefore N 

is different from the nth decimal. Nevertheless we have defined N in a finite 

number of words, and therefore N ought to be a member of E. Thus Ar both 

is and is not a member of E. 

In all the above contradictions (which are merely selections from an 

indefinite number) there is a common characteristic, which we may describe 

as self-reference or reflexiveness. The remark of Epimenides must include 

itself in its own scope. If all classes, provided they are not members of them¬ 

selves, are members of w, this must also apply to w\ and similarly for the 

* This contradiction was suggested to us by Mr O. O. Berry of the Bodleian Library. 

t Ro *8 the number of finite integers. See «123. 

X Cf. Kdnig, "Ueber die Ornndlagen der Mengenlehre nnd dan Kontinuumproblem,” Math. 

Annalen, Vol. mi. (1905); A. C. Dixon, "On ‘well-ordered’ aggregates," Proc. London Math. 

Soc. Series 2, Vol. iv. Part I. (1906); and E. W. Hobson, "On the Arithmetic Continuum," ibid. 

The eolation offered in the last of these papers depends upon the variation of the " apparatus of 

definition," and is thus in outline in agreement with the solution adopted here. But it does not 

invalidate the statement in the text, if "definition” is given a constant meaning. 

§ Of. Poincare, "Les math£matiquea et la logique,” Revue de Mitaphyeique et de Morale, 

Mai 1906, especially sections vn. and ix.; also Peano, Reoista de Mathematica, Vol. vm. No. 6 

(1906), p. 149 fl. 
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analogous relational contradiction. In the cases of names and definitions, the 

paradoxes result from considering non-nameability and indefinability as ele¬ 

ments in names and definitions. In the case of Burali-Forti's paradox, the 

series whose ordinal number causes the difficulty is the series of all ordinal 

numbers. In each contradiction something is said about all cases of some kind, 

and from what is said a new cav seems to In- generated, which both is and is not 

of the same kind as the eases of which all were concerned in what was said. 

But this is the characteristic of illegitimate totalities, as we defined them in 

stating tin* vicious-circle principle. Hence all our contradictions are illustra¬ 

tions of vicioiis-cirelc fallacies. It only remains to show, therefore, that the 

illegitimate totalities involved are excluded bv the hierarchy of types which 

We have const meted. 

( I ) When a man says "I am lying,” we may interpret his statement as: 

"There is a proposition which I am affirming and which is false.” That is to 

say, he is asserting the truth of some value of the function "I assert p, and p 

is false." But we saw that tin- word "false" is ambiguous, and that, in order 

to make it unambiguous, we must specify the order of falsehood, or. what comes 

to the same thing, the order of the pro|>osition to which falsehood is ascribed. 

We saw also that, if p is a proposition of the nth order, a proposition in which 

p occurs as an apparent variable is not of the nth order, but of a higher order. 

Hence the kind of truth or falsehood which can belong to the statement "there 

is a projMjsition p which I am affirming and which Inis falsehood of the nth 

order ” is truth or falsehood of a higher order t han the nth. Hence the state¬ 

ment of Kpimcnides does not fall within its own scope, and therefore no 

contradiction emerges. 

If we regan I the statement" I am lying" as a compact way of simultaneously 

making all the following statements: "I am asserting a false proposition of the 

first order," " I am asserting a false proposition of the second order,” and soon, 

we find the following curious state of things: As no proposition of the first 

order is being asserted, the statement *'I am asserting a false proposition of 

the first order" is false. This statement is of the second order, hence the 

statement "I am making a false statement of the second order” is true. This 

is a statement of the third order, and is the only statement of the third order 

which is being made. Hence the statement "I am making a false statement 

of the third order” is false. Thus we see that the statement "I am making a 

false statement of order 2a + 1" is false, while the statement "I am making 

a false statement of order 2«" is true. But in this state of things there is no 

contradiction. 

(2) In order to solve the contradiction about the class of classes which are 

not members of themselves, we shall assume, what will be explained in the 

next Chapter, that a proposition about a class is always to be reduced to a 

statement about a function which defines the class, i.e. about a function which 
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is satisfied by the members of the class and by no other arguments. Tims a 

class is an object derived from a function and presupposing the function, just 

as, for example, (.r).<#>.r presupposes the function Hence a class cannot, 

by the vicious-circle principle, significantly be the argument to its defining 

function, that is to say, if we denote by the class defined by <f>z, the 

symbol “<f> [2 (<f>c)\ ” must be meaningless. Hence a class neither satisfies nor 

does not satisfy its defining function, and therefore (as will appear more fully 

in Chapter III) is neither a member of itself nor not a member of itself. This 

is an immediate consequence of the limitation to the possible arguments to a 

function which was explained at the beginning of the present Chapter. Thus 

it a is a class, the statement "a is not a member of a" is always meaningless, 

and there is therefore no sense in the phrase*'the class of those classes which 

are not members of themselves.” Hence the contradiction which results from 

supposing that there is such a class disappears. 

(3) Exactly similar remarks apply to “the relation which holds between 

R and & whenever R does not have the relation R to S." Suppose the 

relation R is defined b}' a function <f>{x, y), i.c. R holds between x and y 

whenever <f> (x, y) is true, but not otherwise. Then in order to interpret 

"R has the relation R to S,” we shall have to suppose that R and jS can 

significantly be the arguments to <p. But (assuming, as will appear in 

Chapter III, that R presupposes its defining function) this would require 

that (f> should be able to take as argument an object which is defined in 

terms of <f>, and this no function can do, as we saw at the beginning of this 

Chapter. Hence “R has the relation R to S” is meaningless, and the contra¬ 

diction ceases. 

(4) The solution of Burali-Forti’s contradiction requires some further 

developments for its solution. At this stage, it must suffice to observe that 

a series is a relation, and an ordinal number is a class of series. (These state¬ 

ments are justified in the body of the work.) Hence a series of ordinal numbers 

is a relation between classes of relations, and is of higher type than any of the 

senes which are members of the ordinal numbers in question. Burali-Forti's 

“ordinal number of all ordinals” must be the ordinal number of all ordinals of 

a given type, and must therefore be of higher type than any of these ordinals. 

Hence it is not one of these ordinals, and there is no contradiction in its being 

greater than any of them*. 

(5) The paradox about “the least integer not nameable in fewer than 

nineteen syllables” embodies, as is at once obvious, a vicious-circle fallacy. 

For tbe word “ nameable” refers to the totality of names, and yet is allowed 

to occur in what professes to be one among names. Hence there can be no 

such thing as a totality of names, in the sense in which the paradox speaks 

“ The eolation of Barali-Forti’s paradox by means of the theory of types is given in detail in 
•266. 
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of "names.' It is easy to see that, in virtue of the hierarchy of functions, 

the theory of types renders a totality of "names" impossible. We may, in 

fact, distinguish names of different orders as follows: (a) Elementary names 

will be such as are true (* proper names." i.e. conventional appellations not 

involving any description, (h) First-order names will be such as involve a 

description by means of a first-order function; that is to say, if <f>! ./* is a first- 

order function, "the term which satisfies <£!./•" will be a first-order name, 

though there will not always be an object named by this name, (c) Second- 

oider names will be such as involve a description by means of a second-order 

function; among such names will be those involving a reference to the totality 

of first-order names. And so we can proceed through a whole hierarchy. But 

at no stage can we give a meaning to the word "nameable” unless we specify 

the onler of names to be employed; and any name in which the phrase "name- 

able by name' •*! older w" occurs is necessarily of a higher order than the nth. 

Thus the paradox disappears. 

'file solutions of the paradox about the least indefinable ordinal and 

of Bichard's paradox are closely analogous to the above. The notion ol 

"definable." which occurs in both, is nearly the same as "nameable,” which 

occurs in our fifth paradox: "definable" is what "nameable" becomes 

when elementary names are excluded, i.e. "definable" means "nameable by 

a name which is not elementary." But here there is the same ambiguity 

as to type as there was before, and the same need for the addition of words 

which specify the type to which the definition is to belong. And however 

the type may be specified, “the least ordinal not definable by definitions of 

this type" is a definition of a higher type; and in Richard's paradox, when 

we confine ourselves,as we must, to decimals that have a definition of a given 

type, the number Ar, which causes the paradox, is found to have a definition 

which belongs to a higher type, and thus not to come within the scope of our 

previous definitions. 

An indefinite number of other contradictions, of similar nature to the 

above seven, can easily he manufactured. In all of them, the solution is 

of the same kind. In all of them, the appearance of contradiction is pro¬ 

duced by the presence of some word which has systematic ambiguity of 

type, such as truth, falsehood, function, property, class, relation, cardinal, 

anti nal. name, definition. Any such word, if its typical I ambiguity is over¬ 

looked. will apparently generate a totality containing members defined in 

terms of itself, and will thus give rise to vicious-circle fallacies. In most 

cases, the conclusions of arguments which involve vicious-circle fallacies 

will not be self-contradictory, but wherever we have an illegitimate totality, 

a little ingenuity will enable us to construct a vicious-circlc fallacy leading 

to a contradiction, which disappears as soon as the typically ambiguous words 

are rendered typically definite, i.e. are determined as belonging to this or that 

type. 
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Thus the appearance of contradiction is always due to the presence of words 

embodying a concealed typical ambiguity, and the solution of the apparent 

contradiction lies in bringing the concealed ambiguity to light. 

In spite of the contradictions which result from unnoticed typical 

ambiguity, it is not desirable to avoid wools and symbols which have 

typical ambiguity. Such words and symbols embrace practically all the 

ideas with which mathematics and mathematical logic are concerned: the 

systematic ambiguity is the result of a systematic analogy. That is to say. in 

almost all the reasonings which constitute mathematics and mathematical 

logic, we are using ideas which may receive any one of an infinite number of 

different typical determinations, any one of which leaves the reasoning valid. 

Thus by employing typically ambiguous words and symbols, we are able to make 

one chain of reasoning applicable to an)-one of an infinite number of different 

cases, which would not be possible if we were to forego the use of typically 

ambiguous words and symbols. 

Among propositions wholly expressed in terms of typically ambiguous 

notions practically the only ones which may differ, in respect of truth or false¬ 

hood, according to the typical determination which they receive, are existence- 

theorems. If we assume that the total number of individuals is n, then the 

total number of classes of individuals is 2", the total number of classes of classes 

ol individuals is 22", and so on. Here n maybe either finite or infinite,and in 

either case 2n > n. Thus cardinals greater than n but not greater than 2H exist 

as applied to classes of classes, but not as applied to classes of individuals, so 

that whatever maybe supposed to be the number of individuals, there will be 

existence-theorems which hold for higher types but not for lower types. Even 

here, however, so long as the number of individuals is not asserted, but is 

merely assumed hypothetically, wc may replace the type of individuals by any 

other type, provided we make a corresponding change in all the other types 

occurring in the same context. That is, we may give the name “relative in¬ 

dividuals” to the members of an arbitrarily chosen type t, and the name 

“relative classes of individuals” to classes of “relative individuals,” and so on. 

Thus so long as only hypothetical are concerned, in which existence-theorems 

for one type are shown to be implied by existence-theorems for another, only 

relative types are relevant even in existence-theorems. This applies also to cases 

where the hypothesis (and therefore the conclusion) is asserted, provided the 

assertion holds for any type, however chosen. For example, any type has at 

least one member; hence any type which consists of classes, of whatever order, 

has at least two members. But the further pursuit of these topics must be left 

to the body of the work. 

R&w i 6 



CHAPTER III 

INCOMPLETE SYMBOLS 

(1) Descriptions. By an “ incomplete " symbol we mean a symbol which 

is not supposed to have any meaning in isolation, but is only defined in 

d [° 
certain contexts. In ordinary mathematics, for example, . and I are in- 

complete symbols: something has to be supplied before we have anything 

significant. Such symbols have what may be called a "definition in use. 

Thus if wc put 

V,“j£ + 5S3 + ir« ,,f' a#4 dip rV 

we define the use of V*. but V* by itself remains without meaning. This dis¬ 

tinguishes such symbols from what (in a generalized sense) we may call proper 

names: "Socrates,” for example, stands for a certain man, and therefore has 

a meaning by itself, without the need of any context. If we supply a context, 

as in "Socrates is mortal," these words express a fact of which Socrates him¬ 

self is a constituent: there is a certain object, namely Socrates, which does 

have the property of mortality, and this object is a constituent of the complex 

fact which we assert when we say "Socrates is mortal." But in other cases, 

this simple analysis fails us. Suppose we say: "The round square does not 

exist." It seems plain that this is a true proposition, yet we cannot regard it 

as denying the existence of a certain object called " the round square." I'or 

if there were such an object, it would exist: wc cannot first assume that there 

is a certain object, and then proceed to deny that there is such an object. 

Whenever the grammatical subject of a proposition can be supposed not to 

exist without rendering the proposition meaningless, it is plain that the 

grammatical subject is not a proper name. i.e. not a name directly representing 

sonic object. Thus in all such cases, the proposition must be capable of being 

so analysed that what was the grammatical subject shall have disappeared. 

Thus when wc say " the round square does not exist," we may, as a first 

attempt at such analysis.substitute *' it is false that there is an object# which 

is both round and square.” Generally, when " the so-and-so " is said not to 

exist, we have a proposition of the form* 

•*~E !(!#)(<*>#),” 

i.e. ~{<gc) # = c), 

or some equivalent. Here the apparent grammatical subject (l#) (4>x) has 

completely disappeared; thus in E! (»x) (<£#),” (»#)(£#) is an incomplete 

symbol. 
• Cf. pp. so. 31. 
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By an extension of the above argument, it can easily be shown that 

(U*)(<^r) is always an incomplete symbol. Take, for example, the following 

proposition: “Scott is the author of Waverley." [Here "the author of 

Waver ley” is (ix) (.r wrote Waverley).] This proposition expresses an identity; 

thus if “ the author of Waverley ” could be taken as a proper name, and sup¬ 

posed to stand for some object c. the proposition would be "Scott is c." But 

if c is any one except Scott, this proposition is false; while if c is Scott, the 

proposition is “Scott is Scott,” which is trivial, and plainly different from 

“Scott is the author of Waverley.” Generalizing, we see that the proposition 

a = (ix)(<f>.c) 

is one which may be true or may be false, but is never merely trivial, like 

a = a; whereas, if (l.r) (<f>x) were a proper name, a = (Mr)(<£.< ) would necessarily 

be either false or the same as the trivial proposition a —a. We may express 

this by saying that a = (ur)(<£.r) is not a value of the propositional function 

a — y> from which it follows that (ix)(<f>x) is not a value of y. But since y 

may be auything, it follows that (ix)(<f>x) is nothing. Hence, since in use it 

has meaning, it must be an incomplete symbol. 

It might be suggested that “ Scott is the author of Waverley ” asserts that 

“Scott” and “the author of Waverley” are two names for the same object. 

But a little reflection will show that this would be a mistake. For if that 

were the meaning of “ Scott is the author of Waverley,” what would be required 

for its truth would be that Scott should have been called the author of 

Waverley: if he had been so called, the proposition would be true, even if 

some one else had written Waverley; while if no one called him so, the pro¬ 

position would be false, even if he had written Waverley. But in fact he was 

the author of Waverley at a time when no one called him so, and he would 

not have been the author if every one had called him so but some one else 

had written Waverley. Thus the proposition “Scott is the author of Waverley” 

is not a proposition about names, like “Napoleon is Bonaparte”; and this 

illustrates the sense in which “ the author of Waverley ” differs from a true 

proper name. 

Thus all phrases (other than propositions) containing the word the (in the 

singular) are incomplete symbols: they have a meaning in use, but not in 

isolation. For “the author of Waverley” cannot mean the same as “Scott,” 

or “ Scott is the author of Waverley ” would mean the same as “ Scott is 

Scott,” which it plainly does not; nor can “ the author of Waverley ” mean 

anything other than “ Scott,” or “Scott is the author of Waverley ” would be 

false. Hence “the author of Waverley” means nothing. 

It follows from the above that we must not attempt to define “ (ix) (<f>x),” 

but must define the uses of this symbol, i.e. the propositions in whose symbolic 

expression it occurs. Now in seeking to define the uses of this symbol, it is 

important to observe the import of propositions in which it occurs. Take as 
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an illustration: “The author of Waverley was a poet.” This implies (1) that 

Waverley was written, (2) that it was written by one man, and not in collabora¬ 

tion. (3) that the one man who wrote it was a poet. If any one of these fails, 

the proposition is false. Thus “ the author of ‘ Slawkenburgius on Noses’ was 

a poet’ is false, because no such book was ever written; "the author of'The 

Maid’s Tragedy* was a poet" is false, because this play was written by 

Beaumont and Fletcher jointly. These two possibilities of falsehood do not 

arise if we say “Scott was a poet.” Thus our interpretation of the uses ot 

(/./)(<£./•) must be such as to allow for them. Now taking <f>x to replace 

".»• wrote Waverley. it i> plain that any statement apparently about (i.r)(<f>.r) 

requires (I) (g.r). <«£.*•) and (2) <£.'• .«/>//. D/iJ#. .#• = »/; here (I) states that at 

least one object sati.-fies </>.»•, while (2» states that at most one object satisfies 

<f>.r. The two together are Ciplivalent to 

<3C) : <f>> . =,..> = c, 

which we defined as K !(!.»•)< 4>x). 

Thus “ K !(;./•)(</>./) mii't be part «>f what is affirmed by any proposition 

about (ix)(<fr.r). If our proposition is/ •(lx)($x)\, what is furtiier affirmed is 

Jct if 4>r • =* • * ™ c. Thus we have 

/1(m)(«/».»){. = :(yc):f .=,.j-c:./c Df. 

i.c. " the x satisfying </>* satisfies fc " is to mean: “There is an object c such 

that <f>r is true when, and only when, .*• is c, and fc is true,” or, more exactly: 

M There is a c such that *<£./•’ is always equivalent to ‘ x is c’ and fc." In this, 

“(tx) (<£.*•)" has completely disappeared; thus "(U ) (<£./ )’” is merely symbolic, 

and does not directly represent an object, as single small Latin letters are 

assumed to do*. 

The proposition “ a * (ix)(<ftx)" is easily shown to be equivalent to 

“<£./•. =x . x = a" For, by the definition, it is 

(3c) : 4>r. =x . x = c : a = c, 

i.e. “ there is a c for which *p.r. =x..r = c. and this c is a" which is equivalent 

to '* </>.*•. =x . .»• = a.“ Thus “ Scott is the author of Waverley " is equivalent to: 

‘"x wrote Waverley' is always equivalent to \r is Scott,'” 

i.e. " x wrote Waverley " is true when x is Scott and false when x is not Scott. 

Thus although )” has no meaning by itself, it may be substituted 

for if in any propositional function fy. and wc get a significant proposition, 

though not a value of fy. 

When f\{tx)(<f>x)\t as above defined, forms part of sonic other proposition, 

we shall say that (ix)(<£.r) has a secondary occurrence. When (ix)(<f>x) has 

a secondary occurrence, a proposition in which it occurs may be true even 

when (ix)(<f>x) does not exist. This applies, e.g. to the proposition: “There 

• We shall generally write "/(o') (*x)” rather than "/{(»x) in future. 
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is no such person os the King of France." We may interpret this as 

~ |E ! (</>.» )j, 

or as ~ {(go) . c = (l.r)(<f>.c)|, 

if “<f>.v” stands for “x is King of France." In either case, what is asserted is 

that a proposition p in which (i.v)(<p.r) occurs is false, and this proposition p 

is thus part of a larger proposition. The same applies to such a proposition 

as the following: “ If France were a monarchy, the King of France would be 

of the House of Orleans." 

It should be observed that such a proposition as 

~/ ((w) (<*>*) 1 
is ambiguous; it may deny /((i.r) (<£» )). in which case it will be true if 

(?.r)(<£.r) does not exist, or it may mean 

(gc): <f>.r. =, . x — c : ~fc, 

in which case it can only be true if (i.v)(<f>.v) exists. In ordinary language, 

the latter interpretation would usually be adopted. For example, the propo¬ 

sition " the Kiug of France is not bald " would usually be rejected as false, 

being held to mean “ the King of France exists and is not bald,” rather than 

"it is false that the King of France exists aud is bald.” When (lx) (<f>x) 

exists, the two interpretations of the ambiguity give equivalent results; but 

when (ix)(<f>x) does not. exist, one interpretation is true and one is false. It 

is necessary to be able to distinguish these in our notation; aud generally, if 

we have such propositions ns 

yfr(ix)(<f>x).0 .p, 

p.D.yJr (lx) (<t>x), 

yfr (7x) (<f>x) . D . x(lx) (<f>x), 

and so on, we must be able by our notation to distinguish whether the whole 

or only part of the proposition concerned is to be treated as the “/(?#) (<f>x)” 

of our definition. For this purpose, we will put “ [(*r)(«fcr)]” followed by dots 

at the beginning of the part (or whole) which is to be taken as f(ix)(<f>x), the 

dots being sufficiently numerous to bracket off the /(ix)(<f>x); i.e. f(ix) (<f>x) 

is to be everything following the dots until we reach an equal number of dots 

not signifying a logical product, or a greater number signifying a logical pro¬ 

duct, or the end of the sentence, or the end of a bracket enclosing ,l[(ix) (</>x)].” 

Thus 

[(7*) (<px)] . yjr (ix) (4>x) . D .p 

will mean (gc) : <f>x .=x.x = cz yfre : D . p, 

but [(,*) (0*)] : yfr (jx) (0*) .O.p 

will mean (gc) s <f>x . =x. x = c : yfre . D . p. 

It is important to distinguish these two, for if (ix)(<f>x) does not exist, the 

first is true and the second false. Again 

[(7X) (**)] . ~ ^ 0*) (<£*> 
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will mean (^r): </m c: ~ >/rc, 

while [( #./-><<£« )] . yfr (lx)(<f>x)\ 

will mean .<gc>: <£» . =T . .r = c :'/'t-j. 

Hero again, when d«»cs not exist, the first is false and the second true. 

In order to avoid thi** ambiguity in propositions containing (?.»•) (<£.»), we 

amend our definition, or rather our notation, putting 

(U'X</m )]./o* )<<*>./>. = :<gc): <t> x. =x..r = c:/c Df. 

By means of this definition, we avoid any doubt as to the portion of our 

whole asserted proposition which is to he treated as the "/(tx)(<f>x)” of the 

definition. This portion will be called the scope of (ix)(</>./•). Thus in 

[(ix)(4> > >]./(lx) (<f>.r) . D . p 

the scope of (lx)(<ft.r) isy't /./)(<£-); but in 

(t ix) t <t> > >J:/(ix) ( </>j ). D . p 

t he scope is j\ ix)(<frx). D . p: 

in ^ |[(l.*)(^r)]./(»j-)(^.r)| 

the scope is /‘(#.»•)(tfrx); but in 

[(lx) (<f> > )] . ^ / (j.r) ($.#•) 

the scope is lx) (<f>.r). 

It will he seen that when (i.«)(0.») has the whole of the proposition 

concerned for its scope, tin- proposition concerned cannot be true unless 

E!(ix) ((f>x): hut when (/.«)(<£.»> has only part of the proposition concerned 

for its scope, it may often be true even when (ix) (<f>x) does not exist. It. will 

be seen further that when K! (lx)(j>x), we may enlarge or diminish the scope 

of (ix) (<f>x) as much as we ph ase without altering the truth-value of any 

proposition in which it occurs. 

If a proposition contains two descriptions, say (ix)(<f>x) and (ix)(yfrx), 

we have to distinguish which of them has the larger scope, i.e. we have to 

distinguish 

( 1) [(hr) (<£•'• o : [( »•'•) (>/'•» )] •/1(hr) (<f>x), (ix) (>/r.r)|, 

(2) [(lr)(yfrx)] : [(lx)(4>x)) ./[(?*) (4>.r), (lx) (^)j. 

The first of these, eliminating (j.r )(<£.»•), becomes 

(3) (gc):^.r.sx.j = ct [(lx) (>fr.r)] . / |c, (ix) (yjrx)), 

which, eliminating (ix)(\Jrx). becomes 

W (ac) <t>.r. =x . .r = C <gc/) : yfrx. =x. x = c :/(c, d), 

and the same proposition results if, in (1), we eliminate first (hr)(>Jr.r) and 

then (lx)(<f>x). Similarly (2) becomes, when (ix)(<f>x) and (ix)(yfr.r) are 

eliminated, 

<5) (3rf).=x.r = d(gc) : <fsr. =x .x = c :/(c, d). 

(4) and (5) are equivalent, so that the truth-value of a proposition contain¬ 

ing two descriptions is independent of the question which has the larger scope. 
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It will be found that, in most cases in which descriptions occur, their 

scope is, in practice, the smallest proposition enclosed in dots or other brackets 

in which they are contained. Thus for example 

[t, r) f£••)] • ^ ('•*■) 14>• 3 • [( » (</>•'*>] • X 1 *•' > (<#»•«•> 
"ill occur much more frequently than 

[^m)(«Jm)] : \Jr (hr)(<f>.r). D . % (hr) (</>.<). 

For this reason it is convenient to decide that, when the scope of an occurrence 

of (hr) (*fhv) is the smallest proposition, enclosed in dots or other brackets, in 

which the occurrence in question is contained, the scope need not be indicated 

by “[(»*) (<f>.v)V' Thus e.g. 

p. D . a — ( hr) (</>.*■) 

will mean p . D . [(to*) (£.r)] . a = (».r) (<£•<•); 

and p . D . (ga) . a = (u ) (</m) 

will mean p . D . (ga) . [(?.r) (<^r)] . a = (?.r) (</>.«•); 

and p . D . a =J= (?.r) (<£.r) 

will mean p . D . [(7x) (£.r)] . ~ {a = (?.r) (<£.<•)); 

but p . D . ^ |a = (7a:) (<f>x)} 

will mean p . D . ~ ([(7a:) (<£•*)] • « — (»•**) (♦•«•)). 

This convention enables us, in the vast majority of cases that actually 

occur, to dispense with the explicit indication of the scope of a descriptive 

symbol; and it will be found that the convention agrees very closely with the 

tacit conventions of ordinary language on this subject. Thus for example, if 

“(7#)(<f>x)n is “tho so-and-so,” “a+ (?x)(<£*)” is to be read “a is not the 

so-and-so,” which would ordinarily be regarded as implying that “ the so-and- 

so” exists; but [a = (ix)(<f>x)}” is to be read “it is not true that a is the 

so-and-so,” which would generally be allowed to hold if “ the so-and-so ” does 

not exist. Ordinary language is, of course, rather loose and fluctuating in its 

implications on this matter; but subject to the requirement of definiteness, 

our convention seems to keep as near to ordinary language as possible. 

In the case when the smallest proposition enclosed in dots or other 

brackets contains two or more descriptions, we shall assume, in the absence 

of any indication to the contrary, that one which typographically occurs 

earlier has a larger scope than one which typographically occurs later. Ihus 

(ix)(<f>x)=‘(ix)(yfrx) 

will mean (gc) : <px . =x . x = c : [(7a:) (^a:)] . c = (lx) (yjrx), 

while (ix) (yjrx) = (lx) (<f>x) 

will mean (gd) : ypx. =x . x = d : [(7a:) (<£a:)] . (lx) (<f>x) = d. 

These two propositions are easily shown to be equivalent. 

(2) Classes. The symbols for classes, like those for descriptions, are, in 

our system, incomplete symbols: their uses are defined, but they themselves 

are not assumed to mean anything at all. That is to say, the uses of such 
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symbols are so defined that, when the de/inieims substituted for the definiendum, 

there no longer remains any symbol which could be supposed to represent 

a class. 'I Ims classes, so far as we introduce them, are merely symbolic or 

linguistic conveniences, not genuine objects as their members are if they are 

individuals. 

It is an old dispute whether formal logic should concern itself mainly with 

intensions or with extensions. In general, logicians whose training was mainly 

philosophical have decided for intensions, while those whose training was 

mainly mathematical have decided for extensions. The facts seem to be that, 

while mathematical logic requires extensions, philosophical logic refuses to 

supply anything except intensions. Our theory of classes recognizes and 

reconciles these two apparently opposite facts, by showing that an extension 

(which is tin* same as a class) is an incomplete symbol, whose use always 

acquires its meaning through a reference to intension. 

In the case ot desciiptions, it was possible to prove that they are in¬ 

complete symbols. In the case of classes, we do not know of any equally 

definite proof, though arguments of more or less cogency can be elicited from 

the ancient problem of the One and the Many*. It is not necessary for our 

purposes, however, to assert dogmatically that there are no such things as 

classes. It is only necessary for us to show that the incomplete symbols 

which we introduce as representatives of classes yield all the propositions for 

the sake ot which classes might be thought essential. When this has been 

shown, the mere principle of economy of primitive ideas loads to the non- 

nitinduction of classes except as incomplete symbols. 

lo explain the theory of classes, it is necessary first to explain the dis¬ 

tinction between estensional and intensional functions. This is effected by 

the following definitions: 

The truth-value of a proposition is truth if it is true, and falsehood if it is 

false. (This expression is due to Frege.) 

'I wo propositions are said to be equivalent when they have the same truth- 

value, i.e. when they are both true or both false. 

Two propositional functions arc said to be formally equivalent when they 

are equivalent with every possible argument, i.e. when any argument which 

satisfies the one satisfies the other, and vice versa. Thus “u* is a man" is 

formally equivalent to •*£ is a featherless biped”; **.£• is an even prime” is 

formally equivalent to “.r is identical with 2.” 

A function of a function is called ej:tensional when its truth-value with any 

argument is the same as with any formally equivalent argument. That is to 

Briefly, these arguments reduce to the following: If there is such an object as a class, it 

must be in some sense one object. Yet it is only of classes that many can bo predicated. Hence, 

if we admit classes as objects, we must suppose that the same object can be both one and many, 

which seems impossible. 
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say, f is an extonsional function of <f>; if. provided yfr: is formally oquiva- 

lent to <p2t is equivalent to f\\jrs). Here the apparent variables </> ami 

are necessarily of the type from which arguments can significantly he 

supplied to/' We find no need to use as apparent variables any functions 

of non-predicative types; accordingly in the sequel all extonsional functions 

considered are in fact functions of predicative functions*. 

A function of a function is called intensional when it is not extonsional. 

The nature and importance of the distinction between intensional and 

extensional functions will be made clearer by some illustrations. The pro¬ 

position “\r is a man ’ always implies ‘ .r is a mortal ’” is an extensional function 

of the function “a1 is a man,” because we may substitute, for “.»• is a man,” 

"x is a featherless biped,” or any other statement which applies to the same 

objects to which “ x is a man ” applies, and to no others. Hut the proposition 

“A believes that *x is a man’ always implies ‘a- is a mortal’” is an intensional 

function of “a? is a man,” because A may never have considered the question 

whether feathcrless bipeds are mortal, or may believe wrongly that there are 

featherless bipeds which are not mortal. Thus even if "x is a featherless 

biped” is formally equivalent to “a- is a man,” it by no means follows that a 

person who believes that all men are mortal must believe that all featherless 

bipeds are mortal, since he may have never thought about feathcrless bipeds, 

or have supposed that feathcrless bipeds were not always men. Again the 

proposition “ the number of arguments that satisfy the function <f>! $ is n ” is 

an extensional function of <f>! 2, because its truth or falsehood is unchanged if 

we substitute for </>!2 any other function which is true whenever <£!2 is true, 

and false whenever (f>! 2 is false. But the proposition “A asserts that the 

number of arguments satisfying <f>! 2 is n” is an intensional function of <£ ! 2, 

since, if A asserts this concerning <£!2, he certainly cannot assert it concerning 

all predicative functions that are equivalent to <f>! 2, because life is too short. 

Again, consider the proposition “two white men claim to have reached the 

North Polo.” This proposition states “ two arguments satisfy the function 

is a white man who claims to have reached the North Pole.’” The truth or 

falsehood of this proposition is unaffected if we substitute for "it? is a white 

man who claims to have reached the North Pole ” any other statement which 

holds of the same arguments, and of no others. Hence it is an extensional 

function. But the proposition “it is a strange coincidence that two white 

men should claim to have reached the North Pole,” which states “ it is a 

strange coincidence that two arguments should satisfy the function ‘a? is a 

white man who claims to have reached the North Pole,”’ is not equivalent to 

“it is a strange coincidence that two arguments should satisfy the function 

is Dr Cook or Commander Peary.’” Thus “ it is a strange coincidence that 

<t> should be satisfied by two arguments” is an intensional function of <f>l£. 

• Cf. p. 63. 
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The above instances illustrate the fact that the functions of functions with 

which mathematics is specially concerned are extensional, and that intensions! 

functions of functions only occur where non-mathematical ideas are introduced, 

such as what somebody believes or affirms, or the emotions aroused by some 

fact. Hence it is natural, in a mathematical logic, to lay special stress on 

e.iicnsionnl functions of functions. 

When two functions arc formally equivalent, we may say that they have 

the same e.rteiisinn. In this definition, we are in close agreement with usage. 

We do not assume that there is such a thing as an extension: we merely 

define the whole phrase “having the same extension." We may now say that 

an extensional function of a function is one whose truth or falsehood depends 

only upon the extension of its argument. In such a case, it is convenient to 

regard the statement concerned as being about the extension. Since exten- 

sional functions are many and important, it is natural to regard the extension 

as an object, called a class, which is supposed to be the subject of all the 

equivalent .statements about various formally equivalent functions. Thus 

*•'/• wo say " there were twelve Apostlo." it is natural to regard this state¬ 

ment as attributing the property of being twelve to a certain collection of 

men, namely those who were Apostles, rather than as attributing the property 

of being satisfied by twelve arguments to the function ".#* was an Apostle.” 

This view is encouraged by the feeling that there is something which is 

identical in the case of two functions which “have the same extension." And 

if we take such simple problems as “ how many combinations can be made of 

a things t" it seems at first sight necessary that each "combination " should 

be a single object which can be counted as one. This, however, is certainly 

not necessary technically, and we see no reason to suppose that it is true 

philosophically. The technical procedure by which the apparent difficulty is 

overcome is as follows. 

We have seen that an extensional function of a function may be regarded 

as a function of the class determined by the argument-function, but that an 

intensionnl function cannot be so regarded. In order to obviate the necessity 

of giving different treatment to intensionnl and extensional functions of 

functions, we construct an extensional function derived from any function of 

a predicative function yfr ! 2, and having the property of being equivalent to 

the function from which it is derived, provided this function is extensional, 

as well as the property of being significant (by the help of the systematic 

ambiguity of equivalence) with any argument <f>z whose arguments are of the 

same type as those of yfr ! 2. The derived function, written "f |2 *s de¬ 

fined as follows: Given a function f (yfr ! 2), our derived function is to be "there 

is a predicative function which is formally equivalent to <f>z and satisfies/.” 

If f>z is a predicative function, our derived function will be true whenever 

/(02) is true. If f (<pz) is an extensional function, and <f>z is a predicative 
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function, our derived function will not be true unless/’(<£-) is true; thus in 

this ease, our derived function is equivalent toj\<f>z). If r\<f>~) is not an ex- 

tensional function, and if <f>2 is a predicative function, our derived function 

may sometimes be true when the original function i* false. But in any case the 

derived function is always exteusional. 

In order that the derived function should be significant for any function 

<£-, of whatever order, provided it takes arguments of the right type, it is 

necessary and sufficient that/(yfr !2) should be significant, where y/r! 2 is any 

predicative function. The reason of this is that we only require, concerning 

an argument <£?, the hypothesis that it is formally equivalent to some predi¬ 

cative function \Jrl2, and formal equivalence has the same kind of systematic 

ambiguity as to type that belongs to truth and falsehood, and can therefore 

hold between functions of any two different orders, provided the functions 

take arguments of the same type. Thus by means of our derived function we 

have not merely provided extensional functions everywhere in place of in- 

tensional functions, but we have practically removed the necessity for con¬ 

sidering differences of type among functions whose arguments are of the same 

type. This effects the same kind of simplification in our hierarchy as would 

result from never considering auy but predicative functions. 

If f(\y! 2) can be built up by means of the primitive ideas of disjunction, 

negation, (x). <f>.r, and (ft*). <f>x, as is the case with all the functions of 

functions that explicitly occur in the present work, it will be found that, in 

virtue of the systematic ambiguity of the above primitive ideas, any function 

</>2 whose arguments are of the same type as those of yfr ! 2 can significantly 

be substituted for yfrl2 in f without any other symbolic change. Thus in 

such a case what is symbolically, though not really, the same function /can 

receive as arguments functions of various different types. If, with a given 

argument </>2, the function f(<f>2), so interpreted, is equivalent to /(>/r!2) 

whenever yfr ! 2 is formally equivalent to <f>z, then {2(<£*)) is equivalent to 

/(£$) provided there is any predicative function formally equivalent to </>2. 

At this point, we make use of the axiom of reducibility, according to which 

there always is a predicative function formally equivalent to </>2. 

As was explained above, it is convenient to regard an extensional function 

of a function as having for its argument not the function, but the class de¬ 

termined by the function. Now we have seen that our derived function is 

always extensional. Hence if our original function was f(yjr l 2), we write the 

derived function f {2 (<f>z)\, where “2 (<pz)” may be read “ the class of arguments 

which satisfy <£2,” or more simply "the class determined by <£2.” Thus 

“/{$($*)}*' will mean: “There is a predicative function -*fr ! 2 which is formally 

equivalent to <£2 and is such that is true." This is in reality a function 

of but we treat it symbolically as if it had an argument 2 (tf>z). By the 

help of the axiom of reducibility, we find that the usual properties of classes 
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result. For example, two formally equivalent functions determine the same 

class, and conver>ely, two functions which determine the same class are formally 

equivalent. Also to say that .#• is a member of 2 (4>z), i.e. of the class determined 

by <f>z, is true when <f>x is true, and false wheu <f>x is false. Thus all the 

mathematical purposes for which classes might seem to be required are fulfilled 

by the purely symbolic objects zi<f>z), provided we assume the axiom of 

reducibility. 

In virtue of the axiom of reilucibility, if d>2 is any function, there is 

a formally equivalent predicative function yjr 12; then the class 2(</>s) is 

identical with the class 2(^!r), so that every class can be defined by a 

predicative function. Hence the totality of the classes to which a given term 

can be significantly said to belong or not to belong is a legitimate totality, 

although the totality of /mictions which a given term can be significantly 

said to satisfy or not to satisfy is not a legitimate totality. The classes to 

which a given term a belongs or does not belong are the classes defined by 

u-fuiictiong; they are also the classes defined by predicative ci-functions. Let 

us call them a-classes. Then "u-classes ” form a legitimate totality, derived 

bom that of predicative a-functions. Hence many kinds of general state¬ 

ments become possible which would otherwise involve vicious-circle paradoxes. 

These general statements are none of them such as lead to contradictions, and 

many of them such as it is very hard to suppose illegitimate. The fact that 

they are rendered possible by the axiom of reducibility, and that they would 

otherwise be excluded by the vicious-circle principle, is to be regarded as an 

argument in favour of the axiom of reducibility. 

The above definition of “the class defined by the function <£2,” or rather, 

of any proposition in which this phrase occurs, is, in symbols, as follows: 

f\z (4>z)\ . = : (3yjr): *f>x. . yfr ! 2| Df. 

In order to recommend this definition, we shall enumerate five requisites 

which a definition of classes must satisfy, aud we shall then show that the 

above definition satisfies these five requisites. 

We require of classes, if they are to serve the purposes for which they are 

commonly employed, that they shall have certain properties, which may be 

enumerated as follows. (1) Every propositional function must determine a 

class, which may be regarded as the collection of all the arguments satisfying 

the function in question. This principle must hold when the function is 

satisfied by an infinite uumber of arguments as well as when it is satisfied by 

a finite number. It must hold also when no arguments satisfy the function; 

i.e. the “null-class” must be just as good a class as any other. (2) Two pro- 

positional functions which are formally- equivalent, i.e. such that any argument 

which satisfies either satisfies the other, must determine the same class; that 

is to say, a class must be something wholly determined by its membership, so 

that e.g. the class “ featherless bipeds ” is identical with the class “ men,” and 
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the class “ even primes ” is identical with the class “ numbers identical with 2." 

(3) Conversely, two propositional functions which determine the same class 

must be formally equivalent: in other words, when the class is given, the 

membership is determinate : two different sets of objects cannot vield the same 

class. (4) In the same sense in which there are classes (whatever this sense 

may be), or in some closely analogous sense, there must also be classes of 

classes. Thus for example “ the combinations of n things in at a time." where 

the n things form a given class, is a class of classes: each combination of 

m things is a class, and each such class is a member of the specified set of 

combinations, which set is therefore a class whose members are classes. Again, 

the class of unit classes, or of couples, is absolutely indispensable; the former 

is the number 1, the latter the number 2. Thus without classes of classes, 

arithmetic becomes impossible. (S) It must under all circumstances be 

meaningless to suppose a class identical with one of its own members. For if 

such a supposition had any meaning “a € a'" would be a significant propositional 

function*, and so would “a~ea." Hence, by (1) and (4), there would be a 

class of all classes satisfying the function "a a." If we call this class k, we 

shall have 

a t k . =* . a~ e a. 

Since, by our hypothesis, “/c e k ” is supposed significant, the above equivalence, 

which holds with all possible values of a, holds with the value k, i.e. 

But this is a contradictionf. Hence "at a” and "a^ea" must always be 

meaningless. In general, there is nothing surprising about this conclusion, 

but it has two consequences which deserve speciul notice. In the first place, 

a class consisting of only one member must not be identical with that one 

member, i.e. wc must not have i‘x = x. For we have x e i*x, and therefore, if 

x = l*x, we have ilxel‘xt which, we saw, must be meaningless. It follows that 

must be absolutely meaningless, not simply false. In the second 

place, it might appear as if the class of all classes were a class, i.e. as if 

(writing “Cls” for “class”) “Cls € Cls” were a true proposition. But this com¬ 

bination of symbols must be meaningless; unless, indeed, an ambiguity exists 

in the meaning of “Cls,” so that, in “Cls e Cls.” the first “Cls” can be supposed 

to have a different meaning from the second. 

As regards the above requisites, it is plain, to begin with, that, in accordance 

with our definition, every propositional function rf>z determines a class z (<f>z). 

Assuming the axiom of reducibility, there must always be true propositions 

about i.e. true propositions of the form f{2((f>z)J. For suppose <f>z is 

formally equivalent to and suppose yfrl 2 satisfies some function /. Then 

■ As explained in Chapter I (p. 25), “ita" means “x is a member of the class a," or, 

more shortly, "x is an a.” The definition of this expression in terms of our theory of classes 

will be given shortly. 

t This is the second of the contradictions discussed at the end of Chapter II. 
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2 (4>z) also satisfies/. Hence. given any function <£3, there are true propositions 

of the form/[3(<£j)j, i.e. true propositions in which “the class determined by 

<f>z” is grammatically the subject. This shows that our definition fulfils the 

first of our five requisites. 

The second and third requisites together demand that the classes z(<f>z) and 

z(\Jfz) should be identical when, and only when, their defining functions are 

formally equivalent, i.e. that we should have 

z(<t>z)= z (\jsz) . = : 4>r . =x . yfrx. 

Here the meaning «>f ' z i<pz) = z {y}r;y' is to be derived, by means of a two¬ 

fold application of the definition of/;3 (<£*)•, from the definition of 

‘X!3 = 0!3," 

which is *!3 = d!3. - :(/):/! *!2. D ./! $\z Df 

by the general definition of identity. 

In interpreting "3 (<£-) = 3 (yjfz)." we will adopt the convention which we 

adopted in regard to (;.» )(</>/ ) and (tx)(\Jrx). namely that the incomplete symbol 

which occurs first is to have the larger scope. Thus 3 (</>x) =• 3 (yfrz) becomes, 

by our definition, 

*(**>. 
which, by eliminating zi^z). becomes 

4>J'• sx« *!•»*:. (30): =*• Olxzx'- z = 0\z, 

which is equivalent to 

<3*. 0)z<f>x y\rx • - x • 0\ x z \ \ z ^ 0\ z, 

which, again, is e(|tiivalent to 

< a X >: <f>r • s x • X! x : s * • X 1 *’ 
which, in virtue of the axiom of reducibility, is equivalent to 

4> r.=x.y/r.r. 

Thus our definition of the use of z(<f>z) is such ns to satisfy the conditions (2) 

and (.‘I) which we laid down for classes, i.e. we have 

H 3 (<f>z) = z(\frz). = : <f>x. = x. yjrx. 

Before considering classes of classes, it will be well to define membership 

of a class, i.e. to define the symbol "xe 3 (<t>z)," which may be read "x is a 

member of the class determined by <f>3.” Since this is a function of the form 

y\z(<f>z)\, it must be derived, by means of our general definition of such func¬ 

tions, from the corresponding function/{>/r! 3). We therefore put 

= Df. 

This definition is only needed in order to give a meaning to “xe2the 

meaning it gives is, in virtue of the definition of/|3(<£x)}, 

(31r):4>y.s,.1r!yz>lrlx. 

It thus appears that "xez(<f>z)” implies <px, since it implies yfrlx, and yjrlx 

is equivalent to <f>x; also, iu virtue of the axiom of reducibility, <f>.v implies 

“a* e 3 {<t>z),” since there is a predicative function formally equivalent to <f>, 
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and x must satisfy yfr, since x (ex hi/pot/icsi) satisfies <f>. Thus in virtue of the 

axiom of reducibility we have 

: x es (<f>=) . = . <f>x, 

V.e. a* is a member of the class 3 (<f>=) when, and only when, x satisfies tin* 

function <f> which defines the class. 

We have next to consider how to interpret a class of classes. As we have 

defined f{z(<f>z)\, we shall naturally regard a class of classes as consisting of 

those values of 2 (<f>z) which satisfy f[z(<t>z)\. Let us write a for z (<f>:): then 

we may write a (fa) for the class of values of a which satisfy fa*. We shall 

apply the same definition, and put 

F (5 (fa)} . = : (3,7) :/0 . = „ . 0\ 0: F {^! 5) Df, 

where “/9” stands for any expression of the form z(\frl z). 

Let us take "76 a (fa)" as an instance of /*{a(_/a)|. Then 

h 7 c a (/a) . = : (3/7): f$. = * . gl 0 : 7 eg\ci. 

Just as we put x € yjr! 2 . = . yfr! x Df, 

so we put 7 e gl a . = . gl 7 Df. 

Thus we find 
h s. 7 « a (fa) . = : (3*7) : f/3 . s p . g! 0 : gl 7. 

If we now extend the axiom of reducibility so as to apply to functions of 

functions, i.e. if we assume 

we easily deduce 

I" : (30) :/(2(^! *)\ •=*-0! l2(^! *))> 
i.e. h(2L!7)if0'*Zfi'gl/3- 

Thus h : 7 e 3 (fa) . = .fy. 

Thus every function which can take classes as arguments, i.e. every function 

of functions, determines a class of classes, whose members are those classes 

which satisfy the determining function. Thus the theory of classes of classes 

offers no difficulty. 

We have next to consider our fifth requisite, namely that "2 (<f>z) e 2 (<f>z)” 

is to be meaningless. Applying our definition of f[2 (<f>z)\, we find that if this 

collection of symbols had a meaning, it would mean 

(3^) : 4>x . =, . yjri x : +1 2 e 2, 

i.e. in virtue of the definition 

x e yfrl 2 . = . yjrl x Df, 

it would mean (3^) : <t>x - = x • ^1 x • 'k 1 • £)• 
But here the symbol “^1 (yfrl 2)” occurs, which assigns a function as argument 

to itself. Such a symbol is always meaningless, for the reasons explained at 

the beginning of Chapter II (pp. 38—41). Hence “2 (<f>z) e 2 (<f>z)” is meaning¬ 

less, and our fifth and last requisite is fulfilled. 

• The use of a single letter, each as a or p, to represent a variable class, will be further 

explained shortly. 
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As in the case of so in that of f\z(<f>z))t there is an ambiguity 

as to the scope of 3(<£j) if it occurs in a proposition which itself is part of a 

larger proposition. But in the case of classes, since we always have the axiom 

of reducibility, namely .... , , 
' (^yfr) : <f>r . m, . yfrlx, 

which takes the place of K! (i.O(<£' ). it follows that the truth-value of any 

proposition in which «»ccurs is the same* whatever scope we may give to 

2 (</>j). provided the proposition is an extensional function of whatever functions 

it may contain. Hence we may .adopt the convention that the scope is to be 

always tin- smallest proposition enclosed in dots or brackets in which 2(<fjz) 

occurs. If at any time a larger scope is required, we may indicate it by "[2(<£j)] ’ 

followed by dots, in the same way as we did for [(i.r)(<£j )]. 

Similarly when two class symln.ls occur, e.'f. in a proposition of the form 

f 3 (<i>: >. 2 (>/'■.:>!. we need not remember rides lor the scopes of the two symbols, 

since all choices give equivalent results, as it. is easy to prove. For the pre¬ 

liminary propositions a rule is desirable, so we can decide that the class symbol 

which occurs first in the order of writing is to have the larger scope. 

The representation of a class by a single letter a can now be understood. 

For the denotation of a is ambiguous, in so far ns it is undecided ns to which 

of the symbols 2 (</>£), 2 (>^;). 3<x-). etc. it is to stand for, where <f>~, ^3, *3, 

etc. are the various determining functions of the class. According to the choice 

made, diHerent propositions result. Blit, all the resulting propositions are equi¬ 

valent by virtue of the easily proved proposition: 

"h : <f>.r 3 x yj/.v . D ./’{3 <<£->! = / j3 {yjrs)\." 

Hence unless we wish to discuss the determining function itself, so that the 

notion of a class is really not properly present, the ambiguity in t he denotation 

of a is entirely immaterial, though, ns we shall see immediately, we are led to 

limit ourselves to predicative determining functions. Thus where a is a 

variable class, is really “f\z (<£r)S," where 4> is a variable function, that is, it is 

3;.” 
where <f> is a variable function. But here a difficulty arises which is removed 

l»v a limitation to our practice and by the axiom of reducibility. For the deter¬ 

mining functions <f>z, yfrz, etc. will be of different types, though the axiom of 

reducibility secures that some are predicative functions. Then, in interpreting 

a as a variable in terms of the variation of any determining function, we shall 

be led into errors unless we confine ourselves to predicative determining func¬ 

tions. These errors especially arise in the transition to total variation (cf. 

pp. 15, 1(3). Accordingly 

fa= .i'&yy) . <l>\x=xy\r\x .f\yjr'.z\ Df. 

It is the peculiarity of a definition of the use of a single letter [viz. a] for a 

variable incomplete symbol that it, though in a sense a real variable, occurs 

only in the definiendum, while “«/»," though a real variable, occurs only in the 

dejiniens. 
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Thus "fa" stands for 

, , . “(30>-0!.*=*0'!;f./'|Vr! 31.M 
ftnd “(a) .fa" stands for 

“(0) 2 (a^) • x ./i^r! ?}.” 

Accordingly, in mathematical reasoning, we can dismiss the whole apparatus 

of functions and think only of classes as “quasi-things,” capable of immediate 

representation by a single name. The advantages are two-fold: (1) classes are 

determined by their membership, so that to one set of members there is one 

class, (2) the “type” of a class is entirely defined by the type of its members. 

Also a predicative function of a class can be defined thus 

f\ , (g^r) . <ftl X =, yfrl X . f\ {^r! z\ Df. 

Thus a predicative function of a class is always a predicative function of an)' 

predicative determining function of the class, though the converse does not hold. 

(3) Relations. With regard to relations, we have a theory strictly analogous 

to that which we have just explained as regards classes. Relations in extension, 

like classes, are incomplete symbols. We require a division of functions of two 

variables into predicative and non-predicative functions, again for reasons which 

have been explained in Chapter II. We use the notation u<f>\(.r, y)" for a 

predicative function of x and y. 

We use “0!(£, p)” for the function as opposed to its values; and we use 

,‘^9<t> (®»y)" for the relation (in extension) determined by <f>(x,y). Wo put 

/1*9 0 (*. y)) • = : (af) : * <*, y) . =*,„. *1 (x, y) : / {*! ($, 9 A *>f. 

Thus even when y|\/r! (£,p)) is not an extensional function of yfr, f (ap <f> (x, y)j 

ls an extensional function of <f>. Hence, just as in the case of classes, we deduce 

1-5p<^> (x, y) * Sp>/r (x,y) . = : (x, y) . =XiV . ^ (x, y), 

i.e. a relation is determined by its extension, and vice versa. 

On the analogy of the definition of “arc 2,” we put 

*(0*J(£»0)}y---0‘i(*,y) Df*- 

This definition, like that of "x! 2,” is not introduced for its own sake, 

but in order to give a meaning to 

x\&9<t>(x ,y)}y. 

This meaning, in virtue of our definitions, is 

(30) : <f> (x, y) . =*.v . i/r! (x, y) s * (0! (£, P)) y, 

%e- (30):0(*,y)-=*.v0K*»y):0!(a?.y)» 

and this, in virtue of the axiom of reducibility 

“(30*) : 0 (*. V) - v - 0* * (*. y) ” 
18 equivalent to <f> (x, y). 

Thus we have always 

h : {£p <f> (x, y)} y . = . <fi {x, y). 

• This definition raises oertain questions as to the two senses of a relation, which are dealt 
with in *21. 

a&W i 6 
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Whenever the determining function of a relation is not relevant, we may 

replace ay 0 (s, y) by a single capital letter. In virtue of the propositions given 

above, 
h R = S. s : xRy . = x „ . a.Sy, 

V z.ll = fit) <f> (a. y). = : sRy. = . 0 (a, y). 

and h . # = J.5 (sRy). 

Classes of relations, and relations of relations, can be dealt with as classes 

of classes were dealt with above. 

Just as a class must not Ik* capable of being or not bring a member of itself, 

so a relation must neither be nor not be referent or relatum with respect to 

itself. This turns out to be equivalent to the assertion that 0! (.)*, i)) cannot 

significantly be either of the arguments a or y in 0! (.c, y). This principle, again, 

results from the limitation to the possible arguments to a function explained 

at the beginning of Chapter II. 

We may sum up this whole discussion on incomplete symbols as follows. 

The use of the symbol "(ia)( 0r)” as if in "/(i.r)(0a)" it directly represented 

an argument to the function fz is rendered |>ossiblc by the theorems 

I- :. E! (ix) ( 0a) . D :( j )././ . D . /<is) (0/ >. 

H : (l.r)(0.r) = <ia)(0a). D ./(la) (0a) mf(Hc) (0a). 

h : 1C ! ( is) ( 0./ ) . D . (I.r) ( 0r) = (I.r) (0r), 

h ; (I.r) (<f>s) = (is) < 0a) . = . ( la) (0a) = (la)(0r). 

h : (la) (0a) = (i.r) (0a) . (la) (0r) = (la)(Xa) . D . (Is) (0a) - (l.r) (**)• 

The use of the symbol "s (0a)” (or of a single letter, such as o. to represent 

such a symbol) as if. in "/\s (<f>s)\," it directly represented an argument a to a 

function fa, is rendered possible by the theorems 

h:(a)./a.D./|*<0a)), 

h : .r (0-r) = a ( 0a) . D ./|.*(0a)) ■/l$(0a)|, 

I- ..i‘(0r)«5‘(0x), 

h : .*• (0a) = .S' (0a) . = . (0a) = a (0a), 

h :*(0O = ' (0*) - *(00 = .* (*r) .D ..7(0r) = ^(*a). 

Throughout these propositions the types must be supposed to be properly 

adjusted, where ambiguity is possible. 

The use of the symbol •*.#$ |0(a,y)} ” (or of a single letter, such as R, to 

represent such a symbol) as if, in “ f {^y <f> (x, y)\” it directly represented an 

argument R to a function fR, is rendered possible by the theorems 

\-:(R).fR.D.fW<t>(x,y)\, 

I- : st) 0 (a, y) = ^y 0 (a, y). D •f\$9 <t> (*, y)| =/l^9 0 (•**. !/))> 

h . sy 0 (a. y) = ay 0 (a, y), 

h : sy 0 (a, y> = sy 0 (a. y) . = . sy 0 (a, y) = a# 0 (a, y), 

h : ay 0 (a, y) = ay 0 (a, y). u'y 0 (a, y) = *5 X (*» S') - 

D.^0(a,y) = ^X(*,y). 
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Throughout these propositions the types must be supposed to be properly 

adjusted where ambiguity is possible. 

It follows from these three groups of theorems that these incomplete 

symbols are obedient to the same formal rules of identity as symbols which 

directly represent objects, so loug as we only consider the equivalence of the 

resulting variable (or constant) values of proposit ional functions and not their 

identity. This consideration of the identiti/ of propositions never enters into 

our formal reasoning. 

Similarly the limitations to the use of these symbols can be summed up 

as follows. In the case of (ix)(<f>x), the chief way in which its incompleteness 

is relevant is that we do not always have 

(.r) mfx . D ./(tx) (<f>.v), 

\-e. a function which is always true may nevertheless not lx* true of (u.) (<£.<). 

This is possible because f(ix)(<px) is not a value of/.**, so that even when all 

values of f$ are true,/(?x) (<£.r) may not be true. This happens when (i.r)(<£«) 

does not exist. Thus for example we have (a). x = x, but we do not have 

the round square =» the round square. 

The inference (x) .fx . D ./(?.«•) (<£*) 

is only valid when E ! (lt) As soon as we know E ! (?x) (</>#), the fact that 

Ox)(if>x) is an incomplete symbol becomes irrelevant so long as we confine 

ourselves to truth-functions* of whatever proposition is its scope. But even 

when E ! (?&•) the incompleteness of (?ar)(</>x) may be relevant when we 

pass outside truth-functions. For example, George IV wished to know whether 

Scott was the author of Waverley, i.e. he wished to know whether a proposition 

of the form “c = (?x) (<f>x)” was true. But there was no proposition of the form 

"c = y” concerning which he wished to know if it was true. 

In regard to classes, the relevance of their incompleteness is somewhat 

different. It may be illustrated by the fact that we may have 

without having yfr ! 2 = x • *■ 

For, by a direct application of the definitions, we find that 

= 2. = .<£*=**!*• 
Ihu9 we shall have 

h : <f>x =x^r lx. <f>x = X%1 ec. D . 2 (4>z) = ^'.*.2 (<t>z) = X • 

but we shall not necessarily have yjr ! 2 = % ! 2 under these circumstances, for 

two functions may well be formally equivalent without being identical; for 

example, 
x = Scott.=x.x = the author of Waverley, 

but the function “2 = the author of Waverley” has the property that George IV 

wished to know whether its value with the argument “Scott” was true, whereas 

* Cf. p. 8. 

6—2 
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the function “ 3 = Scott" has no such property, and therefore the two functions 

are not identical. Hence there is a propositional function, namely 

* = y ,x = z . D . y = *, 

which holds without any exception, and yet does not hold when for * we 

substitute a class, and for y and r we substitute functions. This is only 

possible because a class is an incomplete symbol, and therefore = 

is not a value of *' .r= y." 

It will be observed that " 6 ! 3 = ^ ! 2 ” is not an extensional function of 

\fs ! 3. Thus the scope of z(<f>z) is relevant in interpreting the product 

3 (<t>z)= yff Iz .z (<£*) = x • 

If we take the whole of the product as the scope of 3 (<£-), the product is 

ipiivnleiit to 
(%|0): </>.c =r0 !.r.^!3 — >/'!3.d!3=»x*“< 

and this does imply ^!3 = X!3. 

We may say generally that the fact that 3(<f>z) is an incomplete symbol 

is not relevant so long as wo confine ourselves to extensional functions of 

functions, but is apt to become relevant for other functions of functions. 



PART I 

MATHEMATICAL LOGIC 





SUMMARY OF FART I 

lx this Part, wo shall don I with such topics as belong traditionally t«» 

symbolic logic, or deserve to belong to it in virtue of their generality. We 

shall, that is to say, establish such properties of propositions, propositional 

functions,classes and relations as are likely to be roptired in any mathematical 

reasoning, and not merely in this or that branch of mathematics. 

The subjects treated in Part I may be viewed in two aspects: (1) as a 

deductive chain depending on the primitive propositions, (2) as a formal calculus. 

Taking the first view first: We begin, in *1, with certain axioms as to deduction 

of one proposition or asserted propositional function from another. From these 

primitive propositions, in Section A. we deduce various propositions which are 

all concerned with four ways of obtaining new propositions from given proposi¬ 

tions, namely negation, disjunction, joint assertion and implication, of which 

the last two can be defined in terms of the first two. Throughout this first 

section, although, as will be shown at the beginning of Section B, our proposi¬ 

tions, symbolically unchanged, will apply to any propositions as values of our 

variables, yet it will be supposed that our variable propositions are all what 

we shall call elementary propositions, i.e. such as contain no reference, explicit 

or implicit, to any totality. This restriction is imposed on account of the 

distinction between different types of propositions, explained in Chapter II of 

the Introduction. Its importance and purpose,however,are purely philosophical, 

and so long as only mathematical purposes are considered, it is unnecessary to . 

remember this preliminary restriction to elementary propositions, which is 

symbolically removed at the beginning of the next section. 

Section B deals, to begin with, with the relations of propositions containing 

apparent variables (i.e. involving the notions of “all” or "some”) to each other 

and to propositions not containing apparent variables. We show that, where 

propositions containing apparent variables are concerned, we can define 

negation, disjunction, joint assertion and implication in such away that their 

properties shall be exactly analogous to the properties of the corresponding 

ideas as applied to elementary propositions. We show also that formal im¬ 

plication, i.e. “(x) . <f>x D yfrx” considered as a relation of <f>x to \fr$, has many 

properties analogous to those of material implication, i.e. "p D q" considered as 

a relation of p and q. We then consider predicative functions and the axiom 

of reducibility, which are vital in the employment of functions as apparent 

variables. An example of such employment is afforded by identity, which 

is the next topic considered in Section B. Finally, this section deals with 

descriptions, i.e. phrases of the form “the so-and-so” (in the singular). It is 

shown that the appearance of a grammatical subject “the so-and-so” is deceptive. 
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and that such propositions, fully stated, contain no such subject, but contain 

instead an apparent variable. 

Section C deals with classes, and with relations in so far as they are analogous 

to classes. Classes and relations, like descriptions, are shown to be “incomplete 

symbols" (cf. Introduction, Chapter III), and it is shown that a proposition 

which is grammatically about a class is to be regarded as really concerned with 

a propositional function and an apparent variable whose values are predicative 

propositional functions (with a similar result for relations). The remainder of 

.Section C deals with the calculus of classes, and with the calculus of relations 

in so far as it is analogous to that of classes. 

Section l>d« als with those properties of relations which have no analogues 

for classes. In this section, n number of ideas and notations are introduced 

which are constantly needed throughout the rest of the work. Most of the 

properties of relations which have analogues in the theory of classes are compara¬ 

tively unimportant, while those that have no such analogues arc of the very 

greatest utility. It i* partly for this reason that emphasis on the calculus- 

aspect of symbolic logic has proved a hindrance, hitherto, to the proper develop¬ 

ment of the theory of relations. 

Section 10. finally, extends the notions of the addition and midtiplication of 

classes or relations to cases where the summands or factors are not individually 

given, but are given as the members of some class. The advantage obtained 

by this extension is that it enables us to deal with an infinite number of 

summands or factors. 

Considered as a formal calculus, mathematical logic has throe analogous 

•branches, namely (1) the calculus of propositions, (2) the calculus of classes, 

(3) the calculus of relations. Of these, (1) is dealt with in Section A, while 

(2) and (3), in so far ns they are analogous, arc dealt with in Section C. We 

have, for each of the three, the four analogous ideas of negation, addition, 

multiplication, and implication or inclusion. Of these, negation is analogous 

to the negative in ordinary algebra, and implication or inclusion is analogous 

to the relation “ less than or equal to" in ordinary algebra. But the analogy 

must not be pressed, as it has important limitations. The sum of two pro¬ 

positions is their disjunction, the sum of two classes is the class of terms 

belonging to one or other, the sum of two relations is the relation consisting 

in the fact that one or other of the two relations holds. The sum of a class 

of classes is the class of all terms belonging to some one or other of tho 

classes, and the sum of a class of relations is the relation consisting in the 

fact that some one relation of the class holds. The product of two pro¬ 

positions is their joint assertion, the product of two classes is their common 

part, the product of two relations is the relation consisting in the fact that 

both the relations hold. The product of a class of classes is the part common 

to all of them, and the product of a class of relations is the relation consisting 



1] TilK LOCIOAI. C.XUTLrs 8!» 

in the fact that all relations of the class in i|iicstion hold. The inclusion «»f 

one class in another consists in the fact that all members of the «»ne arc 

members of the other, while the inclusion of one relation in another consists 

in the fact that every pair of terms which has the one relation also has the 

other relation. It is then shown that the properties of negation, addition, 

multiplication and inclusion are exactly analogous for classes and relations, 

and are, with certain exceptions, analogous to the properties of negation, ad¬ 

dition. multiplication and implication for propositions. (The exceptions arise 

chiefly from the fact that “ p implies ij " is itself a proposition, ami can there¬ 

fore imply and be implied, while “a is contained in where a and f3 are 

classes, is not a class, and can therefore neither contain nor be contained in 

another class 7.) But classes have certain properties not possessed by pro¬ 

positions: these arise from the fact that classes have not a two-told division 

corresponding to the division of propositions into true and false, but a three¬ 

fold division, namely into (1) the universal class, which contains the whole of 

a certain type, (2) the null-class, which has no members, (3) all other classes, 

which neither contain nothing nor contain everything of the appropriate type. 

The resulting properties of classes, which are not analogous to properties of 

propositions, are dealt with in *24. And just as classes have properties not 

analogous to any properties of propositions, so relations have properties not 

analogous to any properties of classes, though all the properties of classes have 

analogues among relations. The special properties of relations are much more 

numerous and important than the properties belonging to classes but not to 

propositions. These special properties of relations therefore occupy a whole 

section, namely Section D. 



SECTION A 

THE THEORY OF DEDUCTION 

The purpose of the present section is to set forth the first stage of the 

deduction of pure mathematics from its logical foundations. This first stage 

is necessarily concerned with deduction itself, i.e. with the principles by which 

conclusions are inferred from premisses. If it is our purpose to make all our 

assumptions explicit, and to effect the deduction of all our other propositions 

from these assumptions, it is obvious that the first assumptions we need are 

those* that are required to make deduction possible. Symbolic logic is often 

regarded as consisting of two coordinate parts, the theory of classes and the 

theory of propositions. But from our jn>int of view these two parts are not 

coordinate; for in the theory of classes we deduce one proposition from another 

by means of principles belonging to the theory of propositions, whereas in the 

theory of propositions we nowhere require the theory of classes. Hence, in a 

deductive system, the theory of propositions necessarily precedes the theory 

of classes. 

But the subject to be treated in what follows is not quite properly described 

as tlie theory of propositions. It is in fact. the theory of how one proposition 

can be* inferred from another. Now in order that one proposition may be 

inferred from another, it is necessary that the two should have that relation 

which makes the one a consequence of the other. When a proposition q is a 

consequence of a proposition p. we say that p implies q. Thus deduction 

depends upon the relation of implication, and every deductive system must 

contain among its premisses as many of the properties of implication as arc 

necessary to legitimate the ordinary procedure of deduction. In the present 

section, certain propositions will be stated as premisses, and it will be shown 

that they are sufficient for idl common forms of inference. It will not be shown 

that they are all necessary, and it is possible that the number of them might 

be diminished. All that is affirmed concerning the premisses is (1) that they 

are true, (2) that they are sufficient for the theory of deduction, (3) that we 

do not know how to diminish their number. But with regard to (2), there 

must always be some element of doubt, since it is hard to be sure that one 

never uses some principle unconsciously. The habit of being rigidly guided 

by formal symbolic rules is a safeguard against unconscious assumptions; but 

even this safeguard is not always adequate. 



*1. PRIMITIVE IDEAS AND PROPOSITIONS 

Since all definitions of* terms are effected by means of of her terms, every 

system of definitions which is not circular must start from a certain apparatus 

of undefined terms. It is to some extent optional what, ideas we take as 

undefined in mathematics; the motives guiding our choice will be (1) t«* 

make the number of undefined ideas as small as possible. (2) as between two 

systems in which the number is equal, to choose the one which seems the 

simpler and easier. We know no way of proving that such and such a system 

of undefined ideas contains as few as will give such and such results*. Hence 

we can only say that such and such ideas arc undefined in such and such 

a system, not that the)’ are indefinable. Following Peano, we shall call the 

undefined ideas and the undemonstrated propositions primitive ideas and 

primitive propositions respectively. The primitive ideas are explained by means 

of descriptions intended to point out to the reader what is meant; but the 

explanations do not constitute definitions, because they really involve the ideas 

they explain. 

In the present number, we shall first enumerate the primitive ideas 

required in this section; then we shall define implication ; and then we 

shall enunciate the primitive propositions required in this section. Every 

definition or proposition in the work has a number, for purposes of reference. 

Following Peano, we use numbers having a decimal as well as an integral 

part, in order to be able to insert new propositions between any two. A change 

in the integral part of the number will be used to correspond to a new 

chapter. Definitions will generally have numbers whose decimal part is less 

than T, and will be usually put at the beginning of chapters. In references, 

the integral parts of the numbers of propositions will be distinguished by 

being preceded by a star; thus ••*101 ” will mean the definition or proposition 

so numbered, and *•*1” will mean the chapter in which propositions have 

numbers whose integral part is 1, t.e. the present chapter. Chapters will 

generally be called “ numbers." 

Primitive Ideas. 

(1) Elementary propositions. By an “elementary” proposition we mean 

one which does not involve any variables, or, in other language, one which 

does not involve such words as " all," “ some,” " the " or equivalents for such 

words. A proposition such as “ this is red," where “ this” is something given 

in sensation, will be elementary. Any combination of given elementary 

propositions by means of negation, disjunction or conjunction (see below) will 

• The recognized methods of proving independence are not applicable, without reserve, to 

fundamentals. Cf. Principle of Mathematic., § 17. What is there said concermng prim.l.vo 

propositions applies with even greater force to primitive ideas. 
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be elementary. In the primitive propositions of the present number, and 

therefore in the deductions from these primitive propositions in *2—*5, the 

letters p, 7. r, s will be used to denote elementary propositions. 

(2) Elementary propositional functions. By an " elementary propositional 

function" we shall mean an expression containing an undetermined consti¬ 

tuent, i.e. a variable, or several such constituents, and such that, when the 

undetermined constituent or constituents are determined, i.e. when values are 

assigned to the variable or variables, the resulting value of the expression 

in tpicstion is an elementary proposition. Thus if p is an undetermined 

elementary proposition, “ not-p is an elementary propositional function. 

We shall show in *9 how to extend the results of this and the following 

numbers (★!—*.>) to propositions which are not elementary. 

(3) Assertion. Any proposition may la- either asserted or merely con¬ 

sidered. If I say "Caesar died,” I assert the proposition "Caesar died,” 

if I say "'Caesar died ’ is a proposition," I make a different assertion, and 

" Caesar died ’’ is no longer asserted, but merely considered. Similarly in a 

hypothetical proposition, e.y. " if « = b, then b = a," we have two unassorted 

propositions, namely "a = 6 * and "6— a," while what is asserted is that the 

first of these implies the second. In language, we indicate when a proposition 

is merely considered by " if so-and-so" or " that so-and-so" or merely by 

inverted commas. In symbols, if p is a proposition, p by itself will stand 

for the unassorted proposition, while the asserted proposition will be de¬ 

signated by 

"I-.;,." 

The sign "h" is called the assertion-sign*; it may be read "it is true that” 

(although philosophically this is not exactly what it means). The dots after 

the assertion-sign indicate its range; that is to say, everything following is 

asserted until we reach either an equal number of dots preceding a sign 

of implication or the end of the sentence. Thus " b : p . D . 7" means " it is 

true that p implies 7," whereas " b . p . D h . 7 ” means " p is true ; therefore 

7 is true+." The first of these does not necessarily involve the truth either 

of ]> or of 7, while the second involves the truth of both. 

(4) Assertion of a propositional function. Besides the assertion of 

definite propositions, we need what we shall call "assertion of a propositional 

function.” The general notion of asserting any propositional function is 

not used until *9, but we use at once the notion of asserting various special 

elementary propositional functions. Let ^rbea propositional function whose 

argument is or; then we may assert <f>x without assigning a value to x. 

This is done, for example, when the law of identity is asserted in the form 

"A is A.” Here A is left undetermined, because, however A may be deter- 

• We have adopted both the idea and the symbol of assertion from Frege, 

t Cf. Principle* of Mathematics, § 38. 
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mined, the result will be true. Thus when we assert tj>.r, leaving.* und'-lt-rmiiu-d. 

wo are asserting an ambiguous value of our function. 'I'his is only legitimate 

it, however the ambiguity may be determined, the result, will be true. Thus 

take, a\s an illustration, the primitive proposition *1*2 below, namelv 

•• h : p v p . D . /»," 

%.e. p or p' implies p." Here p may be any elementary proposition: l»v 

leaving p undetermined, we obtain an assertion which can be applied to any 

particular elementary proposition. Such assertions are like the particular 

enunciations in Euclid: when it is said “let A HO be an isosceles triangle; 

then the angles at the base will be equal," what is said applies to any isosceles 

triangle; it is stated concerning one triangle, but not concerning a definite 

one. All the assert ions in the present, work, with a very few except ions, assert 

propositional functions, not definite propositions. 

As a matter of fact, no constant elementary proposition will occur in tin- 

present work, or can occur in any work which employs only logical ideas. 

The ideas and propositions of logic are all general: an assertion (for example) 

which is true of Socrates but not of Plato, will not belong to logic*, and if an 

assertion which is true of both is to occur in logic, it must not be made 

concerning either, but concerning a variable .r. In order to obtain, in logic, 

a definite proposition instead of a propositional function, it is necessary to 

take some propositional function and assert that it is true always or some¬ 

times, i.e. with all possible values of the variable or with some possible value. 

Thus, giving the name “individual” to whatever there is that is neither 

a proposition nor a function, the proposition “every individual is identical 

with itself” or the proposition “there are individuals" will be a proposition 

belonging to logic. But these propositions arc not elementary. 

(5) Negation. If p is any proposition, the proposition “not -p,” or “p is 

false," will be represented by "~p.” For the present,p must be an elementary 

proposition. 

(6) Disjunction. If p and q are any propositions, the proposition “p or q," 

i.e. “ either p is true or q is true,” where the alternatives are to be not 

mutually exclusive, will be represented by 

“p v 9-’ 

This is called the disjunction or the logical sum of p and q. Thus “ q ” 

will mean “p is false or q is true”; "~(pvg) " will mean “it is false that 

either p or q is true,” which is equivalent to “p and q are both false”; 

“»>-.(p v iv q)” will mean “it is false that either p is false or q is false,” which 

is equivalent to “p and q are both true”; and so on. For the present, p and 

q must be elementary propositions. 

• When wo Bay that a proposition “belongs to logic," we mean that it can be expressed in 

terms of the primitive ideas of logic. We do not mean that logic appliet to it, for that would of 

course be true of any proposition. 
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The above are all the primitive ideas required in the theory of deduction. 

Other primitive ideas will be introduced in Section B. 

Definition of Implication. When a proposition 7 follows from a proposition 

/>. so that if p is true. 7 must also lx* true, we say that p implies 7. The idea 

of implication, in the form in which we require it. can be defined. The mean¬ 

ing to be given to implication in what follows may at first sight appear some¬ 

what artificial; but although there are other legitimate meanings, the one here 

adopted is very much more convenient for our purposes than any of its rivals. 

The essential pnqierty that we require of implication is this: “What is 

implied by a true pro|Hisitioii i> true." It is in virtue of this property that 

implication yields proof**. But this property by no means determines whether 

anything, and if so what, is implied by a false pro|iosition. What it does 

determine is that, if p implies 7. then it cannot be the case that p is true and 

The most 7 is false, i.e. it must be the case that either /> i> false or 7 is true, 

convenient interpretation of implication is to say. conversely, that if either /> 

is false or 7 is true, then " p implies 7" is to be true. Hence " p implies 7 

is to be defined to mean : '* Either p is false or 7 is true.” Hence we put: 

*101. p D 7 . = . ^ p v 7 l )f. 

Here the letters" Ilf" stand for " definition." They and the sign of equality 

together are to be regarded as forming one symbol, standing for " is defined 

to'mean*." Whatever comes to the left of the sign of equality is defined to 

mean the same as what comes to the right of it. Definition is not among the 

primitive ideas, because definitions are concerned solely with the symbolism, 

not with what is symbolised; they are introduced for practical convenience, 

and arc theoretically unnecessary. 

In virtue of the above definition, when " p D 7" holds, then either p is false 

or 7 is true; hence if /> is true, 7 must be true. Thus the above definition 

preserves the essential characteristic of implication ; it gives, in fact, the most 

general meaning compatible with the preservation of this characteristic. 

Primitive Propositions. 

*1T. Anything implied by a true elementary proposition is true. Ppt- 

The above principle will be extended in *9 to propositions which are not 

elementary. It is not the same ns “ if p is true, then if p implies 7, 7 is true. 

This is a true proposition, but it holds equally when p is not true and when p 

does not imply 7. It does not, like the principle we are concerned with, enable 

us to assert 7 simply, without any hypothesis. We cannot express the principle 

symbolically, partly because any symbolism in which p is variable only gives 

the hypothesis that p is true, not the fact that it is true*. 

• The sign of equality not followed by the letters "Df" will have a different meaning, to be 

defined later. 

t The letters •• Pp” stand for "primitive proposition," ns with Peano. 

* For further remarks on this principle, cf. Principles of Mathematict, § 38. 
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The above principle is used whenever we have («» deduce a proposition 

from a proposition. But the immense majority of the assertions in iIn- 

present work are assertions of propositional functions. /.<*. they contain an 

undetermined variable. Since the assertion of a propositional function is a 

different primitive idea from the assertion of a proposition, we ivqiiiiv a 

primitive proposition different from *11, though allied to it. to enable us 

deduce the assertion of a propositional function "\Jr.r" from tin* assertions ..f 

the two propositional functions **</>.#•" and " </>.»D \fr.r." This primitive pro¬ 

position is as follows: 

*1T1. When <f>.v can be asserted, where .r is a real variable, and <£.0 yf/.r can 

be asserted, where a- is a real variable, then yfr.r can be asserted, where .*• i* a 

real variable. Pp. 

This principle is also to be assumed for functions of several variables. 

Part of the importance of the above primitive proposition is due to tin- 

fact that it expresses in the symbolism a result following from the theory of 

types, which requires symbolic recognition. Suppose we have t he two assertions 

of propositional functions ,<f>x ” and then the "a” in </>./• is 

not absolutely anything, but anything for which as argument the function * </>./■“ 

is significant; similarly in “ <f>x D '/rar'* the x is anything for which “ <f>.r D xj/.r " 

is significant. Apart from some axiom, we do not know that the a s for which 

“ <f>xD yfrx” is significant are the same as those for which “ tf>.v " is significant. 

The primitive proposition *111, by securing that, as the result of the assertions 

of the propositional functions "<£a ” and “ <px D yjrx," the propositional function 

uyfrx” can also be asserted, secures partial symbolic recognition, in the form most 

useful in actual deductions, of an important principle which follows from tin* 

theory of types, namely that, if there is any one argument a for which both 

“ <f>ci ” and “ yfra ” arc significant, then the range of arguments for which " 

is significant is the same as the range of arguments for which “ yfrx ” is sig¬ 

nificant. It is obvious that, if the propositional function “ <f>x D yfrx ” can be 

asserted, there must be arguments a for which " </>n D " is significant, and 

for which, therefore, and “yfra” must be significant. Hence, by our 

principle, the values of x for which “ <px ” is significant are the same as those 

for which “y^x” is significant, i.e. the type of possible arguments for <£.? (cf. 

p. 15) is the same as that of possible arguments for yfrx. The primitive pro¬ 

position *1-11, since it states a practically important consequence of this fact, 

is called the “axiom of identification of type.” 

Another consequence of the principle that, if there is an argument a for 

which both <f>a and yfra are significant, then <f>x is significant whenever yfrx is 

significant, and vice versa, will be given in the “ axiom of identification of real 

variables,” introduced in *1-72. These two propositions, *IT1 and *172, give 

what is symbolically essential to the conduct of demonstrations in accordance 

with the theory of types. 
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The above proposition *111 is used in every inference from one asserted 

propositional function to another. We will illustrate the use of this proposition 

by setting forth at length the way in which it is tirst used, in the proof ol 

*2 06. That proposition is 

“ h /O 7 . D : 7 D r . Z> . yO r." 

We have already proved, in *2 ()">, the proposition 

h 7 D »•. D : /> D 7. D . /O r. 

It is obvious that *2 06 results from *2 0."> by means of *2 04, which is 

I-p. D . 7 D #•: D : 7. D • /O #•. 

For if. in this proposition, we replace /> by 7 D r, 7 by /O7, and /• by pO r, 

we obtain, as an instance of *204. tin- proposition 

h::r/3r.3:/)37.3./0>:.3:./0</.D:«/3i-.3./0i' (I). 

and here tie* hy|M»thesis i> a>serted by *2 0o. TIiun «»ur primitive proposition 

*111 enables us to assert the conclusion. 

*12. H : p v p. D . p Pp. 

This proposition states: H If either p is true or p is true, then p is true.” 

It is called the “principle of tautology,” and will be «pioted by the abbreviated 

title of'* Taut.” It is convenient, for purposes of reference, to give names to 

a few of the more important pro|»ositions; in general, propositions will be 

referred to by their numbers. 

*13. h : 7 . D . /> v 7 Pp. 

This principle stales: “If 7 is true, then 'p or 7’ is true." Thus e.g. it 7 

"to-day is Wednesday” and p is “ to-day is Tuesday," the principle states: 

" If to-day is Wednesday, then to-day is either Tuesday or Wednesday.’ It 

is called the " principle of addition," because it states that if a proposition is 

true, any alternative may be added without making it false. The principle 

will be referred to as "Add. 

*14. h : p v 7 . D . 7 v p Pp. 

This principle states that “p or 7" implies “7 or p." It states the 

permutativc law for logical addition of propositions, and will be called the 

“ principle of permutation.” It will be referred to as " Perm.” 

*16. h :v(7 v r). D . 7 v (p v r) Pp. 

This principle states: " If either p is true, or 'q or r’ is true, then either 

7 is true, or ‘ p or r* is true.” It is a form of the associative law for logical 

addition, and will be called the "associative principle." It will be referred to 

as "Assoc." The proposition 

P v (7 v /•) . D . (p v 7) v r, 

which would be the natural form for the associative law, has less deductive 

power, and is therefore not taken as a primitive proposition. 
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*16. h:.(/D/'.D:^V(/.D./)Vr Pp. 

This principle states: '* If q implies r. then ' p or •/' implies • /» «»r hi 

other words, in an implication, an alternative may be added to both premiss 

and conclusion without impairing the truth of the implication. The principle 

will be called the “principle of summation," and will be referred t«> as "Sum." 

*1*7. If p is an elementary proposition, ~p is an elementary proposition. Pp. 

*171. If p and q are elementary propositions, p v »y is an elementary pro¬ 

position. Pp. 

*1'72. If <f>p and y\rp arc elementary proj>ositional functions which take 

elementary propositions as arguments, <f>p v yfrp is an elementary propositional 

function. Pp. 

This axiom is to apply also to functions of two or more variables. It is 

called the “axiom of identification of real variables.” It will be observed that 

if <f> and yfr are functions which take arguments of different types, there is no 

such function as because <f> and yfr cannot significantly have the 

same argument. A more general form of the above axiom will be given in *9. 

The use of the above axioms *1 *7*71’72 will generally be tacit. It is only 

through them and the axioms of *9 that the theory of types explained in the 

Introduction becomes relevant, and any view of logic which justifies these 

axioms justifies such subsequent reasoning as employs the theory of types. 

This completes the list of primitive propositions required for the theory 

of deduction as applied to elementary propositions. 

R&W 1 4 



*2. IMMEDIATE CONSEQUENCES OF THE 

PRIMITIVE PROPOSITIONS 

Summary of *2. 

The proofs of the earlier of the propositions of this number consist simply 

in noticing that they are instances of the general rules given in *1. In such 

cases, these rules are not premisses, since they assert any instance of them¬ 

selves, not something other than their instances. Hence when a general rule 

is adduced in early proofs, it will be adduced in brackets*, with indications, 

when required, as to the changes of letters from those given in the rule to 

those in the case considered. Thus “ Taut ” will mean what “Taut ” becomes 

when is written in place of p. If “ Taut " is enclosed in square brackets 

before an asserted proposition, that means that, in accordance with “Taut, 

we are asserting what "Taut” becomes when is written in place of p. 

The recognition that a certain proposition is an instance of some general 

proposition previously proved or assumed is essential to the process of de¬ 

duction from general rules, but cannot itself be erected into a general rule, 

since the application required is particular, and no general rule can explicitly 

include a particular application. 

Again, when two different sets of symbols express the same proposition in 

virtue of a definition, say *101, and one of these, which we will call (1), has 

been asserted, the assertion of the other is made by writing " [(1).(*1’01)] 

before it, meaning that, in virtue of *1 01, the new set of symbols asserts the 

same proposition as was asserted in (1). A reference to a definition is dis¬ 

tinguished from a reference to a previous proposition by being enclosed in 

round brackets. 

The propositions in this number are all, or nearly all, actually needed in 

deducing mathematics from our primitive propositions. Although certain 

abbreviating processes will be gradually introduced, proofs will be given very 

fully, because the importance of the present subject lies, not in the propo¬ 

sitions themselves, but (1) in the fact that they follow from the primitive 

propositions, (2) in the fact that the subject is the easiest, simplest, and most 

elementary example of the symbolic method of dealing with the principles of 

mathematics generally. Later portions—the theories of classes, relations, 

cardinal numbers, series, ordinal numbers, geometry, etc.—all employ the 

same method, but with an increasing complexity in the entities and functions 

considered. 

• Later on we aboil cease to mark the distinction between a premiss and a rule according to 

which an inference is conducted. It is only in early proofs that this distinction is important. 
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The most important, propositions proved in tin* present number are lhe 

following: 

*2 02. h:<f.D./0<f 

/.e. q implies that p implies q. i.c. a true proposition is implied by any 

proposition. This proposition is called the ** principle of simpliHoation " (re¬ 

ferred to as “Simp”), because, as will appear later, it enables us to pass from 

the joint assertion of q and p to the assertion of q simply. When the special 

meaning which we have given to implication is remembered, it will be seen 

that this proposition is obvious. 

*203. hip'D'^q.O.qD^-'p 

*2T5. h: ~ p D q • D • ^ q D j> 

*2 16. \-:pDq.D.~qO~p 

*217. h : ~ qO ~p .D .pO q 

These four analogous propositions constitute the “principle of transposition." 

referred to as“Transp.” They lead to the rule that in an implication the two 

sides maybe interchanged by turning negative into positive and positive into 

negative. They are thus analogous to the algebraical rule that the two sides 

of an equation may be interchanged by changing the signs. 

*2 04. . 0 , q "D r : D : q . D . p D r 

This is called the “ commutative principle ” and referred to as “ Comm." 

It states that, if r follows from q provided p is true, then r follows from p 

provided q is true. 

*2 05. h z. q O r . D : p D q . D .p D r 

*2 06. I-z.plq.DzqOr.O.pDr 

These two propositions are the source of the syllogism in Barbara (as will 

be shown later) and are therefore called the “ principle of the syllogism ” 

(referred to as “ Syll ”). The first states that, if r follows from q, then if q 

follows from p, r follows from p. The second states the same thing with the 

premisses interchanged. 

*2 08. l-./Op 

I.e. any proposition implies itself. This is called the “ principle of identity " 

and referred to as “ Id.” It is not the same as the “ law of identity ” (“ x is 

identical with x”), but the law of identity is inferred from it (cf. *1315). 

*2 21. \-z~p.D.pDq 

l.e. a false proposition implies any proposition. 

The later propositions of the present number are mostly subsumed under 

propositions in *3 or *4, which give the same results in more compendious 

forms. We now proceed to formal deductions. 

7—2 
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*2 01. h zp D ~p • ^ 

This proposition states that, if p implies its own falsehood, then p is false. It 

is called the "principle of the red net io ad absurdinn,” and will be referred to ns 

• Abs."* The proof is as follows (where “Dem." is short for “ demonstration ): 

Dem. 

[(1).(*1'01)] V : p D ~/>. 0 . ~p 

*2 02. I- s q . D .p D 7 

Dem. 

Add h : 7 . D . ~p v q (I) 

[(!).(♦ 1*01)] 

*2 03. h : p . D . 7 D^/> 

Dem. 

Perm I h : ^p v ^7.0 . v ~p (*) 
P> <1 J 

(1).(*101)] 1- :/>D^7. D ,tjO~p 

*2 04. h . D . 7 D r s D s 7. D .p D r 

Dem. 

£ Assoc h :• v (^7 v r). D . ^7 v v r) (1) 

[(1 ).(*1 01)] I-p . D . 7 D r : D : 7 . O . p 3 r 

*2 05. h 7 D r . Z> : /O 7 . D . /O >• 

Dem. 

j^Sum fj O r. D : v 7 . D . v r (I) 

[(1 ).(*1'01)] h 7 D r. >: /O 7 . D . p D r 

*2 06. H :./0 7 . D : 7 D r. D ./O r 

Dew. 

rComm2^^A2lt£2r']h::,Dr.D:/,D9.3.p3r:. 

P’ ' J Oz.pOg.O-.qOr.O.pO 

[*205] h:.ryDr.D:/07.D.p3r (2) 

[(1).(2).*111] h.p07.0:7^'--^-P:)r 
In the last line of this proof, “(1) . (2) . *111” means that we are 

inferring in accordance with *111, having before us a proposition, namely 

pDq.DzqOr.O.pOr, which, by (1), is implied by 7 D r. D : pD 7.3 • P? r» 

which, by (2), is true. In general, in such cases, we shall omit the reference 

to*l'U. . 
• There is an interesting historical article on this principle by Vailati, "A proposito tin 

passo del Teeteto c di una diraostrazione di Euclide," Rivista di Filotojia e *ei*nze affine, 
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The above two propositions will both bo referred to as the “ principle ol 

the syllogism ” (shortened to Syll "). because, as will appear later, the syllo¬ 

gism in Barbara is derived from them. 

*2 07. h : p . D . p v p ^*1*3 

Here we put nothing beyond “*l-3^,” because the proposition to be 

proved is what *1*3 becomes when p is written in place of </. 

*2 08. h . p D p 

Dem. 

jj*2'05 H ssp yp . O . p s D s. p . 3 - p vp : 3 *p Op 

[Taut] h : p v p . D . p 

[(1).(2).*111] h z.p.D .py/p:D .pOp 

[*2 07] h zp.D.pvp 

[(3).(4).*M1] h.pOp 

*21. h.~pvp [*208. (*101)] 

*211. 

Dem. 

(1) 

(2) 

(3) 

W 

Perm ~£iP] 

P> 9J 
h i~p v. D .pv~p (1) 

(1) 

[(1).*2T.*1T1] h ,pv~p 

This is the law of excluded middle. 

*212. h.pDo-(p) 

Dem. 

j^*2T 1 h . v~(~;;) 

[(1).(*1 01)] h.70-(~/>) 

*2T3. I-. p {'^'(~|>)} 

This proposition is a leinma for *2 14, which, with *2T2, constitutes the 

principle of double negation. 

Dem. 

a, r 
^p>lj h ~p . D . ~ ('■^'(~p)I • ^ : 

u z * 

p *1 
pv~p . D .p v~{~(~/>)} (i) 

[•«•?] 
h : . D . ~[~(~p)) (2) 

[<1).(2).*1*11] h :pv~p . D ./> v~{~(~<p)l (3) 

[(3).*2T 1 .*1 -11] h .p v~(~(~p)} 
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*214. 

Dem. 

[ Perm - 
~( ~p) J h : /> v — J — (—y>)J . D . — ! ~(^y>)] v 

H. (-/)>: vp [(1).*213.*111] 

((2).(*101)] 

*215. f- : ~ p D 7 . D . ^7 D y> 

Dem. 

(1) 

(2) 

*0 Q", ~~ y>. —(— 7>"| V 7 D '>.7). D : ~y> D 7. D . ~y> D ^7) (i) 
>, r 

*212 2 
PJ 

h .7 D -M ^ 7) (2) 

[tl M2).* I'll] H : <^y> D 7 . D . ^y> D ~(~7> (3) 

H : ^y> D^( ~7). D . ~7 3 ~(~p) (+) 

(5) 

(0) 

*203^-^l 
P* 7 J 

*2 05 ~f/' ft' ^ I K -w-p) D y>. D : ^7 D ~(~p). D . ^7 D y> 
P» 7» rJ 

[<5).*214.*1*11) K :-v7D'v(~/')* 3 •~7^P 

r.„n.01 ~7°7. ^/>3M^7^7^^^)1 h.. 

L />• 7. r J 
~p D^*( ^7). D . ~7 D ~('■^y*): D :• 

~p D 7 . D . ~y> : D : ~y> D 7 . D . ~7 D~( ~p) (7) 

[<4).(7).*111 ] H :. ~p D 7 . D . ~p D ~< -7): D : 

~y> D 7 . D . ^7 D ~(^y>) (8) 

[(3).(8).*111] H : ~p D 7 . D . *wy D^(~p) (9) 

r«2 05 ~P 3 '!■ ~'t3~^1 h 3~(~j» ■ 3 ■ Op : 
I 7'. 7. r J 

D '-«y> D 7 . D . ~7 D ^(~y>) : D : ^y> D 7 . D . ^7 Dp (10) 

[(G).(10).*l ll] H :. ~y> 3 7 . D • ~7 3 : 3 : 
~p D 7. D . ^7 Dp (11) 

[(9).(U).*ril] h : ~y> D 7 . D .-wy Dy> 

j\ro/e o/i f/ie proof of *215. In the above proof, it will be seen that (3), 

(4), (G) are respectively of the forms px Dp., y>2Dy>s, p,Dp4, where y>|3/>4 ,s 

the proposition to be proved. From y>, Dy>3, p*Dy;„ y>sDp4 the proposition 

y>, Dy>4 results by repeated applications of *2 05 or *20G (both of which are 

called “ Syll ”). It is tedious and unnecessary to repeat this process every 

time it is used; it will therefore be abbreviated into 

“[Syll] !-.(«).(6).(c).Dh.(rf)” 

where (a) is of the form p, D p., (6) of the form p, D p„ (c) of the form p, Dp4, 

and (d) of the form p, Dp4. The same abbreviation will be applied to a sorites 

of any length. 
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Also whore we have '*1- . />," ami "h ./>, D p.t" ami is the proposition to 

be proved, it is convenient to write simply 

•‘1 

[etc.] K p,." 

where “ etc." will be a reference to the previous propositions in virtue of which 

the implication “px Dp." holds. This form embodies the use of *1*11 or *11, 

and makes many proofs axt once shorter and easier to follow. It is used in the 

first two lines of the following proof. 

*2T6. b zpD q .D • ~qD~p 

Bern. 

[*212] b 

[*205] b zpDq.D .pD~ (~q) (1) 

*2 03 b zp D ~(~q) . D . ~q D ~p (2) 

;Syll] K(l).(2).Dh zpDq.D.~qD~p 

Note. The proposition to be proved will be called “ Prop,” and when 

a proof ends, like that of *21G, by an implication between asserted propo¬ 

sitions, of which the consequent is the proposition to be proved, we shall 

write “ b . etc. D h . Prop”. Thus “ D h . Prop ” ends a proof, and more or less 

corresponds to “Q.E.D.” 

*217. h ! D . D .pD 

Bern. 

*2 03 b : ~q D . D »p D ~(~q) (i) 

>214] h ; ~(~q) DqzD 

[*205] b z pD ~(~q) . D .pD q (2) 

[Syll] h . (1) . (2) . D h . Prop 

*2T5, *2’16 and *217 are forms of the principle of transposition, and will 

be all referred to as “ Transp.” 

*218. 1-: rs^p 

Bern. 

[*2-12] 

[*205] 

b .p D ~(~p). D 

b . ~p Dp. D . ~p D (1) 

[•*“ =*] 
1-: ~p D ~(~p) . D . ~( ~p) (2) 

[Syll] b .(1).(2). D 1- : ~p Dp . D . ~(~p) (3) 

[*214] b.~(~p)Dp W 
[Syll] h . (3) . (4) .DK Prop 

This is the complement of the principle of the redactio ad absurdum. It 
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states that a proposition which follows from the hypothesis of its own false¬ 

hood is true. 

*22. I- : y> . D . p v n 

Dem. 
h . Add . D h : p . D . #/ v p (1) 

[ Perm] h : ij v y>. D . /> v q (2) 

[Syll] h . (1). (2). D 1-. Prop 

*2 21. jj*22 

The above two propositions are very frequently used. 

*2 24. h : y>. D . ^ yO ry (*2 21. Comm] 

*2 25. 1- p : v : p v q. D . q 

Dem. 
h . *21 . D h : ^(y> v 7). v . (y> v q) s 

[Assoc] D 1-: y>. v . (~(/> v 7). v . q\ : D h . Prop 

*2 26. I- :.~y>: v : yO 7 . D . 7 £*2#25 -J-J 

*2 27. 1- y). D : yO 7 . D . 7 [*2’26] 

*2 3. h s y> v (7 v r) • D . yj v (r v 7) 

Dem. 

Permhsovr.D.rvo: 
l. P>'l J 
j^Sum ^ -;r^j D h : /> v (7 v r) . D . /> v (r v 7) 

*2 31. h : p v (7 v r). D . (p v 7) v r 

This proposition and *232 together constitute the associative law for 

logical addition of propositions. In the proof, the following abbreviation 

(constantly used hereafter) will be employed*: When we have a series of 

propositions of the form a D 6, 6Dc, cDrf, all asserted, and uaDd” is the 

proposition to be proved, the proof in full is as follows: 

[Syll] K:.aD6.D:6Dc.D.aDc (1) 

f-sa.D.6 (2) 

C(l).(2).*lll] h:6Dc.D.aDc (3) 

h : b . D . c W 

[(3).(4).*1-11] h : a . D . c (5) 

[Syll] h:.aDc.D:cDrf.D.aDrf (6) 

[(5).(G).*1T1] l-:cDrf.D.aDd (7) 

hsc.D.d W 

«7).(8).*111] hra.D.d 

• This abbreviation applies to the same type of cases as those concerned in tho note to •2-15, 
but is often more convenient than the abbreviation explained in that note. 
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It is tedious to write out this process in full; we therefore write simply 

h : a . D . b . 

[etc.] D.c. 

[etc.] D . c/ : D h . Prop, 

where “aDd” is the proposition to be proved. We indicate on the left by 

references in square brackets the propositions in virtue of which the successive 

implications hold. We put one dot (not two) after •‘6," to show that it is l>, 
not "a D b,” that implies c. But we put two dots after d, to show that now 

the whole proposition “ a D d ” is concerned. If "<iD(T is not the proposition 

to be proved, but is to be used subsequently in the proof, we put 

h : a. D . b. 
[etc.] D . c . 

[etc.] D . d 

and then “ (1) ” means “ a D d." The proof of *2 31 is as follows : 

Devi. 
>2 3] h : p v (q v r) . D . p v (r v q). 

AsSOC^~r] O.rv(pvq). 

Perm D . (p v q) v r : D h . Prop 

*2 32. h : (p v q) v r . D .p v(<j v r) 

Devi. 

(1). 

Perm — h : (p v v r . D . r v (p v 7) 

3.?v(rv?) Assoc 

D . p v (9 v r) : D h . Prop [*2-3] 

*233. pv qvr. = .(pv q)v 7- Df 

This definition serves only for the avoidance of brackets. 

*236. hi.^Dr.Djpv^.D.rvp 

Dem. 
[Perm] h: pvr.D.rvp: 

r Syll ^-V V’ Pv r' rvPl Dh:.pv9.D.pvr:D:pv9.D.rvp (1) 
L P» T J 
[Sum] l-t.pr.Dspvj.D.pvr (2) 

h . (1). (2) . Syll .DK Prop 

*237. h:.gDr.D:gvp.D.pvr 

[Syll . Perm . Sum] 

hr.^Dr.Dr^vp.D.rvp 

[Syll. Perm . Sum] 

*2-38. 



MATHEMATICAL LOGIC [PART I 100 

The proofs of *2 37 38 are exactly analogous to that of *2 36. (We use 

•• *2 37’38 " as an abbreviation for " *2 37 anil *2 38.” Such abbreviations will 

be use-1 throughout.) 

The use of a general principle of deduction, such as either form of" Syll," 

in a proof, is di tie rent from the use of the particular premisses to which the 

principle of deduction is applied. The principle of deduction gives the general 

rule according to which the inference is made, but is not itself a premiss in 

tin- inference. If we treated it ns a premiss, we should need either it or some 

other general rule to enable ns to infer the desired conclusion, and thus we 

should gradually acquire an increasing accumulation of premisses without 

ever bring able to make any inference. Thus when a general rule is adduced 

in drawing an inference, as when we write " [Syll] h . (1) .(2) • D h . Prop,” the 

mention of " Syll " is only required in order to remind the reader how the 

inference is drawn. 

The rule of inference may, however, also occur as one of the ordinary 

premisses, that is to say, in the case of "Syll " for example, the proposition 

"p D q . D : q D r . D .p D r ” may be one of those to which our rules of deduction 

are applied, and it is then an on 1 inary premiss. The distinction between the 

two uses of principles of deduction is of some philosophical importance, and 

in the above proofs we have indicated it by putting the rule of inference in 

square brackets. It is, however, practically inconvenient to continue to dis¬ 

tinguish in the manner of the reference. We shall therefore henceforth both 

adduce ordinary premisses in square brackets where convenient, and adduce 

rules of inference, along with other propositions, in asserted premisses, t.e. wc 

shall write c.y. 

" h • (1). (2) • Syll. D H . Prop M 

rather than “ [Syll] K(l).(2).Dh. Prop ” 

*2 4. h p . v . p v q : D . p v q 

Dem. 
I-. *2 31 . D h p . v\ p v q : D : p v p . v . q : 

[Taut.*2*38] D : p v q D h . Prop 

*2*41. V Z.q .v.pvqzD.pvq 

Dem. 

£ Assoc ^ ^ h q . v .p v q : D :p . v . q v q : 

[Tnut.Sum] D : p v q D h . Prop 

*242. h rsjp .v.p^qzO.pOq |^*2'4 

*2 43. I- z.p . D ./O q : D .p D q [*2 42] 

*2 45. I-:~(pvq).D . [*2 2 . Transp] 

*2'46. h z~(p v q) . D . ~q [*T3 . Trausp] 
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*247. 1“ :~{p V q) . D ,~p V q *2-45 . *2-2 -2. Syll] 

*248. 1- :~(p V q) . D .p V~g [*246. *13-ji . Syll] 

*249. h q).D p v ~g 1*2-45. *2-2 7 .Syll 
L P '/ 

*25. 1“ :~(p D g) . D . ~p D g 

*251. 1- : ~ (p D q) . D . p D ~ g *2-48 
P J 

*252. K :*^(p 3 g) . ~p D ~g *2-49 ^] 

*2521. H:~(pDg).D.gDp [*2*52*17] 

*253. hpv^.D.^pD^ 

Dem. 

*254. 

*255. 

*256. 

H . *2-12 38 . D I-: p v q . D . ~(~p) v q : D h . Prop 

pO q .D .pv q [*214*38] 

-p . D :p v g . D . g [*2*53 . Comm] 

q .D-.pvq.O .p 

*2 6. Hz.^-pDg.DspDg.D.g 

Dem. 

[*2*38] h :.~p D g . D :~p V g . D . g V g 

[Taut. Syll] V z.~p v q . D . q v g : D :«^p v g . D . g 

h . (1) . (2) . Syll. D H :.~p D g. D :~p v g . D . q D I- . Prop 

*261. h :.p D q . D :~p D g . D . g [*2*6 . Comm] 

*262. 1- :.p v g . D : p D g . D . g [*2*53*6 . Syll] 

*2621. 1-:.pDg.D:pvg.D.g [*2*62. Comm] 

*263. 1-s.pvg.D :~p v g . D . g [*2*62] 

*264. 1- p v g . D : pv~q . D - p [*2*63^. Perm] 
L 7 J 

*265. 1" :.p D g . D zp D • D.*^p [•*«?] 
*267. h :.p vg . D . g : D .p D g 

Dem. 
• 

[*2*54.Syll] h p v g . D . g : D : ~p D g . D . q 

[*2*24.Syll] H:.~pDg. D . g : D .p D g 

b . (1) . (2) . Syll. D h . Prop 

(1) 

(2) 

(1) 
(2) 
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68 . Perm . *2 62 ^1 
P> <1J 

*2 68. b p D q . D . q : 3 . p v 9 

Dem. 

j*2‘G7 J h /> D q . D . 7 : D . 3 7 

h . (1). *2*54 .DK Prop 

*2 69. b z. /> 0 q. 0 . q z 0 : q 0 p. 0 . p £*2* 

*2 73. b p D q . D : /> v 7 v r . Z>. q v r [*2*621*38] 

*274. f- q D. D :y* v q v r . D .v r J*2’73^ . Assoc . SyllJ 

*2 75. h:/)vry.D:.;».v.7Dr:D.pvr £*2*74 ^ . *2*53*31 J 

*2 76. b p . v . q D r z D : p v q . 0 . p v r 

*2 77. h />. D . q D r: D : p D 7 . D . p D r 

*2*75. Comm] 

*2-70 ^1 
P J 

(1) 

*2 8. b z.qv r .D :^rv $ .0 .qv s 

Dem. 

b . *2*53 . Perm . D h 7 v r . D : ~>0 7 : 

[*2*3S] D:^rvs.D.ryV5:.Dh.Prop 

*2 81. b :: 7 . D . r D s : D p v q . D : p v r . D . p v 5 

Dem. 

h .Sum •Dh::f/.D.rD«:D:./)V9.D:p.v.rDf (1) 

b . *2*76 . Syll . D I-p v 7 . D : p . v . rD s D 

jtvq.Dzpvr.D.pvs (2) 

h.(l).(2).DH. Prop 

*282. l*:./Jvr/vr.D:;)V^rvs.D./)vgvs 

L 7. >•. * J 
*2 83. 1-:: p . D . 7 D »*: D p . D . r D s : D : p . D . 7 D s 

f#2.82^L^Zl 
L /». ?J 

*2 85. b p v 7 . D .p v r : D : p . v . 7 D r 

Dem. 
[Add.Syll] bz.pvq.D.rzD.qDr (1) 

I-. *2*55 . D b :: ~p .D:.j»vr.D.r:. 

[Syll] D: .pvq.O.pvrzDzpvq.O-rz. 

[<1).*2*83] . D z.pvq.D .pvrzOzqDr (2) 

h . (2) . Comm .Db z. pvq.O.pvrzOz ~p . D . q D r: 

[*2*54] Dsp.v.^Drs.DI*. Prop 

*2 86. Hr.pDg.D.jOrOrp.D.gDr £*2*85-^ J 



*3. THE LOGICAL PRODUCT OF TWO PROPOSITIONS 

Summary of *3. 

The logical product of two propositions p and j is practically the pro¬ 

position " p and q are both true." But this as it stands would have to hr a 

new primitive idea. We therefore take as the logical product the proposition 

i.e. “it is false that either p is false or q is false." which is 

obviously true when and only when p and q are both true. Thus we put 

*3 01. = Df 

where “ p . q" is the logical product of p and q. 

*3 02. p D q D r. = . p D q . q D /• Df 

This definition serves merely to abbreviate proofs. 

When we are given two asserted propositional functions " H . tf>.v ” and 

" 1" • >/'■#,” we shall have “ h . <f>x . yfrx” whenever <t> and take arguments of 

the same type. This will be proved for any functions in *9 ; for the present, 

we are confined to elementary propositional functions of elementary pro¬ 

positions. In this case, the result is proved as follows : 

By *17, ~(f>p and ~y}rp are elementary propositional functions, and there¬ 

fore, by *172, ~<t>pv~yfrp is an elementary propositional function. Hence 

by *211, 

h : '*-><f>p v ~y}rp . v . <f>p v '^'yfrp). 

Hence by *2 32 and *101, 

1- <f>p . D : yfrp . D . ~(~<f>p v 
i.e. by *3 01, 

<f>p . D : yjrp ,D.<f>p. yjrp. 

Hence by *111, when we have "K<*»/>” and “\-.+p” we have "H .<t>p*'l'p ” 

This proposition is *3 03. It is to be understood, like *172, as applying also 

to functions of two or more variables. 

The above is the practically most useful form of the axiom of identification 

of real variables (cf. *1 72). In practice, when the restriction to elementary 

propositions and propositional functions has been removed, a convenient means 

by which two functions can often be recognized as taking arguments of the 

same type is the following: 

If <px contains, in any way, a constituent x(x» V> z* •••) an<* ylrx contains, 

in any way, a constituent %(ar, u, v,...), then both <f>x and y\rx take arguments 

of the type of the argument x in x^x'V' z> •••)> an<l therefore botli <f>x and yfrx 

take arguments of the same type. Hence, in such a case, if both <f>x and yjrx 

can be asserted, so can <f>x. yfrx. 
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As an example of ilie use of this proposition, take the proof of *3 47. We 

there prove 
h p D **. 7 D s. D : p. 7. D . 7 . r (1) 

and H y> D r . 7 D s . D : 7 . r . D . r . 5 (2) 

and what we wish to prove is 

p D r. 7 D *. D : . 9. D . r. s, 

which is *3*47. Now in (1) and (2), p, 7. r, s are elementary propositions 

(as everywhere in Section A); hence by *1*7*71, applied repeatedly. 

“ p D r. q D s . D : p . 7 . D . q . r ” and “ /> D r. 7 D s. D : 7 . r. D . r. 5 " are ele¬ 

mentary propositional functions. Hence by *3 03, we have 

I-:: 7O r . q D ft. D : /». 7 . D . 7 . r p D r. q D s . D : q . r . D . »*. s. 

whence the result follows bv *3*43 ami *3 33. 

The principal propositions of the present number are the following: 

*3 2. I-p. D : q. D . p. q 

I.e. " p implies that 7 implies p . q," i.e. if each of two propositions is true, 

so is their logical product. 

*3 26. bip.q.^.p 

*3 27. 1* : p . q . D . q 

I.e. if the logical product of two propositions is true, then each of the two 

propositions severally is true. 

*3 3. b i.p . q. D • r: D : p • D . q D r 

/.e. if and 7 jointly imply r, then /> implies that 7 implies r. This 

principle (following Peano) will be called "exportation,” because 7 is "exported 

from the hypothesis. It will be referred to ns " Exp." 

*3 31. b p. D . 7 D #•: D : p. 7 . D . r 

This is the correlative of the above, and will be called (following Peano) 

" importation ” (referred to as “ Imp "). 

*3*35. I*: p . p D 7. D • 7 

I.e. "if p is true, and 7 follows from it, then 7 is true.” This will be called 

the "principle of assertion” (referred to as "Ass”). It differs from *11 by 

the fact that it does not apply only when p really is true, but requires merely 

the hypothesis that p is true. 

*343. b p D 7 .p D r. D zp • D. 7. r 

I.e. if a proposition implies each of two propositions, then it implies their 

logical product. This is called by Peano the " principle of composition.” It 

will be referred to as " Comp.” 

*3*45. b p D 7 . D : p . r . D . 7 . r 

I.e. both sides of an implication may be multiplied by a common factor. 

This is called by Peano the “ principle of the factor.” It will be referred to 

as " Fact.” 
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*3'47. h p D r. D s , D ; />. <y . D . r.,« 

I.e. it' p implies q and /• implies s. then p and q jointly imply #• and * 

jointly. The law of contradiction. ** b . ~ (/> . ~ p)," is proved in this min.b. i 

(#3 24); but in spite of its tame we have found few occasions for its use. 

tl) 

(2) 

*3 01. p . q . = . ^ p v ~ q) Df 

*302. pO<]Dr. = .pDq.qOr Df 

*3 03. Given two asserted elementary propositional functions “\-.<f>p" and 

“ • 'kP whose arguments are elementary propositions, we have . 4>p . \pp. 

Dem. 

h • *17 72 • *211, D h ;<v (f>p v *—• \frp . v . ~ (<£>y> v •—> ^jt) 

H . (1) . *2-32 . (*101). D I-:.<t>p.D:>lrp.D . ~ ~ <f>p v ~ \JfJ>) 

h . (2) . (*3*01). D h <f>p . D : yfrp . D . <f>p . yfrp 

h . (3) . *1*11 ,D h . Prop 

*31. hp.9.D.^(^pV^^) [Id.(*3*01)] 

*311. b .D.p.q [Id. (*3*01)] 

*312. h:~p.v.~*.v./*.9 *211 

*313. :~(p . q) ."2 .~pV [*3*11 . Transp] 

~p v ~ q . D . ~ (p . q) [*3*1 . Transp] 

\-:.p.3:q.5.p.q [*312] 

*321. b i.q.O-.p.D.p.q [*3*2 . -Comm] 

*3 22. hrp.f.D.fl.;, 

This is one form of the commutative law for logical multiplication. A 
more complete form is given in *4 3. 

Dem. 

[*313iiifj 

[Perm] 

*314. 

*32. 

b : ~ (fl . />) . D . ^ q v ~p 

D . ~p v 

[*314] D.~(p.q) 

b . (1) . Transp . D b . Prop 

Note that, in the above proof, “(1)” stands for the proposition 

“~(q.p).D.~(p.q),’’ 

as was explained in the proof of *2 31. 

*3 24. b.»^(p.o^p) 

Dem. 
~p 

(1) 

*2*11 

*314 

P J 

9 J 

b . v ~ (~ jy) . D 

b .~(p.~p) 

The above is the law of contradiction. 
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*3*26. h : p . q . D . p 

Dem. 

r.202'^1 h ; » . D . q D /> (1) 
L P* 7 J 
[(1 >.( * 1 *01)] K:~y>.v.~gvy>: 

*2*311 Dh:^ y> v ~ 7 . v . p : 

D K :-v(^i)VM/>. D. » (2) 
L /*• 7 J 
[(2).(*301)] h -.p.ij.O .p 

*3 27. h : p. 7 . D . 7 

Dem. 
*3*22] h : yj. q. D . 7. /). 

1 3.a:3h. Prop 
7*- vJ 

*3*26 27 will both be called the “ principle of simplification,’ like *2 02, 

from which they arc deduced. They will be referred to as “Simp.” 

*3 3. I-p . 7.3 . r s D s />. D . q D r 

Dem. 
[Id.(*3*01)] h :. y>. . 7 . D . r : D : ( ^y> v ~ 7). D . r : 

[Transp] Di'vr.D.'vyjV'v^: 

[Id.(*l*01)] D:'v/*.D.yO^</: 

[Comm] D:y>.D.~rD~g: 

[Transp.SvIl] • D : y>. D . g D r :• D h . Prop 

*3 31. I-/>. D . 7 D r 2 D : y>. 7 . D. r 

Dem. 
Id.(*l 01)] h :.y;.D.ry Dr: D 2 ~y> . v . v r s 

*2*31] Di'v/jV'v^.v.r: 

*2 53 ~ rl D : ~ ~ p v ~ 7). D . r: 
/>> '/J 

Id.(*3*01)] D :/>. q . D . r D b . Prop 

*3 33. H; yOg.^Dr.D./Or [Syll. Imp] 

*3*34. htgDr./Og.D./Or [Syll. Imp] 

These two propositions will hereafter be referred to as “Syll"; they are 

usually more convenient than either *2*05 or *2*00. 

*3 35. h sp .p D q. D . q [*2*27 . Imp] 

*3*37. 

Dem. 

h . Transp . D h :(/Dr. D 

[Syll] DH:.yi.D.«/Dr:D:p.D.~rD~<7 (1 > 
h . Exp. D H yj. ry . D . r : D : y>. D . «y D r (2) 

H . Imp . (3) 

H . (2) . (1) . (3) . Syll .Dh. Prop 
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This is another form of transposition. 

*3 4. I-:y».«y.3.yOy [*251 . Transp . <*1 01 .*301)1 

*3 41. b :./> 3 r . 3 zp . <j . 3 . r [*3’2c». Syll] 

*3 42. I-:. (/ D »•. D ;y>. <y. 3. [*3 07 . Syll] 

*3*43. b :. y> 3«/ . y> 3 r. 3 : p . 3 . . r 

Dem. 

(-.* 3-2.Dt-:.?.D:i-.D.(/.r (1> 

b . (1) . Syll . 3 h ::y>3 #/ . 3 :. y>. 3 : r. 3 . *y . r s. 

[*277] 3:.yOr.3:/j.3.#y.r (2) 

b. (2). Imp. 3 h. Prop 

*344. h:.g3^.rD/i.D:<yvr.3./> 

This principle is analogous to *3 43. The analogy between *3 43 and 

*3 44 is of a sort which generally subsists between formulae concerning 

products and formulae concerning sums. 

Dem. 

b . S)'ll . 3 b ^ q 3 r . r 3 yj . 3 : q Dp z 

[*2-6] 3 : q 3 p . 3 . p (1) 
b . (1) . Exp . 3 b :: ^q 3 »■. 3 :. r 3p . 3 : q Dp. 3 . p :. 

[Comm.Imp] 3 :. q Dp . r 3 p. 3 .p (2) 

b . (2) . Comm . 3 b :. q 3/>. r 3 p. 3 : ~ q 3 r • 3 . y>:. 

[*2*53.Syll] 3 b . Prop 

*345. b:.y>3g.3:p.r.3.g.r 

This principle shows that we may multiply both sides of an implication 

by a common factor; hence it is called by Peano the “principle of the factor.” 

We shall refer to it as “ Fact.” It is the analogue, for multiplication, of the 

primitive proposition *16. 

Dem. 

b . Syll ~ .31-:.y>3fl.3:^3*^ r.3.y>3~r: 

[Transp] 3 : ~ (p 3 ~ r) . 3 . ~(q 3 ~ r) 

[Id.(*l'01.*3‘01>] 3 b . Prop 

*347. !■ :.])3r. j3s.3 :p.^.3,r.« 

This proposition, or rather its aualogue for classes, was proved by Leibniz, 

and evidently pleased him, since he calls it “ prajclaruin theorema*.” 

Dem. 

b . *326.3h:.yOr.93s.3:yOr: 

[Fact] Dzp.q.D.r.qz 

[*322] Dzp.q.D.q.r (1) 

• Philosophical works, Gerhardt’s edition, Vol. vn. p. 223. 

R&W I 8 
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H . *327 .Dhs.jOr.gDj.DsgDf: 

[Fact] D : 7 . r . D . s . r : 

[*3*22] D : 7 . r . D . r . s 

h . (1). (2). *3 03 . *2*83 . D 

(2) 

I-j>D r. qO s .0 z p . q ,0 • f' • s :.0 . Prop 

*3 48. H ;.p D r . 7 D* . D :p v ry. D . r v* 

This theorem is the analogue of *3 47. 

Dcm. 

H . *3*2G . D h :.y> D r. q D i. D : p D r: 
[Sum] D: p v 7 . D . r v 7 : 

[Perm] D : pv 7 . D . 7 V r (1) 

h . #3 27 . D h p D r. 7 D s . D : 7 D a* : 
[Sum] D : 7 v r. D . 5 v r: 

[Perm] Difvr.D.rvs (2) 

h . (1). (2). #2*83 . D 
h p D r . 7 D s. I> : p v 7 . D . r v s 3 h . Prop 



*4. EQUIVALENCE AND FORMAL RULES 

Sinn mart/ of ?*c4. 

In this number, we shall be concerned with rules analogous, more or less, 

to those of ordinary algebra. It is from these rules that the usual "calculus 

of formal logic” starts. Treated as a “calculus,” the rules of deduction are 

capable of many other interpretations. But all other interpretations depend 

upon the one here considered, since in all of them we deduce consequences 

from our rules, and thus presuppose the theory of deduction. One very 

simple interpretation of the " calculus ” is as follows : The entities considered 

are to be numbers which are all either 0 or 1 ; " p D«? ” is to have the value 0 

if p is 1 and q is 0; otherwise it is to have the value 1 ; ~p is to be 1 if p 

is 0, and 0 if p is 1 ; p . q is to be 1 if p and q are both 1, and is to be 0 in 

any other case; pvq is to be 0 if p and q are both 0, and is to be 1 in any 

other case; and the assertion-sign is to mean that what follows has the 

value 1. Symbolic logic considered as a calculus has undoubtedly much 

interest on its own account; but in our opinion this aspect has hitherto been 

too much emphasized, at the expense of the aspect in which symbolic logic 

is merely the most elementary part of mathematics, and the logical pre¬ 

requisite of all the rest. For this reason, we shall only deal briefly with what 

is required for the algebra of symbolic logic. 

When each of two propositions implies the other, we say that the two are 

equivalent, which we write up = q” We put 

*401. j)~q, = .pOq.qDp Df 

It is obvious that two propositions are equivalent when, and only when, 

both are true or both are false. Following Frege, we shall call the truth- 

value of a proposition truth if it is true, and falsehood if it is false. Thus two 

propositions are equivalent when they have the same truth-value. 

It should be observed that, if p = q, q may be substituted for p without 

altering the truth-value of any function of /> which involves no primitive 

ideas except those enumerated in *1. This can be proved in each separate 

case, but not generally, because we have no means of specifying (with our 

apparatus of primitive ideas) that a function is one which can be built up out 

of these ideas alone. We shall give the name of a truth-function to a fuuction 

f(p) whose argument is a proposition, and whose truth-value depends only 

upon the truth-value of its argument. All the functions of propositions with 

which we shall be specially concerned will be truth-functions, i.e. we shall 

have 

p = q.D . f(p) =f(q)- 
8—2 
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'1 he reason of this is, that the functions of propositions with which we deal 

are all built up by means of the primitive ideas of *1. But it is not a universal 

characteristic of functions of propositions to be truth-functions. For example, 

"A believes p” may be true for one true value of p and false for another. 

1 he principal propositions of this number are the following: 

*4 1. b : jt D <y . = . *>. q D ^ p 

*411. b : yi s q . = .^p=^q 

1 liese are both forms of the " principle of transposition." 

*4 13. H s -— (•— p) 

Ihis is the principle of double negation, i.e. a proposition is equivalent to 

the falsehood of its negation. 

*4 2. V .pmp 
*4 21. : p = i/ . = . tj = p 

*4 22. H : y* 2 (y . y s »•. D , s »• 

1 hose propositions assert that 

transitive. 
equivalence is refle.vive, symmetrical and 

*4 24 h : p . = mp .p 

*4 25. I-: p. s . p v p 

I.e. p is equivalent to “p and p" and to " p or which arc two forms of 

the lair uj tautology, and are the source of the principal differences between 

the algebra of symbolic logic and ordinary algebra. 

*4 3. h ip . //. = . r/ . p 

ihis is the commutative law for the product of propositions. 

*4 31. b : p v q . ■ . ij v /> 

This is the commutative law for the sum of propositions. 

1 he associative laws for multiplication and addition of propositions, namely 

*4 32. b : (p. fj). r. = . p . (q . r) 

*4 33. b : (p v ij) v r • 5 ,p v(^ v r) 

The distributive law in the two forms 

*4 4. b :• P • *i v >* . = : p. q. v.p . r 

*4 41. b i.p . v . q . /•: = .p vry .p v r 

Ihe second of these forms has no aualogue iu ordinary algebra. 

*4 71. b p D q . = ; p . = . p . q 

I.e. p implies q when, and only when, p is equivalent to p . q. This pro¬ 

position is used constantly; it enables us to replace any implication by an 

equivalence. 

*4'73. b z. q . D z p . = . p . q 

I.e. a true factor may be dropped from or added to a proposition without 

altering the truth-value of the proposition. 
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*4'01. /> = q . = . p D q . q D p Df 

*4 02. J> = q = r . = . p = q . q = y Of 

This definition serves merely to provide ;i convenient abbreviation. 

*41. b : P 9 • = • ~ q D ~ p [*2*16*17] 

*411. b : p = q . = . p = q [*216*17 .*3*47*22] 

*412. b : /» = ^ 7 . = . 7 = .—> p [*2*03*13] 

*413. b .p = ~(~p) [*2*12*14] 

*414. b . 7 . D . r: = : p . ^ i*. D . ~ 7 [*3*37 . *4*13] 

*415. b p . 7 . D . ^ #•: = : q . >• . D . ^ p [*3*22. *4 13*14] 

*42. b-P=P [Id . *3 2] 

*421. )-:p = q. = .q=p [*3*22] 

*4 22. b ; p 3 7.7 s r. D . p = r 

Dem. 

b . #326 . Obipsq.qsr.^.psq. 

[*3*26] D./O7 (1) 

b . *3*27 . 

[*3-26] D . 7 D ?• (2) 

b . (1). (2). *2*83 . D h :/> s 7.7 ■ ?*. D ./> D r (3) 

b . *3*27 . D b : = 7.7 = r . D . 7 = r. 

[*3*27] D.rDg (4) 

b . *326 . D b :p = q.q = r.D.p = q. 

[*3*27] D^Dp (5) 

b . (4) . (5) . *2*83 .Db :p=q.qsr.O,rOp (6) 

b . (3) . (6) . Comp. D b . Prop 

iVo^c. The above three propositions show that the relation of equivalence 

is reflexive (*4*2), symmetrical (*4*21), and transitive (*4*22). Implication 

is reflexive and transitive, but not symmetrical. The properties of being 

symmetrical, transitive, and (at least within a certain field) reflexive are 

essential to any relation which is to have the formal characters of equality. 

#4'24. b : p . s . p . p 

Dem. 

b . *3*26 .Db : p . p . D . p (1) 
b . *3*2 . Db :.p . D :/>. D .p .p :. 

[*2*43] Db rp.D.p.p (2) 

b . (1) . (2) . *3*2 . D b . Prop 

*4*26. b zp.m.pvp 

Note. *4*24*25 are two forms of the law of tautology, which is what chiefly 

distinguishes the algebra of symbolic logic from ordinary algebra. 
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*4 3. b : p. 7 . = . 7 . p [*3 22] 

Note. Whenever we have, whatever values p and 7 may have, 

<#»</>.7)• ^ 
we have also 

<f> (/>, 71. = .<f> (7. />). 

For !<£ (/>. 7) . 3.4>('j.p) ^ . D : <f> (7. />) . D . </> (y>, 7). 

*4 31. b : /> v 7 . = . 7 v /> [ Perm] 

*4 32. b s (71 .7). r. ■ ./>. (7 . /•) 

Dem. 

1-. *4’15 . D 1-/». 7 . D . r : = : 7 . r . D . : 

[*412] s:j».D.~(g.r) (1) 

1- . (1). *4-l 1 . D b s ^ (y>. 7 . D . ^ r) • 3 . |/> • D . ^(7. r)): 

[(*101.*3 01)] D 1-. Prop 

-Vote. Hero “(1)” stands tor ” b p. 7. D . ^ r s s : p . D . ~ (7. r),” which 

is obtained from the above steps by *4 22. The use of *4 22 will often be 

tacit, as above. The principle is the same as that explained in respect of 

implication in *2 31. 

*4 33. b : (p v 7) v r. = .p v (7 v r) [*2 31 82] 

The above are the associative laws for multiplication and additiou. To 

avoid brackets, we introduce the following definition: 

*4 34. p • 7, r •« . (p. q). r Df 

*4 36. b :./) h 7 . D :. r. = . 7 . /• [Fact. *3 47] 

*4 37. b :.y> = 7 . D : yj v r. = . 7 v r [Sum.*3‘47] 

*4 38. b p = r . 7= s, D : y>. 7 . = . r . s [*3 47 . *4 32 . *3 22] 

*4 39. b z.p = r . 7 = s. D : y> V7 . = . r vs [*3‘48*47 . *4 32 . *3‘22] 

*4 4. b s. p. q V r. = : y>. 7 . v . />. r 

This is the firet form of the distributive law. 

Dem. 

b . *3-2. D b s: p. D : 7. D .p 0 : r. D • • r s: 

[Comp] D b . D 9 . D . 7 : r. D ./). r 

[*348] Dz.qv r.Dzp.q.v .p.r (1) 

b .(1) . Imp . Dhz.p.qvr.Dzp.q.v»p-r (2) 

b . *3 26. Db:./).9.D./):/).r.D.p:. 

[*3-44] D b y>. 7 . v . yi . r: D . p (3) 

b. *3 27 . Db:.;).7.D.9:/).r.D.r:. 

[*348] Db:./).7.v./).r:D.7vr (•*) 

b. (3). (4). Comp . D b z.p .q .v.p.rzO.p.qvr (°) 

b•(2).(5) . D b. Prop 
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*4*41. b z.p. v . 7 . r : = . p v q . p v r 

This is the second form of the distributive law—a form t«» which there 

is nothing analogous in ordinary algebra. By the conventions as to dots. 

/> • v -7 

Dem. 

means " p v (7 . r).* 

*4-42. b 

Dem. 

*443. b 

Dem. 

*444. b 

Dem. 

b . *326 . Sum . D b z.p. v . q . r: D . p v q (i) 
b . *3 27 . Sum . Db:./).v.j/.r:D./)vr C-2) 

b . (1) . (2) . Comp . D b y>. v . 7 . r : D . y> v 7 . p v r (3) 

b . *2-53 . *3 47 . D b z.p vq .p v r. D :*>-/> D q . ~/>D r: 

[Comp] 

[*254] D : />. v . . r W 

K<3).(4). D b . Prop 

••
 

• III • •
 

• <
 

• . ~ q 

b.*3'21. D b z.q v ~q . D zp. D ./>.</ v ~ q 

[*2T1] D b ip. D .p. qv~q (1) 

b . *326 . Db ip.qv^q.D.p 

b . (1). (2) . D b z.p . a zp. q v ~q: 

(2) 

[*+•4] 3zp.q.V.p.~qz.D b . Prop 

Z.p . 3 zpv q .pv ~ q 

b . *2*2 . Dbsp.D.pVfltp.D.pv^tf: 

[Comp] (1) 

1- . *2-65 ^ . 
P 

[Imp] D b .D.pz. 

[*2o3.*3-47] Db z.pv q .pv ~q .0 .p (2) 

b.(l).(2). D b . Prop 

z.p.mzp.v.p.q 

b . *2 2. 
1 T J 

D b :.p . D zp . v . q (1) 
b . Id . * .3 2b . J r z.p Jp z p . q • j • p z. 

[*344] Db z.p .V .p.qzD .p (2) 

b . (1) . (2) . Db.Prop 

*446. \-zp. = .p.pvq [*3*26.*2*2] 

The following formulae are due to De Morgan, or rather, are the propo¬ 

sitional analogues of formulae given by De Morgan for classes. The first 

of them, it will be observed, merely embodies our definition of the logical 

product. 
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*45. b: p. 7. = . ~ ~ p v ~ 7) [*4 2. (*3 01)] 

*451. 1-: —- (yj. 7) - = . — y> v ~ 7 [*4-512] 

*452. b: y>. ~ 7 . = . ~ ^ y> v 7) ^*45 ~7. *4*13 

*453. b : 7). = .~y< v 7 [*4-5212] 

*4 54 h: ^ y>. 7 . = . ~ (y> v ~ 7) |*4 5^.*413 

*4 55. 1- : ~(~/>-7> - = . y> v ~ 7 [*4-5412] 

*456. 1- : ~y>. ~7 . = . ~(y> v 7) 1 *4 54 ^.*41.4 

*457. h : ~ (~ y>. ~ 7). s.y>V7 [*4-5612] 

The following formulae are obtained immediately from the above. They 

are important a.s showing how to transform implications into sums or into 

denials of products, and vice versa. It will be observed that the first of them 

merely embodies the definition *1 01. 

*46. b 

*461. b 

*4 62. h 

*4 63. I- 

*4-64. b 

*465. b 

*4 66. b 

*4 67. b 

*47. b 

Dent. 

y>Diy .3 [*42 . (*101)] 

s 7 (*4-6*1152] 

y* D ~ 7 . =. ^ y> v ~ 7 |^*4G J 

^ (y> D ^ 7). = . y>. 7 [*4-62*11*5] 

^ p D 7 . = . p v 7 [*2*53*54] 

~ ~ yO 7). = . ~ y». ~ 7 [*4 6411-56] 

~ yO ~ 7 . = . y> v ~ 7 ^*4*04 

~ (~ yO ~ 7). = . ~ y>. 7 [*4G6-11\54] 

. p D (/ . = z ji. 0 . p . rj 

h . *3-27 . Syll. D h y>. D . y>. 7 : D . yO 7 

h . Comp. D b y> D y>. y> D 7 . D : y>. D . p. 7 

[Exp] D h ::yOy>. D y> D 7 . D : y>. D .y>. 7 :: 

[Id] D h p D 7 . D : y>. D .y>. 7 
K(l).<2). D h . Prop 

*4 71. h ]) D 7 . = : p . = .y>. 7 

Dem. 

h .*3 21. D I- :: y>. 7 . D . p : D y>. D . p . 7 : D : y;. 

[*326] D h y>. D . y>. 7 : D :p. = .p. 7 (1) 
h . *3 2G . Dh:.y>. = .y).7:D:p.D.y>.7 (2) 

h.(l).(2). Dh:.p.D.y).7: = :p. = ./)-7 (3) 

1- . (3). *4 7-22 . D h . Prop 



SECTION A] EQUIVALENCE ANI> FORMAL RULES 121 

The above proposition is constantly used. It enables us to transform 

every implication into an equivalence, which is an advantage if we wish to 

assimilate symbolic logic as far as possible to ordinary algebra. Hut when 

symbolic logic is regarded as an instrument of proof, we need implications, 

and it is usually inconvenient to substitute equivalences. Similar remarks 

apply to the following proposition. 

*472. b z.p D 7 . = : 7 . = .p v 7 

Dem. 

b . *47 . D I*p Oq . 

[ •4 71 ~9' 

’] 
7 . = . ~ 7 

[*412] 

[*4-57] 

[*431] 

*473. b 7 . D z p. = . p 

P : 

"'P) : ~ ~ 7 

qvpz 

pvq • • D b . Prop 

s:7. 
= m-q- 

= -q • 

7 [Simp.*471] 

This proposition is very useful, since it shows that a true factor may be 

omitted from a product without altering its truth or falsehood, just as a true 

hypothesis may be omitted from an implication. 

*474. b ~p . D : 7 . = . v 7 

*476. b p D 7 . p D r . = : p . D . q . r 

*477. q D p . r 0 p . ^ z q v r . 0 . p 

*2-21 . *472] 

*441 ^-'•(*101) 

*3-44 . Add . *2 2] 

*478. h:.pDg.v.yDrsa:p.D.7vr 

Dem. 

b . *42 . (*101) .Db:.|)D7.v.pDr 

[*433] 

[*431-37] 

[*4-33] 

[*4-2537] 

[*4-2.(*101>] 

= :~pv7, v.~p vrs 

a.'vp.v.7v<vpvr: 

= : . v . v 7 v »•: 

= :'v/)v~p.v.7vr: 

s : . v . 7 v r s 

= :p.D.7vr:. Db. Prop 

*479. b:.7Dp.v.rDp: = z q . r . • p 

Dem. 

b . *41-39 .Db:.7Dp.v.rDp: = :~/)D~9.v.~pD~r: 

[*478] = :~p. D.~7v~r: 

[*275] = :~(~7V~r).D./j; 

[*4-2.(*301)] =:7.r.D.p:.Db. Prop 

Aote. The analogues, for classes, of *47879 are false. Take, e.g. *478, 

and put p = English people, 7 = men, r = women. Then p is contained in 7 

or r, but is not contained in 7 and is not contained in r. 
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*4 8 b: /> D~j>. = [*201 .Simp] 

*481. I- : /O/>. = ./> [*218. Simp] 

*4 82. b z p D 7 . p D ~tj. = . [*2*05. Imp. *2 21 . Comp] 

*4 83. b : y> D 7 . ~ y> D 7 . = . 7 [*2‘61 . Imp . Simp . Comp] 

Note. *4’82‘83 may also be obtained from *443, of which they are virtu¬ 

ally other forms. 

*484. 1- p 5 7 . D : ;)Dr. = .pr [*2u<>. *347] 

*4 85. I-p = 7 . D : r D />. = . /O 7 [*2 U5 . *3 47] 

*4 86 h.y»3y.D:/)5r.s,gsr (*4 2122] 

*4 87. K :. y>. 7 . D . r: = : p. D . 7 D »•: = : 7 . D . yO r: s : 7 . />. D . r 

[Exp . Comm . Imp] 

*487 embodies in one proposition the principles of exportation and im¬ 

portation and the commutative principle. 



*5. MISCELLANEOUS PROPOSITIONS 

Summary of *5. 

The present number consists chiefly of propositions of two sorts: (1) those 

which will be required as lemmas in one or more subsequent proofs, (2) those 

which are on their own account illustrative, or would be important in other 

developments than those that we wish to make. A few of the propositions of 

this number, however, will be used very frequently. These are: 

*51. h : p . q . Z> . p = q 

I.e. two propositions are equivalent if they are both true. (The statement 

that two propositions are equivalent if they are both false is *5 21.) 

*5 32. \-:.p.0.q=r: = :p.q. = .p.r 

I.e. to say that, on the hypothesis p, q and r are equivalent, is equivalent 

to saying that the joint assertion of p and q is equivalent to the joint assertion 

of p and r. This is a very useful rule in inference. 

*56. : p • O . q v r 

I.e. "p and not-# imply r” is equivalent to “p implies q or r.” 

Among propositions never subsequently referred to, but inserted for their 

intrinsic interest, are the following: *511121314., which state that, given 

any two propositions p, q, either p or ~p must imply q, and p must imply 

either q or not-g, and either p implies q or q implies p; and given any third 

proposition r, either p implies q or q implies r*. 

Other propositions not subsequently referred to are *5’22*23*24; in these 

it is shown that two propositions are not equivalent when, and only when, 

one is true and the other false, and that two propositions are equivalent 

when, and only when, both are true or both false. It follows (*524) that the 

negation of "p . q .v . ~p . ~ q" is equivalent to “ p. ~ q .v . q . ~p" *5*5455 

state that both the product and the sum of p and q are equivalent, respectively, 

either top or to q. 

The proofs of the following propositions are all easy, and we shall therefore 

often merely indicate the propositions used in the proofs. 

*51. b:p.q.D .p = q [*3*4*22] 

*511. h:pDg.v. ~p D q [*2-5*54] 

*5*12. [*2*51*54] 

*613. h:pD9.v.9Dp [*2*521] 

*614 \-zpDq .v .qDr [Simp . Transp . *2*21] 

* Cf. Schrdder, VorUtungen Uber Algebra der Logik, Zweiter Band (Leipzig, 1891), pp. 270— 

271, where the apparent oddity of the above proposition is explained. 
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*515. b 

Dem. 

*516. b 

Dem. 

*517. b 

Dem. 

*518. b 

*519. b 

*621. b 

*522. b 

*523. b 

*6 24. b 

*5*25. b 

:y>=7.v.y, = ~7 

b . *4 61 . D b : (p D 7) . D . y>. ~ q . 

[*•>1] D . y> = ~ 7 : 

[*2*.54] D b : y> D 7 . v . y> = 

b . *4*61 . D I- : <n/D. D . ry. , 

[*•5*1 ] D . 7 = ~ y> . 

[*4 12] D.y, = ~7: 

[*2 .54] D b : q D yj. v . y> = ~ 7 

b.(1).(2). *4 41 . D b . Prop 

. ~ ( y> = 7 . yj = ~~ ry) 

(1) 

(2) 

b . *326 . D h : p 3 q . p ^ ^ q. D . p D q . p 5 ~ q • 

[*482] D.~y> (1) 

b . *3*27 • D b i p = q . q . qO p . pD ~ q , 

[Syll] D.7D^7. 

[Abs] D.~q (2) 

b . (1). (2) . Comp . D b : p = q . p D ~7 . D . ^/y). ^7 . 

r*+(i59,/-] D.~(~9Dp) (3) 
L P* 7 j 
b • (3). Exp. D b p = 7 . D : p D ~7 . D . ~(~7 3y>) ? 

[ I«l.(* 1 01)] D:~(yO~7).v. ~(~q D p): 

[*4*51.(*4*01)] D : ~(p = ^7)DH. Prop 

: p V7 • ~(y> • 7) . = • ps ^q 

b. *4-64-21. D I- :y)V7 . = .~qDp (1) 

b . *4 63 . Tmusp . D b : ~(p . 7) . = . p D ^ 7 (2) 

b.(1).(2). *4*38*21. D b . Prop 

:y> = 7. = .~(y; = ~7) 

. ~(y; = ~y>) 

:^y;.^7.D.y> = 7 
~(p = 7) . = :y>. ~7 . v . 7 . 

:.p = 7. = :y>.7.v.~y>.*-'^7 

~ (y> . 7 . v . ^y>. ~ 7). = : p 

Z. p V q . = i p D q . D . q 

[*5*15*16. *5*17 Z*±£*ZS] 
P. q J 

*5*18 • *4*2 J 
[*5*1 .*4*11] 

p [*4*61*51*39] 

£*5*18 . *5*22 ^. *4*13*36J 

~q.v.q.~p [*5*22*23] 

[*2*62*68] 
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From *5 *25 it appeal's that wo might have taken implication, instead of 

disjunction, as a primitive idea, and have defined -/#vy” as meaning 

pDy.D.y, This course, however, requires more primitive propositions 

thau are required by the method we have adopted. 

*53. [Simp . Comp . SylIJ 

*531. h . p D y : D : p . D . y . [•Simp. Comp] 

*532. h :. p . D . q 3 r ; = : />. y . = . p . r [*4*76. *3*3*31 . *5*3] 

This proposition is constantly required in subsequent proofs. 

*533. [*4*73*84 . *5 32] 

*535. hs./Ofl./Or.D: p.D.ysr [Comp. *51] 

*536. hp.p=q.a.<j.p = <j | Ass. *4*38] 

*54. H.p.D.pDy : = .pDy [Simp. *2*43] 

*541. I-p D g . D .p D #• s = : p. D . <j D r [*277-86] 

*542. h 1:p . D . g D r : 5 p . D : y . D .p . r [*5*3 . *4*87] 

*544. H::pDy.:>:.pDr. = :p.D.y.r [*4*76. *5-3-32] 

*55. h:.p.D:pDy. = .y [Ass . Exp . Simp] 

*5501. I- :.p . D : y . = .p s y [*51 . Exp . Ass] 

*553. h:.pvyvr.D.s: = :pDs.yDs. rDs [*4*77] 

*554. [*4*73 . *4 44 . Transp .*51] 

*555. h:.pvy. = .p:v:pvy.a.y [*1*3.*51 .*4 74] 

*56. h p . ^y . D . r : = sp.D.jvr ^*4*87 . *4 64 85 J 

*561. h:pvy.~y. = .p.«^y [*4 74. *5*32] 

*562. h :.p . y . v . ~y : ■ . p V ~y 

*563. h :.p v y . = :p . v . ~p . y 
[•«* Ti) 

*57. b:.pvr. = .yvr: = :r.v.p = y [*4 74 . *1 3 . *51 .*4 37] 

*571. b:.yD^r.D:pvy.r. = .p.r 

In the following proof, as always henceforth, "Hp" means the hypothesis 

of the proposition to be proved. 

Bern. 

h.*4'4. Dhs.pvy.r.ssp.r.v.y.r (1) 

h . *4*62'51 . DH:: Hp . D ~ (5 . r) 

[*4'74] Dz.p.r.v .g.rz = zp.r (2) 

h . (1) . (2) . *4-22 .DK Prop 
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*5*74. I*p . D . 7 = r : = : p D q . = . p D r 

Dem. 

b . *541 . D b :: /O 7 . D .;)Dr: = :/».D . 7 D r 

yO r. D . /O 7 : = : p. D . >0 7 (1) 

b . (1). *+-.18 . D b :: p D q . = . p D r. = p. D . q D 7*: y>. 0 . r D q 

[*4*76] = :.y>. D . 7 = r :: D b . Prop 

*5'75. b »0 ~ 7 : p . = . q v r: D : p . ~ 7 . = . r 

Dem. 

b . *5*6. D b Hp. D : p • ~ 7. D . r (1) 

b . *3*27 . D b Hp . D : 7 v »•. D . : 

[*4 77] OzrDp (2) 

b . *3’2<> . D b Hp . D : r D ~ 7 (3) 

b . (2). (3). Comp . Db:. Hp .D:»0/).?0^g: 

[Comp] D : r . D .p . 7 (4) 

b . (1). (4). Comp . D b Hp . D : y>. ~ 7 . s . r D b . Prop 



SECTION B 

THEORY OF APPARENT VARIABLES 

*9. EXTENSION OF THE THEORY OF DEDUCTION FROM 

LOWER TO HIGHER TYPES OF PROPOSITIONS 

Summary of *9. 

In the present number, we introduce two new primitive ideas, which may 

be expressed as "(fix is always* true” and "(fix is sometimes* true," or, more 

correctly, as ,l<f>x always” and "(fix sometimes.” When we assert "(fix always,” 

we are asserting all values of tp.T, where "(fix’’ means the function itself, as 

opposed to an ambiguous value of the function (cf. pp. 15, 40); we are not 

asserting that (fix is true for all values of x, because, in accordance with the 

theory of types, there are values of x for which "(fix" is meaningless; for ex¬ 

ample, the function (fiut itself must be such a value. We shall denote “<f>x 

always” by the notation 

(*) • <t>*> 

where the “(a:)” will be followed by a sufficiently large number of dots to 

cover the function of which “all values” are concerned. The form in which 

such propositions most frequently occur is the “formal implication,” i.e. such 

a proposition as 

(x) : (fix . D . yfrx, 

i.e. "(fix always implies yjrx." This is the form in which we express the 

universal affirmative “all objectshaving the property«/» have the property^." 

We shall denote “(fix sometimes” by the notation 

(g*) . (fix. 

Here “a” stands for “there exists,” and the whole symbol may be read 

“there exists an x such that (fix." 

In a proposition of cither of the two forms (x). (fix, (a#). <fix, the x is 

called an apparent variable. A proposition which contains no apparent 

variables is called “elementary,” and a function, all whose values are elemen¬ 

tary propositions, is called an elementary function. For reasons explained in 

Chapter II of the Introduction, it would seem that negation and disjunction 

and their derivatives must have a different meaning when applied to elemen¬ 

tary propositions from that which they have when applied to such propositions 

(«) • <fix or (ga?) . (fix. If (fi£ is an elementary function, we will in this number 

call (x) . (fix and (g#) . (fix “first-order propositions.” Then in virtue of the fact 

* We use “always” as meaning “in all cases,” not “at all times.” A similar remark applies 

to “sometimes.” 
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that disjunction and negation do not have the same meanings as applied to 

elementary «*r to first-order propositions, it follows that, in asserting the 

primitive propositions of *l,we must either confine them, in their .application, 

to projiositioiis of a single type, or we must regard them as the simultaneous 

assertion of a number of different primitive propositions, corresponding to the 

different meanings of “disjunction" and “negation.” Likewise in regard to 

the primitive ideas of disjunction and negation, we must either, in the primi¬ 

tive propositions of * I, confine t hem to disjunctions and negations of elementary 

propositions, or we must regard them as really each multiple, so that in regard 

to each type of pro|iosition.s we shall need a new primitive idea of negation 

and a new primitive idea of disjunction. In the present number, we shall 

show how, when the primitive ideas of negation and disjunction arc restricted 

t«« elementary propositions, and the p, <j. r of *1—*5 are therefore necessarily 

elementary propositions.it is possible to obtain definitions of the negation and 

disjunction «>f first-order propositions, and proofs of the analogues, for first- 

order propositions, of the primitive propositions *1*2—*(>. (*1’1 and *1*11 

have to be assumed afresh for first-order propositions, and the analogues of 

*17 717*2 require a fresh treatment.) It follows that the analogues of the 

propositions of *2—#•’> follow by merely repeating previous proofs. It follows 

also that the theory of deduction can be extended from first-order propositions 

to .vich as contain two apparent variables, by merely repeating the process 

which extends the theory of deduction from elementary to first-order pro¬ 

positions. Thus by merely re|>eating the process set forth in the present 

number, propositions of any order can Ik- reached. Hence negation and 

disjunction may be treated in practice as if there were no difference in those 

ideas as applied to different types; that is to say, when “ *>-* p" or “pvq 

occurs, it is unnecessary in practice to know what is the type of p or 7. since 

the properties of negation and disjunction assumed in *1 (which are alone used 

in proving other properties) can be asserted, without formal change, of pro¬ 

positions of any order or. iu the case of p v 7, of any two orders. The limitation, 

in practice, to the treatment of negation or disjunction as single ideas, the 

same in all types, would only arise if we ever wished to assume that there is 

some one function of yj whose value is always ~ p, whatever may be the order 

of p, or that there is some one function of p and 7 whose value is always pv 7, 

whatever may be the orders of p and 7. Such an assumption is not involved 

so long as p (and 7) remain real variables, since, in that case, there is no need 

to give the same meaning to negation and disjunction for different values of 

p (and 7), when these different values are of different types. But if p (or 7) 

is going to be turned into an apparent variable, then since our two primitive 

ideas (x). <£x and (g.r) . <f>x both demand some definite function <f>, and restrict 

the apparent variable to possible arguments for <p, it follows that negation 

and disjunction must, wherever they occur in the expression in which p (or 7) 

is an apparent variable, be restricted to the kind of negation or disjunction 
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appropriate to a given type or pair of types. Thus, to take an instance, if uv 

assert the law of excluded middle in the form 

'* h . p v ^ p " 

tliero is no need to place any restriction upon p: we mav give to p a value 

ot any order, and then give to the negation and disjunction involved those 

meanings which are appropriate to that order. But if we assert. 

" *■ • (/>)-/>v ^ p " 

it is necessary, if our symbol is to be significant, that "p v ~~ p" should be the 

value, for the argument p, of a function <f>p\ and this is only possible if the 

negation and disjunction involved have meanings fixed in advance, and if, there¬ 

fore, p is limited to one type. Thus the assertion of the law of excluded middle 

in the form involving a real variable is more general than in the form involving 

an apparent variable. Similar remarks apply generally where the variable is 

the argument to a typically ambiguous function. 

In what follows the single letters p and q will represent elementary pro¬ 

positions, and so will “yfra:," etc. We shall show how, assuming the 

primitive ideas and propositions of *1 as applied to elementary propositions, 

we can define and prove analogous ideas and propositions ns applied to pro¬ 

positions of the forms (a) . <f>x and (ax).<£x. By mere repetition of the analogous 

process, it will then follow that analogous ideas and propositions can be defined 

and proved for propositions of any order; whence, further, it follows that, in 

all that concerns disjunction and negation, so long as propositions do not 

appear as apparent variables, we may wholly ignore the distinction between 

different types of propositions and between different meanings of negation 

and disjunction. Since we never have occasion, in practice, to consider pro¬ 

positions as apparent variables, it follows that the hierarchy of propositions 

(as opposed to the hierarchy of functions) will never be relevant in practice 
after the present number. 

The purpose and interest of the present number are purely philosophical, 
namely to show how, by means of certain primitive propositions, we can 

deduce the theory of deduction for propositions containing apparent variables 

from the theory of deduction for elementary propositions. From the purely 

technical point of view, the distinction between elementary and other propo¬ 

sitions may be ignored, so long as propositions do not appear as apparent 

variables; we may then regard the primitive propositions of *1 as applying 

to propositions of any type, and proceed as in *10, where the purely technical 
development is resumed. 

It should be observed that although, in the present number, we prove 

that the analogues of the primitive propositions of *1, if they hold for propo¬ 
sitions containing n apparent variables, also hold for such as contain n + 1, 

yet we must not suppose that mathematical induction may be used to infer 

that the analogues of the primitive propositions of *1 hold for propositions 
r& w i 9 
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containing any number of apparent variables. Mathematical induction is a 

method of proof which is not yet applicable, and is (as will appear) incapable 

of being used freely until the theory of propositions containing apparent 

variables has been established. What we are enabled to do, by means of the 

propositions in the present number, is to prove our desired result for any as¬ 

signed number of apparent variables—say ten—by ten applications of the same 

proof. Thus we can prove, concerning any assigned proposition, that it obeys 

the analogues of the primitive propositions of *1, but we can only do this by 

proceeding step by step, not by any such compendious method as mathematical 

induction would afford. The fact that higher types can only be reached step 

by step is essential, since to proceed otherwise we should need an apparent 

variable which would wander from type to type, which would contradict the 

principle upon which types are built up. 

Definition of Negation. We have first to define the negations of (or). 

and (g* ).</>». We define the negation of (.*•) . <f>.r as (gj). ~ <£■**, "d 18 

not the case that </>./ is always true" is to mean "it is the case that not-<ftx 

is sometimes true.” Similarly t he negation of (gx). is to be defined os 

(.*•). ^ <ftx. Thus we put 

*9 01. ~ {(./■). <f> r\ . « . (gx). <f>.r Df 

*9 02. ~ |(g.#*). j. = . (•**) . ~ tf>x I)f 

To avoid brackets, we shall write ~ (x). <ftx in place of ~ ((x). <f>x\, and 

^ (g-c). </»/• in place of ~~ |(g-r) . <f>x}. Thus: 

*9 011. ~ (a:) . tf>r . = . {(.r) . <f>.r\ Df 

*9 021. ~ (gar) . <ftx . — . ~ |(g r) . <f>.c\ Df 

Definition of Disjunction. To define disjunction when one or both of the 

propositions concerned is of the first order, we have to distinguish six cases, 

as follows: 

*9 03 (a ) . <f>x. v . p : = . (x) . tf>r v p Df 

*9 04. ft. v . (x) . <f>x : = . (x). ft v tf>J' Df 

*9 05. (a*) . <f>j-. v . p : = . (gx). tf*x v y> Df 

*9 06. p. v . (g-r). <f>xz =. (gx). p v <f>.r Df 

*9 07. (x) . <ftx . v . (gy) . yfrj : = : (x) : (gy) .(ftxvyfri/ Df 

*9 08. (gy) . ^y . v . (.»•) . <f>.r : = : (x) : (gy) .yjryv<j>x Df 

(The definitions *9 07 08 arc to apply also when <f> and are not both 

elementary functions.) 

In virtue of these definitions, the true scope of an apparent variable is 

always the whole of the asserted proposition in which it occurs, even when, 

typographically, its scope appears to be only part of the asserted proposition. 

Thus when (g.c). <f>x or (x). tf>x appears as part of an asserted proposition, it 

does not really occur, since the scope of the apparent variable really extends 
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to the whole asserted projmsitiou. It. will In* shown, however. that. s.> far as i h<> 

theory of deduction is concerned. (g.r) . <f>x and (.»•> . <f>.r behave like propositions 

not containing apparent variables. 

The delinitions of implication, the logical product, and equivalence niv in 

be transferred unchanged to (.r) . <f>.c and (g.r). </>»•. 

The above definitions can be repeated for successive types,and thus reach 

propositions of any type. 

Pnmitive Propositions. The primitive propositions required are six in 

number, and may be divided into three sots of two. We have first two 

propositions, which effect the passage from elementary to first-order proposi¬ 

tions, namely 

*91. I- : <f>.r . D . (g*) . <f>z Pp 

*911. h : <f>x v </>//. D . (g*) . <f>z Pp 

Of these, the first states that, if <f>x is true, then there is a value of </>? 

which is true; i.e. if we can find an instance of a function which is true, then 

the function is "sometimes true.” (When we speak of a function as "some¬ 

times” true, we do not mean to assert that there is mure than one argument 

lor which it is true, but only that there is at least one.) Practically, the above 

primitive proposition gives the only method of proving "existence-theorems”: 

in order to prove such theorems, it is necessary (and sufficient) to find some 

instance in which an object possesses the property in question. If we were to 

assume what may be called "existence-axioms,” i.e. axioms stilting (g*) . <f>z for 

some particular tf>, these axioms would give other methods of proving existence. 

Instances of such axioms are the multiplicative axiom (*88) and the axiom of 

infinity (defined in *12003). But we have not assumed any such axioms in 

the present work. 

The second of the above primitive propositions is only used once, in 

proving (a*) •</>*. v . (g*) . <f>z : 0 . (gs) . <frz, which is the analogue of *12 

(namely pvp.O.p) when p is replaced by (gx). <f>z. The effect of this 

primitive proposition is to emphasize the ambiguity of the z required in order 

to secure (gx) . tf>z. We have, of course, in virtue of *9T, 

4>x . D . (gz) . <f>z and <f>y . D . (gz) . <f>z. 

But if we try to infer from these that <f>x v <f>y. D . (gx). </>x, we must use the 

proposition qDp.rOp.D.qyrDp, where p is (gx). <f>z. Now it will be 

found, on referring to *477 and the propositions used in its proof, that this 

proposition depends upon *1*2, i.e. py p.D . p. Hence it cannot be used by 

us to prove (g^:) . (f>x . v . (ga;) . <f>x : D . (g#) . <f>x, and thus we are compelled 

to assume the primitive proposition *9*11. 

We have next two propositions concerned with inference to or from propo¬ 

sitions containing apparent variables, as opposed to implication. First, we have, 

9—2 
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tor the new meaning of implication resulting from the above definitions of 

negation and disjunction, the analogue of *11, namely 

*9 12. What is implied by a true premiss is true. Pp. 

That is to say, given “h .//' and "h . /O 7.” we may proceed to"!-.?,” 

even when the propositions /> and 7 are not elementary. Also,as in *1*11, we 

may proceed from "h . <£./ and " h .</>./- D yjr.r '' to “ h . yfrx," where x is a real 

variable, and </> and \f/ are not necessarily elementary functions. It is in this 

latter form that the axiom is usually needed. It is to be assumed for functions 

of several variables as well as for functions of one variable. 

We have next tin- primitive proposition which permits the passage from a 

real to an apparent variable, namely “when <f>y may be asserted, wherey may 

be any po**ible argument, then (.#•). «f>x may be asserted.” In other words, when 

<f>y is true however y may be chosen among possible arguments, then (x). <f>x 

is true, i.c. all values of <f> are true. That is to say, if we can assert a wholly 

ambiguous value <f>y, that must be because all values are true. We may express 

this primitive proposition by the words: “What is true in any case, however 

the case may be selected, is true in alt cases.” We cannot symbolise this pro¬ 

position, because if we put 
"\- :*t>y. D .(x). 4>u 

that means: "However y may be chosen. <f>y implies (x). <f>x," which is in 

general false. What we mean is: " If tf>y is true however y may be chosen, then 

(x). (f>s is true." But we have not supplied a symbol for the mere hypothesis 

of what is asserted in "h . 4>y. where y is a real variable, and it is not worth 

while to supply such a symbol, because it would be very rarely required. If, 

tor the moment, we use the symbol [<f>y] to ex pros this hypothesis, then our 

primitive proposition is 

h :[<f>y).D .(x).<t>x Pp. 

In practice, this primitive proposition is only used for inference, not for impli¬ 

cation; that is to say, when we actually have an assertion containing a real 

variable, it enables us to turn this real variable into an apparent variable by 

placing it in brackets immediately after the assertion-sign, followed by enough 

dots to reach to the end of the assertion. This process will be called “turning 

a real variable into an apparent variable.” Thus we may assert our primitive 

proposition, for technical use, in the lorin: 

*9T3. In any assertion containing a real variable, this real variable may be 

turned into an apparent variable of which all possible values are asserted to 

satisfy the function in question. Pp. 

We have next two primitive propositions concerned with types. These 

require some preliminary explanations. 

Primitive Idea: Individual. We say that x is “individual” if x is neither 

a proposition nor a function (cf. p. 51). 
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*9131. Definition of "briny of the same type." The following is a stcp-by-st«-p 

definition, the definition lor higher types presupposing that Ihr lower types. 

We say that u and v “are of the same type" if (1) both are individuals, (2) hot li 

are elementary functions taking arguments of the same type. (3) // is a function 

and v is its negation, (4) u is <£7 or \fr.r, anil v is <f>.7 v \fr.r, where <f>.r and \ls.7 

are elementary functions, (5) « is (y). 4> (.7, y) and /• is (;> . \fr (.71, s), where 

<f> (•**. J), ^ (.r. y) are of the same type. (G) both are elementary propositions. 

(7) u is a proposition and e is ~i#, or (8) u is (u ) . <f>.r and r is (//). ypy. where 

</>•«* and are of the same type. 

Our primitive propositions are: 

*914. If u<f>x" is significant, then if x is of the same type as a, "<!>•' " i* 

significant, and vice versa. l*p. (Cf. note on *10 1*21, p. 140.) 

*915. If, for some a, there is a proposition <f>a, then there is a function <f>x, 

and vice versa. Pp. 

It will be seen that, in virtue of the definitions. 

(*•) . 4>x . D . p means ~(ar) . <f>x . v . p, i.e. (g.c) ,~<f>x . v . p, 

i.e. (gar) .-v^xv p. i.e. (gx) . <f>x D p 

(gar) . <f>x . D . p means ~(gx). <f>x . v . p, i.e. (x) . fix . v . p, 

i.e. (a:) .-v^vp, i.e. (x). <f>x D p 

In order to prove that (x) . tf>x and (gar) . <f>x obey the same rules of deduction 

as <f>x, we have to prove that propositions of the forms (x) . (f>x and (g.t) . <t>x 

may replace one or more of the propositions p, q,r in *1*2—'G. When this has 

been proved, the previous proofs of subsequent propositions in *2—*5 become 

applicable. These proofs are given below. Certain other propositions, required 

in the proofs, are also proved. 

*9 2. h : (a:) . <f>x . D . <f>y 

The above proposition states the principle of deduction from the general 

to the particular, i.e. “what holds in all cases, holds in any one case.” 

Dem. 

h . *2-1 . D h . ^ <fty v <f>y (1) 
h . *91 . D h :~<f>y v 4>y ■ ^ • (a*) .~*'tf>x v <f>y (2) 

h . (1) . (2) . *1T1 . D h . (a*) <f>xv<f>y (3) 
[(3).<*905)] h : (a*) — (ftx . v . <f>y (4) 

[(4).(*9 01 .*1 01)] H : (x) . 4>x ■ ^ -4>y 

In the second line of the above proof, “ ~ <f>y v <f>y ” is taken as the value, 

for the argument y, of the function 11 ~ <f>xv 4>y,” where x is the argument. 

A similar method of using *9T is employed in most of the following proofs. 

*1'11 is used, as in the third line of the above proof, in almost all steps 

except such as are mere applications of definitions. Hence it will not be 
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further referred to, unless in cases where its employment is obscure or specially 

important. 

*9 21 h (./*). <f>> (.#•). <f>, . D . (x). >\r.e 

I.e. if <f>j- always implies \fr.r. then "<f>x always” implies "^.c always.” The 

use of this proposition is constant throughout the remainder of this work. 

I)em. 

H . *2 08 . D h : <f>z D z . D . </>.0 y\rz (1) 

y . (1). *0 1 . D y : (gy): 4>z D yfr: . D . «/>// D >\rz (2) 

4.(2). *91. D 1- (gx)(g//): <f>.c D \Jrx. D . <£y D \frz (3) 

y.(3).#!) 13. D h ::(*):: (gx):. (gy): 4>x D yfrx. D . D (4) 

[<4).(*9’0(i)] y (gx):.<£/• D yfr.c. D : (g»/). <£// D \frz (5) 

[(•">).(*I 01.*0 08>] y (g.« ). D f r); v : : (g v). ^ v ((>) 

ft (>).<*') 08)] y (gx). ^ (<£./ D yfr.r): v : (gy). ~ <f>y . V . (t). y/r* (7) 

[< 7 >•(*» I *01)] y fO >/r a-. D:(y).0//. !>.(*). yfrz 

This is tin- proposition to be proved, since *'(y). <f>y '' is the same propo¬ 

sition as ’*(.r). <£./," and yf'z" is the same proposition as "(x). yjrx." 

*9 22 y (x) . <f>xD yfrx. D : (gx) . </>x . D . (gx). ^rx 

I.e. if <f>c always implies \frs, then if «/>x is sometimes true, so is yjr.c. This 

proposition, like *0 21. is constantly used in the scipiel. 

Dem. 

H . *2 08 . D y : <£y D y\nj . D . <£y D yjri/ (1) 

h. (1). *9*1 . (2) 

y . (2) .*91. D h :. (ax) :. (gx) : <£.r D >/rx . D . </>y D (3) 

h . (3). *013 . D 1- ::(y)::(gx):.(gx): <£x D >/rx. D . </>y Df: (4) 

[(4).(*!)0G)] h::(y)::(gx):.<£xD^x.D:(g*).<£yD>/rx (5) 

[(5).(* 1 01 .*0 08)] l-::(gx)—(tftc D yftx): v : (y): (gx). <f>y D yfre (C) 

[(0).(*1 01.*9-07)] H :: <gx) .~(4x D >/rx): v : (y) .~</>y . v . (gx). '/'x (7) 

[(7).(* 1 01 .*9 01 02)] y :.(x) . «/».c D >/r.c. D : (gy) . «£y . D . (gx) . yfrz 

This is the proposition to be proved, because (gy). </>y is the same pro¬ 

position as (gx) . (f>.r. and (gx) . yfrz is the same proposition as (g.r) . yfr.r. 

*9 23. h : (x). <f>x. D . (x). <*>x [Id . *913 21] 

*9 24. y : (gx). <f>x. D . (gx). 0.r [Id . *91322] 

*9 25. h :. (x) . p v <f>x . D : p . v . (x). ^x [*9 23 . (*9 04)] 

We are now in a position to prove the analogues of *12—'6, replacing 

one of the letters p, q, r in those propositions by (x) . <£x or (gx). <f>x. The 

proofs are given below. 
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*9 3. b (a ) . 0a . v . (a-) . 0a : D . (a:) . 0a 

Dem. 

h. *1 *2. Dh. 0a v 0a. D . 0a (l) 

h . (1) . *91 . D b : (gy) : 0a v 0y . D . 0a (2) 

H . (2). *913 . D h (a)(gy) : 0a v 0y. D . 0a (3) 

[(3).(*9 05 01 04)] b (a*) 0a. v . (y). 0y : D . 0a (4) 

h . (4) . *9 21 . D b (a*): 0.v . v . (y). <f>y : D . (a*). 0a (5) 

[(5).(*903)] h (a) . 0a . v . (y) . 0y : D . (a). 0 a DK Prop 

*9 31. b (ga) . 0a . v . (gar) . 0a : D . (ga) . 0a 

This is the only proposition which employs *911. 

Dem. 

b. *91113. D b : (y) : 0a v 0y . D . (g*) . 02 (1) 

[(1).(*90302)] b : (gy) . 0a v 0y . D . (g*). 02 (2) 

1- . (2). *913 .DP: (ar) s (gy) . 0a v 0y . D . (32) . 02 (3) 

[(3).(*9 03 02)] b (gar) : (gy). 0a v 0y : D . (32) . 02 (4) 

[(4).(*90506)] b (gar) . 0a . v . (gy) . 0y : D . (32) . 02 

*9 32. b 9 . D s (a) . 0a:. v . 9 

Dem. 

b.*l’3. D b 9 . D : 0a. v . 9 (1) 

h . (1) - *913 . D b (a) 9 . D : 0a . v . 9 

[*925] D h 9 . D : (a) : 0a . v . 9 (2) 

[(2).(*903)] b 9 . D : (a) . 0a . v . 9 

*9*33. b 9. D : (ga) - 0a . v . 9 [Proof as above] 

*9 34. b (a) . 0a. D : p . v . (a) . 0a 

Dem. 

b . *l-3 . Db:0a.D.pv0a (1) 

b . (1) . *913 . Db:(a):0a.D.pv0a (2) 

1-. (2) . *9 21 . D b : (a) . 0a . D . (a) .p v 0a (3) 

b . (3) . (*9 04) . D b . Prop 

*9 36. b (ga) . 0a . D : p . v . (ga) . 0a [Proof sis above] 

*9 36. b p . v . (a) . 0a : D : (a) . 0a . v . p 

Dem. 

b.*l*4. Db:pv0a.D.0avp (1) 

b.(1). *9T3 21 . D b : (a) .p v 0a . D . (a) . 0a vp (2) 

b . (2) . (*9 03 04) . D b . Prop 

*9*361. b (a) . <f>x .v.p:D:p.v. (a) . 0a [Similar proof] 

*9 37. b :.p . v . (ga) . 0a : D : (ga) . 0a . v .p [Similar proof] 

*9371. b (ga) .0a.v.p:D:p.v. (ga) . 0a [Similar proof] 
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*9 4. b :: p : v : 7 . v . (x). £xD 7 : v :p . v . (x). <£x 

Dem. 

b . *1*5 . *9 21 . Dh. (x) zp . v . 7 v <f>x : D : (.r): 7 . v .y> v <£x (1) 

I- . (1) .(*9-04). D b . Prop 

*9 401. b :: y>: v : 7 . v . (go-). <£x D 7 : v : yi. v . (gx) . <f>x [As above] 

*9 41. b ::y>: v : (x) .^r.v.rs.D:. (x) ,<f>rzvzpvr [As above] 

*9 411. h :: y>: v : (gx). <f>r . v . #•D :.(gx). <f>x : v : j>v r [As above] 

*9 42 I- :: (x). <f>x : v : 7 v rD :. 7 : v : (x). </>.r . v . r [As above) 

*9 421. 1- :: (gx). Qxz v : 7 v rD 7 : v : (gx). <f>* . v . r [As above] 

*9 5. b :: yO 7.3 :./>. v . (x). <£./ : D : 7 . v . (x). ^>x . 

l)em. 

b.*l-6. D I-:. /> D 7. D : /> v <^»v. D . 7 v <^>y (1) 

b . (1). *91 . (*9'06). D h /O 7 . D : (gx) : /»v 0./-. D . 7 v <£ ;/ (2) 

I- . (2). *9 13 .(*9 04). D b :: /O 7 . D (»/)(gx): y> v <£x. D . 7 v <£// (3) 

[(3).(*908)] h ::/> D 7 . D (gx) —(/> v $x). v . (y). 7 v <f>y (4) 

[(4).(*9’01)] h ::/>D7. D (x)./) v . D.(»/).7v (/>// (5) 

[(3).(*9 04)] 1- :: yO 7 . D . v . (x). (f>x : D : 7 . v . (y). <£.»/ 

*9 501. b :: /O 7 . D :. yi. v .(gx) . <£.» : D : 7. v . (gx). «/>x [As above] 

*9 51. b :: y>. D . (x). <£x : D p v r. D : (x). <£x . v . r 

Dem. 

b . #rc. D b y> D .Dspvr.D. ^>x v r 0) 

b . (1). *913 21 . D b :: (x). y> D 0x . D (x): /> v >•. D . <f>.v v r (2) 

b . (2) . (*90304). D b . Prop 

*9 511. b :: p . D . (gx). <f>.> : D p v r. D ; (gx). <£x. v . r [As above] 

*9 52. b :: (x). <f>.r . D . 7 : D (x) .^x.v.rO.jvr 

Dem. 

b.*10. D b £x D 7 . D : <f>x v r. D . 7 v r (1) 

b .(1). *913-22. D b :: (gx) . <£x D7 . D :.(gx) : <f>x v r. D . 7 v r (2) 

b . (2). (*9 05 01). D b :: (x) . <f>.r . D . 7 s D s. (x). *x v r. 3.7 v r (3) 

b . (3). (*9 03). Db. Prop 

*9 521. b :: (gx). <frx. D . 7 : D :. (gx). <£x . v . r: D . 7 v r [As above] 

*9 6. (x). </>x. ~(x). <£x, (gx). <f>r ami ~(gx). <f>x are of the same type. 

[*9-131, (7) and (8)] 

*9 61. If <f>x and yfrf are elementary functions of the same type, there is a 

function <f>x v 

Dem. 

By *91415, there is an a for which "yfra," and therefore “<£«." are 

significant, and therefore so is “<f>a v y/ra,” by the primitive idea of disjunction. 

Hence the result by *9'15. 

The same proof holds for functions of any number of variables. 
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*9 62. If <f> (.r, (/) ami are elementary functions, ami the .r-argumont. t o 

<P is of the same type as the argument to yjr, there are functions 

(y) • 4> !/) • V - yjr.r. (a*/) . <t> (.7. if) . V . ir.r. 

Deni. 

By *915. there are propositions <£(.r. b) ami yfra, where by hypothesis .»• 

and a are of the same type. Hence by *9-14- there is a proposition <f>(a, b), 

and therefore, by the primitive idea of disjunction, there is a proposition 

<£ (<*, b) v \j/a, and therefore, by *915 and *9'03. there is a proposition 

(y) • <f> (o, y> . v . yfra. Similarly there is a proposition • ♦ (<*. //) • v • 

Hence the result, by *9 15. 

*9'63. If <fr (.?, f)), yjr^, 5) are elementary functions of the same type, there 

are functions (i/). <t> (.2, y). v . (s) . \jr (.7, s), etc. [Proof ns above] 

We have now completed the proof that, in the primitive propositions of 

*1, any one of the propositions that occur may be replaced by (.r*). <f>.r or 

(3x). <f).v. It follows that, by merely repeating the proofs, we can show that 

any other of the propositions that occur in these propositions can be simul¬ 

taneously replaced by (a). yfrx or (jpr). yfrx. Thus all the primitive propositions 

of *1, and therefore all the propositions of *2—*5, hold equally when some 

or all of the propositions concerned are of one of the forms (x). <f>.r, (ft#) . </>.r, 

which was to be proved. 

It follows, by mere repetition of the proofs, that the propositions of *1—*5 

hold when p, q, r arc replaced by propositions containing any number of 

apparent variables. 



*10. THEORY OF PROPOSITIONS CONTAINING 

ONE APPARENT VARIABLE 

Sii in mu ry of * 10. 

The chief purpose of the propositions of this number is to extend to 

formal implications (i.e. to propositions of the form (x) . ^D|.r) as many as 

possible of the propositions proved previously for material implications, i.e. 

for propositions of the form p D 7. Thus e.y. we have proved in *3 33 that 

p D <[ . #/ D /•. D . /O r. 

Put /> = Socrates is a Greek, 

tj m Socrates is a man. 

/• = Socrates is a mortal. 

Then we have "if 'Socrates is a Greek' implies 'Socrates is a man,' and 

* Socrates is a man ' implies 'Socrates is a mortal,' it follows that 'Socrates is 

a Greek implies 'Socrates is a mortal.’" But this does not of itself prove 

that if all (Jreeks are men. and all men are mortals, then all Greeks are 

mortals. 

Putting <f>.r . = . .r is n Greek, 

. » . x is a man. 

\x. * . x is a mortal, 

we have to prove 

(x) . tf>x D >frx : (x) . y/rx (x) . <f>x D yx. 

It is such propositions that have to be proved in the present number. It will 

be seen that formal implication ((j).fO|j) is a relation of two functions 

4>x and y\rx. Many of the formal properties of this relation are analogous to 

properties of the relation "pDt/" which expresses material implication; it is 

such analogues that arc to be proved in this number. 

We shall assume in this number, what has been proved in *9, that the 

propositions of *1—*5 can be applied to such propositions as (x) . <px and 

(gx). Instead of the method adopted in *9, it is possible to take negation 

and disjunction as new primitive ideas, as applied to propositions containing 

apparent variables, and to assume that, with the new meanings of negation 

and disjunction, the primitive propositions of *1 still hold. If this method is 

adopted, we need not take (gx). <f>.r as a primitive idea, but may put 

*10 01. (gx). <f>x. = . ~(x) ,~<f>x Df 

In order to make it clear how this alternative method can be developed, 

we shall, in the present number, assume nothing of what has been proved in 

*9 except certain propositions which, in the alternative method, will be 

primitive propositions, and (what in part characterizes the alternative method) 
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the applicability to propositions containing apparent variables of analogues 

of the primitive ideas and propositions of *1, and therefore of their conse¬ 

quences as set forth in *2—*5. 

The two following definitions merely serve to introduce a notation which 

is often more convenient than the notation (.#•) . <f>.r D yfrx or (.<*). </><• zi \fr.v. 

*10*02. <f>x Dx yfr.c . = . (.«•) . <fyv D yfrx Df 

*10 03. <f>x =x yfrx . = . (.»’) . <f>x = yfrx Df 

The first of these notations is due to Peano, who, however, lias no notation 

for (x). <f>x except in the special case of a formal implicat ion. 

The following propositions (*10*1*11*12*121*122) have already been given 

in *9. *10 1 is *9*2, *10 11 is *9 13. *10 12 is *9*25. *10121 is *91+. and 

*10122 is *9*15. These five propositions must all be taken as primitive 

propositions in the alternative method; on the other hand, *9*1 and *911 are 

not required as primitive propositions in the alternative method. 

The propositions of the present number are very much used throughout 

the rest of the work. The propositions most used are the following: 

*101. h : (x) . <f>x . D . <f>y 

I.e. what is true in all cases is true in any one case. 

*10 11. If <f>y is true whatever possible argument y may be. then (x) . <pv is 

true. In other words, whenever the propositional function <f>y can be asserted, 

so can the proposition (x) . <f>x. 

*10*21. h (a:) . p D <f>x . = : p . D . (x) . <f>x 

*10 22. h (x). <f>x . yfrx . = : (x) . <f>x : (x) . yfrx 

The conditions of significance in this proposition demand that <f> and yfr 

should take arguments of the same type. 

*10 23. h (x) . <f>x Dp • 3 : (gx) . 4>x .D.p 

I.e. if <f>x always implies p, then if <j>x is ever true, p is true. 

*10*24. h : <f>y . D . (gx). <f*x 

I.e. if <f>y is true, then there is an x for which <f>x is true. This is the sole 

method of proving existence-theorems. 

*10 27. 1- :.(*). <f>z D yftg. D :(*).$*. D . (z) . yfrz 

I.e. if <pz always implies yfrz, then “ tf>z always ” implies “ yfrz always.” The 

three following propositions, which are equally useful, are analogous to *10*27. 

*10*271. h {z) . <f>z = yfrz . D : (z) . <f>z . = . (*) . yfrz 

*10*28. I-(x) . <fjx D yfrx . D : (gx) . <£x . D . (gx) . yfrx 

*10*281. h (x) . <f>x = yfrx . D : (gx) . <f>x . = . (gx) . yfrx 

*10 36. I-(gx) . p . <£x . = : p : (gx) . <f>x 

*10*42. h (gx) . <£x . v . (gx) .yfrx: = . (gx) . tf>x v yfrx 

*10*6. > (gx) . tf>x . yfrx . D : (gx) . <f>x : (gx) . yfrx 
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It should be noticed that whereas *10 42 expresses an equivalence, *105 

only expresses an implication. This is the source of many subsequent 

differences between formulae concerning addition and formulae concerning 

multiplication. 

*1051. h ~ |(g.r) . <f>x . yfrj-1 . = : $x . Dx . ^ yfr.r 

This proposition is analogous t• • 

b : ^ </>.»/). = ./> D ~ 7 

which results from *4<>3 by transposition. 

Of the remaining propositions of this number, some are employed fairly 

often, while others are lemmas which are used only once or twice, sometimes 

at a much later stage. 

*10 01. . 4>I . = . ^(.r) . Df 

This definition is only to be used when we discard the method of *9 in 

favour of the alternative method already explained. In either case we have 

I- : (C*|*) • </>' • 2 . ~(x) • ^ 

*10 02. 4>.r D, \fr.r , m . (s) . <f>.r D \frx I )f 

*10 03. </>./ =, >/r./•. = . (x) . <£.r 2 Df 

*10 1. I- : (.#•). <f>.r . D . <fji/ [*!P2] 

*1011. If <t»j is true whatever possible argument y may be, then (x),fa is 

true. [*913] 

This proposition is, in a sense, the converse of *101. *10 1’ may be stated: 

" What is true of all is true of any," while *1011 may be stated : “ What is 

true of any. however chosen, is true of all.” 

*1012. b (.*•). p v <f>x. D : p . v . (a*). ^.r [*!b25] 

According to the definitions in *0, this proposition is a mere example 

of "7 3 7," since by definition the two sides of the implication are different 

symbols for the same proposition. According to the alternative method, on 

the contrary. *1012 is a substantial proposition. 

*10121. If " <f)j■" is significant, then if a is of the same type os x, u<f>a" is 

significant, and vice versa. [*914] 

It follows from this proposition that two arguments to the same function 

must be of the same type ; for if x and a arc arguments to "<f>x” and "</>« 

are significant, ami therefore x and a are of the same type. Thus the above 

primitive proposition embodies the outcome of our discussion of the vicious- 

circle paradoxes in Chapter II of the Introduction. 

*10 122. If, for some a, there is a proposition <f>a, then there is a function <f>$, 

and vice versa. [*915] 

*1013. If ffta1 and yfrj1 take arguments of the same type, and we have “b ,<f>x” 

and “b . yfrx,” we shall have "b . <px. ylrx." 
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Dem. 

By repeated use of *lH>rU2T>3131 (3). t here is a function «■'»' (fax V <—• \f/.r. 

Hence by *211 and *3 01, 

h : <p.v v <-**■ \fr.v . V . (far . yjr.r ( 1 ) 

h . f l) . **2 3*2 . (*101) .3 1-:. <*m . 3 : ^-x. 3 . </>.r . >/r.r (2) 

1-. (2) . *012.3 h . Prop 

*1014. h (.r) . (fax : (,r) . >Jr.r : D . <£y . \fay 

This proposition is true whenever it is signiticant, but it is not always 

significant when its hypothesis is significant. For the thesis demands that 

0 and yfr should take arguments of the same type, while the hypothesis does 

not demand this. Hence, if it is to be applied when (fa and \fr are given, or 

when yjr is given as a function of (fa or vice versa, we must not argue from the 

hypothesis to the thesis unless, in the supposed case, (fa and \fr take arguments 

of the same type. 

Dem. 

K*10l. DK : (x) . (fax. D .(fay (i) 
K*10l. Dh z(x).yfrx. O.yfry (2) 

(1). (2). *1013.3 1- :{x).(fax.O .fay z(x) .yfrx ,D . -fry : 

[*3 47] D h :. (x). <fax : (x) . yfax : 3 . fay . yfry :. 3 H . Prop 

*102. 1-(x) . pv (fax . s : p. v. (x). (fax 

Dem. 

h . *10*1 . *16.3 h p . v . (x) . (fax : 3 . p v (fay 

[*1011] 3 1*:. (y):. p . v • (x) . (fax : 3 . pv fay :. 

[*1012] 3 h :. />. v . (x). (fax : 3 . (y) . /> v <f>y (1) 
1- .*1012. 3l*:.(y).pv^y.3:p.v. (x). (fax (2) 

h.(l).(2). 3 h . Prop 

*10 21. h :. (x) . p 3 (fax . = sjp.3.(x).^x 1*10 2^ 
w 

This proposition is much more used than *10 2. 

*10 22. h :. (x) . (fax . yfrx :. = z(x).faxz(x).yfrx 

Dem. 

h.*101 . 3 1-: (x) . (fax . >/rx .D .fay. yfry . (1) 

[*326] 3.*y: 

[*1011] 3 h (y) : (x) . (fax . ^x .D .fay z. 

[*1021] 3 h :. (x). (fax . yfrx. 3 . (y) . <£y (2) 

h . (1). *3*27 . 3b:. (x) . (fax . yfrx . 3 . >p*2 :. 

[*1011] 3 h :. (s) : (x) . (fax . yfrx . 3 . :. 

[*10-21] 3 h :. (x) . (fax . yfrx . 3 . (*) . ^ (3) 

h . (2) . (3) . Comp . 3 h :. (x) . (fax . yfrx . 3 : (y) . (fay : (z) . yfrz (4) 

h. *101411. 31-:. (y) (x) . (fax : (x) . yfrx : 3 . fay . yfry z. 

[*10-21] 3 1*:. (x) . (fax : (x). yfrx : 3 . (y) . <£y . ^y (5) 

K(4).(5). 3 h . Prop 
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The above proposition is true whenever it is significant; but, as was 

pointed out in connexion with *10 14, it is not always significant when 

“ (./•) . <*>/•: (.*•). yjr.r " is significant. 

*10 221. If 4>.r contains a constituent \ (x. y. z, ...) and yfrx contains a con¬ 

stituent x <'* M» r* •••)• "here x >s an elementary function and y, z,... u, v, ... 

are either constants or apparent variables, then <f>r and yjrx take arguments 

of the same type. This can be proved in each particular case, though not 

generally, provided that, in obtaining <£ and from x* X *s onb* submitted 

to negations, disjunctions and generalizations. The process may be illustrated 

by an example. Suppose </>./ is (//>• X<•'•.'/)• an! yjrx is fx . 0•(y)•x (*»y)* 

By the d. tinit ions of *0, <£.#■ is (gy). ~ x (•r. y)v &r. and '/'x is v X 

Hence since tin* primitive ideas (./). Fx and (g.r) . Ftf only apply to functions, 

there are functions //) v #'k- ~/a vx(•'*. y)- Hence there is a proposi¬ 

tion ^x^#» b)vflii. Hence, since “pvtj" and are only significant 

when jt and 7 are propositions. there is a proposition x^*> ^)* Similarly, for 

some // and /*, there are propositions -v/« vx (m, «») and x(M* *')• Hcncc by 

*014, // and «, v and are respectively of the same type, and (again by *914) 

there is a proposition ~/u v x (". M- Hence (*015) there arc functions 

^X (°> 5) v v X .V). and therefore there are propositions 

<a//) • ~x <«. //)v (y). V X (". y). 

t.c. there are propositions <f>a. yfra, which was to be proved. This process can 

be applied similarly in any other instance. 

*10 23. b :. (x) . <f>.i Dy>. s : (gx). <f>x .D.ji 

Dem. 

b . *4 *2 . (*0 03). D b (x) . ~tf>x v p . = : (x) . . v . p : 

[(*0 02)] s-(a *).$*. 3./> W 

h.(l).(*l'0l). UK Prop 

In the above proof, we employ the definitions of *0. In the alternative 

method, in which (gx). tf>.> is defined in accordance with *10 01, the proof 

proceeds as follows. 

*10 23. b :. (x). <f>.i D p . = : (gx) . <f>x .D . p 

Dem. 

b . Transp .(*10 01). D b :.(gx). tf>x. D . p : = : . D . (x). ~<£x : 

[*10-21] = : (x) : . D . ~ </>***: (0 

[*10 1] D 3 

[Transp] D z <f>x .0 . p z. 

[*1011] Dbz. (x) (gx). <px .0 . p zD z <f>x .D . p :• 
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[*10*211 D h (g.r) . </>.,*. D . P : D : (.r>: </»./ . D . p {2) 

1- . *10*1 . D h (.r) : tf>.r tf>.r D /»: 

[Transp] D : . D . ^ </m* 

[*10*11*21] D h (a*) : </>./•. D . /»: D : (.•*) : . D . : 

[U>] D :(g.#>. «/>.r . D ./> (3) 

1-. (2) . (3). D H . Prop 

\\ henever we have an assorted proposition of the form /> D <£.»-, we can 

pass by *10*11*21 to an asserted proposition />. D .(.*•). This passage is 

constantly required, as in the last line but one of the above proof. It will 

be indicated merely by the reference M *10*11*21," and the two sli ps which it 

requires will not be separately put down. 

*10'24. h : <f>y . D . (gx) . <£.»• 

This is *9*1. In the alteruative method, the proof is ns follows. 

Dem. 
h . *10*1 . D h : (a:) <f>.i 

[Transp] . ~(.r) : 

[(*10*01)] D h . Prop 

*10-25. h : (x) . <f>x. D . (gar) . <f>.v [*10*1*24] 

*10-251. h : (x) —<px . D — {(x) . <*>x) [*10*25 . Transp] 

#10-252. h : ~ |(gx) . <f>x\ . = . (x) . ~ 4>x [#4 2 . (*9 02)] 

*10-253. h : ~ |(x) . <*>x) . s . (gx) — <f>x [*4*2 . (#9*01)] 

In the alternative method, in which (gx). <f>x is defined as in *10*01, the 

proofs of *10*252*253 are as follows. 

*10 252. h:~j(gx).<*>x). = .(x).~<*>x [*4*13 . (*10*01)] 

*10 253. I- : ^ |(x) . <j>x\ . = . (gx) . ~ tf>x 

Dem. 

H • *10*1 . D I-: (x) . <f>x .D.tf*y. 

[*212] 

[*10*11*21] D h : (x) . <f>x . D . (y) —(~<*>y) s 

[Transp] D h :~{(y) .~(~<f>y)j .D.~|(x).*x): 

[(*10 01)] D h : (gy) .~<£y • D ,~|(x). <£x) (i) 
K . *10*1 . DH:(y).~(~^y). D .~(~^2-) . 

[*214] D . <f>x: 

[*10*11*21] D h : (y) —(~<*>y) - D . (x) . <f>x : 

[Transp] D t- : ~ ((x) . <f>xJ . ^ —l(y) —(~0y» • 

[(*1001)] 3 • (ay)-~£y (2) 

h . (1) . (2) .Dh. Prop 
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*10-26. h (z). <f>z ^ \frz : <f>.r : O . r [*101 . Imp] 

This is one form of the syllogism in Barbara. E.g. put <f>z . = . z is a man, 

>frz . = . z is mortal. .r = Socrates. Then the proposition becomes: 

“If all men are mortal, and Socrates is a man, then Socrates is mortal.” 

Another form of the syllogism in Barbara is given in *103. The two 

forms, formerly wrongly identified, were first distinguished by Peano and 

Frege. 

*10 27. V U). 4>z 3 Vr- • 3 : (z). <frz . 3 . (2). y\rz 

This is *9*21. in the alternative method, the proof is as follows. 

Deni. 

h . *10 14 . 3 h :.(*>• <t>z 3 y\rz : (r). <f>z : 3 . <f>y 3 . </>y . 

[Ass] 3.>fry:. 

[*101] 3 h (y)(i). <f>z 3 y/rz : (*). <f>z : 3 . yfrg 

[*1021] Dh :.(z).<f>z'D\lrz:(z).<f>z .(g).yfrg (1) 

h . (1). Exp • 3 h • Prop 

*10 271. 1- :• (*). <f>z m yfrz. 3 s (z). <f>z. s . (*) . yfsz 

Dem. 

h. *10*22. 3 I-Hp . 3 : (z). </>* 3 yfrz : 

[*10 27] 3: {*).+£ (1) 

h. *10*22. Dh.H|i.D:(r).^:D</»:: 

[*10*27] D:(z).ylrz.D.(z).<t>z (*) 

I- . (1) . (2). Comp . 3 . Prop 

*10*28. h (x) . <t>f 3 >Jrx. 3 : <gx). </>x . 3 . (gx) . >frx 

This is *0*22. In the alternative method, the proof is as follows. 

Dem. 

h . *10*1 . Dh.(x). <f>x 3 V'-r . 3 . <£y 3 >/ry . 

[T rausp] 3 .^A/fy 3~<£y 

[*10*11*21] 3 h :. (x). £x 3 ^rx. 3 

[*10*27] 3 :(y).~>/ry . 3 .(y).~<£y : 

[Transp] 3 : (gy). <py . 3 - (ay). ^y =• ^ *" • ProP 

*10 281. f-:.(x).^c=^x.3:(gx).</>x. = .(gx).i/rx [*10*22*28 . Comp] 

*10 29. H (x) . <f>x 3 yfrx : (x) .^x3xx: = :(x):</u.D.fx. X*. 

Dem. 

h . *10*22 . 3 h (x) . <f>x 3 >/rx : (x) . <f>xO xxz 

= : (x) : 4>x 3 >/rx. <f>x 3 x* (*) 

I-. *4*7G . 3 I-£x 3 >/rx . <f>x 3 x^ • = : <f>x • 3 • '/'“x • Xa*:* 

[*10*11] 3 h (x) <f>x 3 >Jrx. <f»x 3 xx • = : 4>x • ^ :* 

[*10*271] 3h.(x): ^r3|x.^3xx:s:(x):^.D.fx.x^ (2) 

h . (1) . (2) . 3 h . Prop 

This is an extension of the principle of composition. 
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*10 3. b (.r) . <f>x D yfrx : (x) . yfrx D yx : D . (.r) . </».r D y.r 

This is the second form of the syllogism in Barbara. 

Dem. 

h . *10*22*221 . D b : Hp . D . (x) . <£x D yfrx . >/r.r D x.r. 

[Syll.*10 27] D . (.r>. <*>., D **•: D b . Prop 

*10 301. b (.r) . <£x = yfrx : (.r) . yfrx = *.i* : D . (x) . <f>x s yx 

Dem. 

h . *10*22 *221 . D b Hp . D : (.r) . <fix = >/r.r . yfrx = *.»• : 

[*1*22.*10*27] D : (or). <f>x = x.r D b . Prop 

In the second line of the proofs of *10*3 and *10*301. we abbreviate the 

process of proof in a way which is often convenient. In *10*3. the full process 

would be as follows: 

H . Syll. D b : <f>x D yfrx. yfrx D yx . D . <£.* D ^.r: 

[*1011] D b : (x) : <£x D yfrx. >/r.r D Xx. D . <f».c D *x : 

[* 10 *27 ] D b : (x) . <px D >/rx. >/rx D ^a*. D . (x). <f>x D ^x 

The above two propositions show that formal implication and formal 

equivalence are transitive relations between functions. 

*10*31. I- (x). <f>x D yfrx . D : (x) s <ftx. yx • ^ ^ 

Dem. 

H . Fact. *10*11 . D b (x) </>x D >/rx . D : <£x . *x . D . >/rx . ^x (1) 

h • (1) . *10*27 . D b . Prop 

*10 311. I- (x) . <f>x = >/rx . D : (x) : <f>x. yx. = . yfrx. *x 

Dem. 

b . *4*36 . *10*11 .D h 

h • (1) . *10*27 . Db. 

The above two propositions are extensions of the principle of the factor. 

*10*32. b : <px =x yfrx . = . yfrx =* <f>x 

Dem. 

V . *10*22 . D b : (f>x =x yfrx . = . <f>x Dx yfrx . >/rx Dx <f>x . 

[*4 3] = . yfrx Dx <f>x . <t>x Dx yfrx . 

[*10*22] = . yfrx =x <f>x : D h . Prop 

This proposition shows that formal equivalence is symmetrical. 

*10*321. b : <f>x =x yfrx . <f>x =x yx . D . yfrx =x yx 

Dem. 

b . #10*32 . Fact. D b : Hp . D . yfrx =x <f>x . <f>x =x yx . 
[*10 301] 0.yfrx=xyxzD b . Prop 

*10*322. b : yfrx =x <f)X . yx =x tftx . D . \frx =x yx 

Dem. 

b . *10*32 . D b : Hp . D . yfrx =x <f>x . (f>x =x yx . 

[*10*301] D . yfrx =x yx : D b . Prop 

R&w i ,n 

(X) 0x = yfrx . 3 : <f>x . yx . = . yfrx . *x 

Prop 
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*10 33. H (x) : <ftx. p: = : (x). <f>.r : p 

Deni. 
I-.*10*1. D 1-(.r) : <f>x ,p : D . <f>y . p . (1) 

[*3 27] O.p (2) 

h . (1). *3 26 . D h (.r) : <f>.r . p : Z) . <f>y z 

[*101121] D h (x )z<f>x.pzD ,(y).<f>y (3) 

h.(2).(3). D h. (x) z <f>.r . p : Z> : (y). <f>y z p (4) 

h.*10*l. D \-:.(y). <f>y . D.^.r:. 

[Fact] D I- (y) . d>y : /#: D . <f>.r. p z. 

[*10 11-21] D I- s. (»/). <f>y z p z 5 z (x) z <f>x. p (5) 

H.<4).(5). D H. Prop 

*10 34. I-(gx). <f>.i D p . = : (a-). ^>./-. D . p 

This follows immediately from *90501 and *101. In the alternative 

method, the proof is as follows. 

Dem. 
K. *4 2. (*1001). D 

h (gx). <f>xDp. = :~ |(^> —(<#>x Op)): 

[* 461.* 10-271] ~ :~|(x): <f>x .~p\ z 

[*10 33] = z~[(x). <f>x z~ji\ z 

[*+•53] = |(x) . ^x| . v ,p z 

[*4 0] = : (.r). <J>.r. D . p 

*10 35. I-(gx). p. <f>x. = z p z (go-) .<f>x 

Dem. 

V . *3'26 . D I- : p. <f>s . D . p z 

[*1011] Dl- z (x) z ]>. <f>x. D . p z 

[*10-23] Dh:(a x).p.<f>x.D.p (1) 

I- . *3*27 . D I*: p . <f>x. D . <f>x z 

[*1011] D I-: (x) z p . fa .D . (f>x z 

[* 10 28] D I-: (gx). p. £x. D . (gx) . </»x (2) 

I-. *32 . 

[*1011*21] 0 z. p. D z (x) z <f>x. D . p. <f>x z 

[*10 23] D : (gx). tfxc. D . (gx). p. <f>x (3) 

I-. (1). (2) . (3). Imp.D h. Prop 

*1036. I*(gx) . </>x v/>. s : (gx) . <£x. v ./> 

This follows immediately from *9 05. In the alternative method, the 

proof is as follows. 

Dem. 

h . *4*6+ . D h : <t>x v p . = .^ <f>x D p : 

[*1011] Z> I-: (x) z <f>xvp .= .~<f>x Dp z 

[*10281] D I-(gx).<f>xvp. = z (gx) ,~<f>xDp z 

[*10 34] =:(x).~<£x.D.i>: 

[*4-6.(*10 01)] = : (a*). <j>x. v .p D H. Prop 



SECTION B] THEORY OF ONE APPARENT VARIABLE 

The above proposition is only required in order to lead to the following: 

*10 37. h (g.r) . p D (fix . = D . (gx) . <f>.r ^*1036 

*10 39. h (fix Dx y.e : \frx Dx Ox : D : (fix . y/r.v. Dx . yx . Ar 

Dem. 

h . *10‘22 . D h Hp . D : (x) : (fix D yx. yfrx D Ox: 

[*3 +7 .*10 27 ] D : (.r) : </>.»•. yfix . D . yx. ArD h . Prop 

This proposition is only true when the conclusion is significant; the 

significance of the hypothesis does not insure that of the conclusion. On the 

conditions of significance, see the remarks on *10,4, below. 

*10 4. h (fix =x yx . y\rx =x Ox. D : (fij'. yfrx . sx . yx. Ar 

Dem. 

h . *10 22 . D h Hp . D : (fix Dx ^x . \fix Dx Ox: 

[*1039] D : <f>x . yfrx, Dx. yx. Ar (1) 

Similarly h Hp . D : yx. Ar. D,. 0x. >/rx (2) 

h . (1). (2) . Comp . D 1- Hp . D : <f>x . >/rx. Dx . *x . 0x : yx. Ox . Dx . <£x . >/rx : 

[*10 22] 3 : <fix . +x. s, . yx. Ox :F D . Prop 

In *10*4 and many later propositions, as in *1039. the conclusion may be not 

significant when the hypothesis is true. Hence, in order that it may be legiti¬ 

mate to use *10 4 in inference, i.e. to pass from the assertion of the hypothesis 

to the assertion of the conclusion, the functions <fi, yjr, y. 0 must be such as to 

have overlapping ranges of significance. Iu virtue of *10 221, this is secured if 

they are of the forms F {x, x (x,0.5,...)),/[x. x(*,$, 2....)), G {x, * (x. f). 2,...)), 

9 \x> X (x» z> •••))• It *s also secured if <f> and yfi or <f> and 0 or % and yfi 

or % and 0 are of such forms, for <f> and % must have overlapping ranges of 

significance if the hypothesis is to be significant, and so must ^ and 0. 

*10 41. h :. (x) . (fix . V . (x) . yfrx : D . (x) . (fix V yfrx 

Dem. 

h . *10T . D h : (x) . <fix . D . <fiy. 

[*22] D.+yv+y (1) 

h . *10'1 . D 1- S (x) . y\rx . D . yfiy . 

[*13] ^•<fiyv>fiy (2) 

h . (1) . (2) . *1013 . D h (x) . (fix .0 .(fiy y yfiy : (#) . yfrx .0.<fiyy \Jry 

[*3'44J D h (x) . (fix . v . (x) . yfrx : D . fiy y yfiy 

[*1011-21] D h (x) . (fix . v . (x) . yfix : D . (y) . <fiy y yfiy D h . Prop 

Observe that in the above proof the uses of *2 2 and *13 are only legitimate 

if (fiy and yfiy have overlapping ranges of significance, for otherwise, if y is such 

that there is a proposition (fiy, it is such that there is no proposition yfiy, and 
conversely. 

10—2 
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*10*411. b <f>x =, XX . yfr.r =r Ox . D : <f>.r v yfrx . =x . v #x 

Dem. 

H . *10*14 .Dh:. Hp.D: <f>x = ^.r. \fs.r = 0x: 

[*4*39] D : <p.r v ^rx. = . x-r v Ox (1) 

H . (1). *10*11*21 . D b . Prop 

*10*412. b : <£x=x>frx.= [*4*11 . *10*11*271] 

*10*413. I" 4>x =x xx • yl' r =x . D : 4>x D '/'.r . =x . ^.r D d.c 

Dem. 

1- . *10*411*412 . D H Hp . D :~<f>.r v \/rx. =x • ~xx v &** 

[(*1 *01)] D : 0X D >/r.r . =x . x-'* Dftrs.DK Prop 

*10 414. H <f>x =x \X . = x Ox . D : <£./* = >/r.r . =x . X* = Ox 

Dem. 

H . *10*413 * 1 • *10-32 . D b :. Hp .D:^0 <*>x. =x . Ox D x-c 0) 

1- . *10*413 . (1) . *10*4 . D b . Prop 

The propositions *10*413*414 arc chiefly used in eases where cither x ,s 

replaced by </> or 0 is replaced by >/r, in which ease hull* the hypothesis becomes 

superfluous, beintf true by *4*2. 

*10 42. b (ax). <f>x . v . (yj) .>frx:=. (gx). <f>x v >fr.c 

Dem. 

h . *10*22 . D b :. (x) .~<f>x: (x).^\/rx: ~ . (x) ,~<f>x .^yfrx 

[*4*11] Ob :.~|(.r) : (.r) .~>/rxj . = .~{(x).~<f>x .~yfrx] !# 

[*4*51*56.*10*271] 0 b j(x) .~<f>x\ . v . ~ |(x) . ~ >/r.r| : 

•—((*) ■ ~ («/>.r v yjrx)] 

[*10*253] Ob (gx). <£x. v . (gx). >/rx: = . (gx) . <f>x v yfrx 

D h. Prop 

This proposition is very frequently used. It should be contrasted with 

*10*5, in which we have only an implication, uot an equivalence. 

*10*43. b : <f>z =, >\rz . <f>x . = . <f>e =, \frc . >frx 

Dem. 

b . *10*1 ■ 0 b : <f>2 =x yjrz . D . <f>x = yfrx (I) 

b . (1) . *5*32 . D I-. Prop 

*10 6. b :. (gx) . <f>x. yfrx. 0 : (gx) . <f>x : (gx). >\rx 

Dem. 

b . *3*20 . *10*11 . D h : (x): <f>x. yfrx ,0.<f>xz 

[*10*28] 0 h : (gx) . <f>x . yjrx . D . (gx) . <f>x (1) 

b .*3*27 .*10*11 . D 1-(x) : <f>x. yfrx . D . yjrx : 

[*io-28] <2> 

h .(1).(2).Comp. Dh:. Prop 
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The converse of the above proposition is false. The fact, that this 

proposition states an implication, while *10 42 states an equivalence, is tin* 

source of many subsequent differences between formulae concerning logical 

addition and formulae concerning logical multiplication. 

*10 51. h j(g.r) . <f>x . . = : <f>x . . ~>/r.r 

Dem. 

H . *10 252 . D h {(ax) . <f>x . yfrx] . = : (a ) -~(<^».»-. yfrx) : 

[*4-5162.*l0-271] = : (x) : <f>x . D —yfr.r :. D I- . Prop 

*10 52. h (gar) . <f>x . D : (x) . <f>x D p . = . p 

Dem. 

I-. *5 5 .Dh: Hp. D :.p. = : (3a) .<f>x.D.p: 

[*10 23] = : (x) . <f>.v Dp :s D h . Prop 

*10 53. I-^*(30:) . <f>x . D : <f>x . Dz . >/rx 

Dem. 

h .*2 21 .*1011 . D 

h (x) z.~<fix . D : <£>x . D . yfrx 

[* 10"27 ] D h :. (x) . ^ <f>x . D : (x) : tf>x . D . >Jrx :. 

[*10252] D h :.~(3x) . <f>x . D : (x) z <f>x ,D . yfrx D h . Prop 

*10541. h <f>y . Dy .p v yfry : = :p . v . <£y D„ yfry 

Dem. 

h . *4 2 . (*101) . D I- <£y . Dy .p v yfry z = : (y) .~$yvp v >/ry : 

[Assoc.* 10-271] 

[*10-2] 

[(*101)] 

(y) .pv~<f>yv yfry : 

V- V •(!/)-~<l>y v^y : 

P . V . 0y yfry ;. D 4 . Prop 

The above proposition is only needed in order to lead to the following: 

10-542. h :. </>y . D„ . p D yfry : = : p . D . <f,y Dy yfry |^*10-541 

This proposition is a lemma for *84 43. 

*10-66. h :. (3X) . <f>x . yfrx z <f>x Dz yfrx z = z (3X) . <f>x z <f>x Dz yfrx 

Devi. 

V . *4-71 . D I- Z. tf*xD yfrx .Dz<f>x. yfrx . = . <f>x (1) 

4.(1). *101127. D 

I- :. <f>x Dx yfrx . D : (x) : <f>x . yfrx . = . <f>x z 

[*10 281] D : (3#) - <t>* • ^x. = . (3X) . <f>x (2) 

h. (2). *5-32. D4. Prop 

This proposition is a lemma for *11712121. 
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*10 56. h <t>j■. . yfra-: (g.r) . <*>.r. yxz D . (gj-) . yjrx. yx 

Deni. 

H . *10*31 . D h <f>.r. Dz . \J,.r: Z> z <f>x. yx. Dx . \f/x. yxz 

[* 10*28] D : (g.r). <f>x. yx. D . (gx).f,r.^ (1) 

h . (1). Imp . D h . Prop 

This proposition and *10 57 arc used in the theory of series (Part V). 

*1057. H <frx . Dx . >/*.r V yx :D z (fixDx yfrx . v . (gj*). (f>X . yx 

Don. 

I-. *10 51 • Fact. D 

h <f>x . Dx . \frx v xJ’ :'^'(y*r) • 4>x . yx zO z <f>x . Dx . v yx z tf>x . Dx .~x* : 

[*10 20] D z <f>x. "5X. \jrxv yx ,~yx z 

[*5«1] Oz<f>x.-Dx.ylrx (1) 

h . (I). *5 6 . D h . Prop 



*11. THEORY OF TWO APPARENT VARIABLES 

Summary of *11. 

In this number, the propositions proved for one variable in *10 are to be 

extended to two variables, with the addition of a few propositions having no 

analogues for one variable, such as *11,2‘21*23 24 and *11 -.'>3-55'6-7. "<f> (.r, //)" 

stands for a proposition containing x and containing y; when .r and y are un¬ 

assigned, <f> (x, y) is a propositional function of x and y. The definition *1 101 

shows that “ the truth of all values of <£(x, y)” does not need to be taken as a 

new primitive idea, but is definable in terms of " the truth of all values of yjr.v.u 

The reason is that, when x is assigned, <£ (x, y) becomes a function of one 

variable, namely y, whence it follows that, for every possible value of .r, 

(y) • <f> (x, y)" embodies merely the primitive idea introduced in *9. But 

"(y) . <f) (x, y)” is again only a function of one variable, namely x, since y has 

here become an apparent variable. Hence the definition *1101 below is 

legitimate. We put: 

*11 01. (x, y).<f>(x,y). = : (x) : (y) . <f> (x, y) 

*11 02. (x, y, z) . 4> (.x, y,z). = : (x) : (y, z) . <£ (x, y, z) 

*11 03. (gx, y) . <f> (x, y) . = : (gx): (gy) . *f> (x, y) 

*11 04. (gx, y,z) . <f> (x, y,z).~i (gx) : (gy, z) . <f> (x, y, z) 

*11 05. <f> (x, y) . D«.v - ^ {x, y) : =- : (x, y) : <f> (x, y) . D . jr (x, y) 

*11 06. *f> (x, y) . . yfr (x, y) : - : (x, y) : <f> (x. y) . s . -jr (x, y) 

All the above definitions are supposed extended to any number of variables 

that may occur. 

The propositions of this section can all be extended to any finite number 

of variables; as the analogy is exact, it is not necessary to carry the process 

beyond two variables in our proofs. 

In addition to the definition *11 01, we need the primitive proposition 

that "whatever possible argument x may be, <f> (x, y) is true whatever possible 

argument y may be” implies the corresponding statement with x and y inter¬ 

changed except in u<f>(x, y)’\ Either may be taken as the meaning of 

“<£>(x, y) is true whatever possible arguments x and y may be.” 

The propositions of the present number are somewhat less used than those 

of *10, but some of them are used frequently. Such are the following: 

*111. b : (x, y) . <f> (x, y) . D . <f> (z. w) 

*11-11. If <f>(z,w) is true whatever possible arguments z and w may be, then 

(x, y) . <p (x, y) is true 

These two propositions are the analogues of *10-1-11. 

Df 

Df 

Df 

Df 

Df 

Df 
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*11''2- J (x, y) • <*> (x, y). = • (y,x). <£ <x, y) 

/.e. to say that “for all possible values of .r, <f>(x,y) is true for all possible 

values of y is equivalent to saying “ for all possible values of y, <£(x,y) is 

true for all possible values of x.” 

*113. h :.y>. D .(x.y). <f> (x, y) : = : (x, y) :p . D . <f> (x, y) 

This is the analogue of *10*21. 

*H 32. h (x. y): <f> (x. y). D . ^ (a*, y) : D : (x, y). </>(x, y) . D . (.r, y). (x,y) 

/.e. "if <f> (x, y) always implies >^(x. y). then '</>(x, y) always' implies 

''frU.'j) always. " This is the analogue of *10 27. *11*33*34 341 are respec¬ 

tively the analogues of *10*271*28*281, and are also much used. 

*11 35. h (x, y): <f> (x. y). D . p : a : (gx, y). 0 (.r, y). D . /> 

/x. if 0(x, y) always implies /#, then if 0(.r. y) is ever true,/) is true, and 

vice versa. This is tin- analogue of *10*23. 

*11 45. h (gx. y): /•. 0 (x. y) : = :/>: (gx. y). </> (x, y) 

This is the analogue of *10*35. 

*11 54. h (gx, y). <£x .yfry.m: (gx). <f>x : (gy). yfry 

This proposition is useful because it analyses a proposition containing 

two apparent variables into two pm|>ositions which each contain only one. 

yfry” is a function of two variables, but is compounded of two functions 

of one variable each. Such a function is like a conic which is two straight 

lines: it may be called an “ analysable ” function. 

*11*55. h (gx. y). <f>, . yfr (x, y). s : (gx) : <f>.r : (gy). (x, y) 

I.e. to say " there are values of x and y for which tf>.r. yfr(x, y) is true ” is 

equivalent to saying " there is a value of x for which rf>.r is true and for which 

there is a value of y such that yfr (x, y) is true." 

*116. h :: (gx)(gy) . <f> (x. y). yfry : (gy) (gx). <f> (x, y) . 

This gives a transformation which is useful in many proofs. 

*11 62. h :: <f>> . ^ (x, y). D,.„ . \ (*■!/) ! s <t>c • ^ ^ (x, y). D;/. * (x, y) 

This transformation also is often useful. 

*1101. (x, y). <f> (x. y) . = : (x) : (y) . <f> (x, y) Df 

*1102. (x, y, 2).<£(x,y. *). = :(x):(y. r).<£(x,y, r) Df 

*11 03. (gx, y). <f> (x, y). = : (gx) : (gy). <f> (x. y) Df 

*11 04. (gx. y, 2). tf> (x, y.z). = : (gx) : (gy. z) . <f> (x, y. *) Df 

*11 05. 0 (x, y). Dxv . yfr (x, y): = : (x. y) z <f> (x, y). D . yfr (x, y) Df 

*11*06. <f> (x, y). =Xt!#. yjr (x, y): = : (x, y) : <f> (x, y). = . (x, y) Df 

with similar definitions for any number of variables. 

*1107. “Whatever possible argument x may be, <*>(x, y) is true whatever 

possible argument y may be ” implies the corresponding statement with xand 

y interchanged except in “4>(x, y)". Pp. 
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*111. h : (a?, y) . <p (i\ y) . D . <f> ( -, «») 

Dem. 

h . *10*1 . Dh:Hp.D. (y) . <£ (j, y). 

[*10*1] D . <f> (j, «>) : D h . Prop 

*1111. If rf>(z, u>) is true whatever possible arguments c and w mav l>c, then 

(.r, y) . <f> (x, y) is true. 

Dem. 

By *10*11, the hypothesis implies that (y).<f>(z,y) is true whatever 

possible argument * may be; and this, by *10*11. implies (x, y) . </> (.r, y). 

*1112. h (x, y) .p v <f>(x, y) . D :p . v . (x, y) .<*>(•**, y) 

Dem. 

I- . *1012 - 3 b (y) .p v (or, y) . D : /> . v . (y) . <f> (x, y) 

[*10*11*27] D h (a:, y) . p v 0 (x,y) . D : (x) : y . v . (y) . <f> (x, y): 

[*10*12] D . v .(a:, y) . </>(x, y)D h . Prop 

This proposition is only used for proving *11*2. 

*1113. If <f> (5, #), >/r (5, #) take their first and second arguments respectively 

of the same type, and we have “h . <f>(x,y)" and “h . >jr(x, y),” we shall have 

" K <*>(*, y) . * (a:, y).M [Proof as in *10*13] 

*1114. h (x, y) . <£ (a:, y) : (a:, y) . yjr (x, y) : D : <f> (z, w) . yfr (z, tv) 

Dem. 

I-. *10*14 . D f-:. Hp . D : (y) . </> (z, y) : (y) . yfr (z, y) 

[*10 14] D s <f> (z, w) . \Jr {z, w):.Dh. Prop 

This proposition, like *10*14, is not always significant when its hypothesis 

is true.^ *11*13, on the contrary, is always significant when its hypothesis is 

true. For this reason, *11*13 may always be safely used in inference, whereas 

*11*14 can only be used in inference (i.e. for the actual assertion of the con¬ 

clusion when the hypothesis is asserted) if it is known that the conclusion is 
significant. 

*11*2. h : (x, y) . <f> (x, y) . = . (y, x) . <f> (x, y) 

Dem. 

h . *11*1 . ^ h : (x, y) ■ <^» (x, y) . D . (*, w) a) 
h .(1) . *11*07*11 . D 1- :.(w, z) : (x, y) . <f> (x, y) . D . <f> (z, w) (2) 

h. (2). *11*12 — y) - </> y)l D . 

V 

h (x, y) . <£ (x, y) . D . (w, 2) . <f> (z, w) (3) 
Similarly h (w, *) .<j>(z,w) . D . (x, y) . </>(x, y) (4) 

h.(3).(4). D h . Prop 

Note that “(w, z) . <f> (z, w)” is the same proposition as “ (y, x) . <f> (x, y)”; 

a proposition is not a function of any apparent variable which occurs in it. 
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*11*21. : (x, y.z).<f> (x, y,z). = . (y, z, x). <£ (x, y, z) 

Dent. 

[(*1101 02 )]H:: (x, y, z) . <f> (x, y, z). = (x):. (y) :(z).<f> (x, y, z) 

[*' !'2] = (y)(x) :(z).<f> (x, y, z) 

I*1 1*2.*10*271 ] = :.(y):.(z) :(x) . </» (x, y, z) 

[(*11 01 02)] = (y, z. x). <£ (x, y, z) :: D h . Prop 

*11 22. h : (3./-, y). $ (.r, y). = . ^ <(x, y).^<f> (x, y)| 

Dem. 

h . *10 *252 . Transp . (*1103). D 

: !/) • <t> (*• y) • = ((•**): ~ (ay). (^. y)|. 

[* 10 252*271 ] s . ~ |(x) :(y).~4> (x, y)\ . 

[(*1101)] s . ~ |(x, y). ^ <t> (x, y)]: D b . Prop 

*11 23. b : (yx, y).<f>(x,y). = . (ay, x) . <f> (x, y) 

Dem. 

h . *11-22 . D b : (ax, y). 0 (x. y). = . ~ |(x, y). ~ <*> (x, y)\ . 

[*11‘2.Transp] = . |(y, x).~<f> (x, y)| . 

[*11-22] = . (ay, x) . </> (x, y) : D b . Prop 

*11-24. 1- : (ax, y, z) . <f> (x, y, z). = . (ay, z. x). <f> (x, y, z) 

Dem. 

[(*11 03 04)] b:: (3X. y. z). <f> (x. y. z). = (3*) (3y): (3z).</, (x, y, z) 

[*11-23] = (3y)(3x): (az). <f> (x, y, z) 

[*11 -23.*10 281 ] = :. (ay)(az) : (ax). <f> (x, y, z) 

[(*110304)] = (ay, z,x).<f> (x, y, z) :: D b - Prop 

*11 25. b : ~ |(ax, y). <f> (x, y)) . = . (x, y) . ~ <f> (x, y) [*1122 . Transp] 

*11 26. b (ax) : (y). <f> (x, y) : D : (y) : (ax) . <f> (x, y) 

Dem. 
b . *10-1-28.3 b (3*) : (y) • (*, y): 3: (a*) • </> (*. y) 0) 

h • (1) • *10*11*21 .D1-. Prop 

Note that the converse of this proposition is false. E.g. let <f> (x, y) be the 

propositional function “ if y is a proper fraction, then x is a proper fraction 

greater than y.” Then for all values of y we have (&x). <f> (x, y), so that 

(y) : (3*) • .V) is satisfied. In fact " (y) : (a*) • 4> (*• y)” expresses the 
proposition: “ If y is a proper fraction, then there is always a proper fraction 

greater than y.” But “i^x) z (y). <f> (x, y)” expresses the proposition: “There 

is a proper fraction which is greater than any proper fraction,” which is 

false. 

*11 27. b (ax, y): (az) . <f>(x,y,z) z = : (ax) : (ay, z) . <f> (x, y, z) : 

= :(3 x,y,z).<t>(x,y,z) 
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Deni. 

K *4*2. (*11*03). D 

h " (a*.!/) : (3-) • 4> (•*'.(a«) (gy) : (g:) . «#» (.r. y. .') (l) 

K*4*2.(*ll*03). D 

*■(ay): (as> • <t> (•*•• '/• -) : = : (3/A 2) • <t> (•**. y- (-) 

K (2). *10*11*281 . D 

h :: (g.r) (gy) : (gj) . <f> (x, y. z) (g.r) : (gy. 2). <f> (.r, y. 2) (3) 

h . (1) . (3). (*l 1 *04) .Dh. Prop 

All the propositions of *10 have analogues which hold for two or more 

variables. The more important of these are proved in what follows. 

*11-3. I- :.p. D . (x, y) . <f> (x, y) s = : (x, y) zp. D . </> (.r. y) 

Dern. 

h .*10*21 . D h ;.p. 3. (x,y). <£(x, y): m : (x) :p. D .(y) .<f>(x,y): 

[*10*21*271] s : («v y) :/> • D . ^ (irty) D h . Prop 

*11*31. h (a-, y).<f>(x,y): (x, y) . + (x, y) z = : (.r, y) : 0 (x, y). yjr (.r, y) 

Here the conditions of significance on the right-hand side require that 

<f> and yjr should take arguments of the same types. 

Dem. 

*" . *10 22 . D h :: (x, y) . <f> (x, y) : (x, y) . \Jr (x, y) : 

= (x) s. (y) . <f> (x, y) : (y) . >/r (x, y) 

[*10*22*271] 5 (x, y) : <£ (x, y) . (x, y):: D h . Prop 

The proofs of most of the following propositions are conducted exactly ns 

those of *11*3*31 are conducted: the analogous proposition in *10 is used 

twice, together with *10*27 or *10 *271 or *10*28 or *10 281 as the case may 

be. When proofs conform to this pattern we shall merely give references to 

the propositions used. 

*11*311. If <£(£,#), '/'*(£,$) take arguments of the same type, and we have 

• <f>(x,y)” and “ I- . yfr (x, y),” we shall have “ h . </> (x, y) . yjr (x, y).” [Proof 

as in *10*13.] 

*11 32. h («, y) : <f> (x, y). D . yfr (x. y) : D : (x, y) . <f> (x, y) . D . (x, y) . yfr (x, y) 

[*10*27] 

*11*33. h (x, y) : <f> (x,y). = . yfr (x, y) : D : (x, y). <f> (x, y) . = . (x, y) . yfr (x, y) 

[*10*271] 
*11*34. h (x, y) : <f> (x, y). D . ^ (x, y) : D : 

(a*, y) •</>(*» y) •3 • (a*, y) • ^ (*. y) [*10*27*28] 
*11*341. h (x, y) s <f> (x, y). = . ir (x, y): D : 

(a*» y) • £ to y) • = • (a*, y) • ^ (*. y) [*10 271 *28i ] 
*11*35. h :-(x,y) s <p(x,y). D ,j>: = : (gx.y) . <f> (x,y) .D . p [*10*23 271] 

*11 36. h : <£ («, w) . D . (gx, y) . <f> (x, y) 

Dem. 
H . *11*1 . D h : (x, y) . *>•> <f> (x, y) . D . ~ <f> (z, w) (1) 

h . (1) . Transp . D H . Prop 
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*11-37. b :: (x, y): 4* (x. y). D . (x, y)(x, y) : \fr (x, y).D.x(^-i/):* 

D:(x,y):0(x,y).D.x(^.y) 
Dem. 

In the following demonstration. " Hp” means the hypothesis of the propo¬ 

sition to be proved. We shall employ this abbreviation, whenever convenient, 

in all cases where the proposition to be proved is a hypothetical, i.e. is of the 

form " p D fj." Similarly "Hp (1)” will mean "the hypothesis of (1),’’ and 

so on. 

b .*11-31 . D b :: Hp . D :.(x,y)<f>(x, y) . D . '/'■(•r.y) : yjr (.r,y) • 3 • x(x.y) 0) 

b . Syll . *1111 . D b :.(x,y) </>(.r.y). D . yjs (x.y): ^ (x,y). D . x(x-y): 

3:<Mx,y).3.x(*r*y):* 

[*11-32] Dh:.(x.y): </,(.r.y).D.>/r(x,y):>/r(x.y).D.x(^y): 

D : (x. y) : </> (.r, y). 3 . x (*• y) (2> 

b.(1).(2). Syll. DK Prop 

The above is a type of proof which recurs frequently in what follows. 

Proofs conforming to this pattern will be indicated only by the numbers of 

the propositions used. 

*11371. b :: (x, y): <f> (.v, y). = . yfr (x. y)(x, y): yjr (x, y) . = >x(x' 

D (x. y): <f> (x, y). = . x (x..»/) [*U'31 *11 *33] 

*11 38. b :: (.r, y): <f> (x, y) . D • y/r (x, y) D 

(.r, y): </» (x. y) . x (x. y). 3 . («, y). x (x. y) [Fftct •#1111 ’321 

*11 39. b :: (x, y) : <f> (x, y). D . ^ (x, y)(x. y): x (x. y) • D • 6 (*» y> 3 :* 

(x, y): «/> (x, y). x (x. y). 3 . ^ (x. y). 0 (x, y) [*3 47 .*1111 32] 

*11-391. b :: (x, y): <f> (x. y). D . yjr (x, y) (x. y): <f> (x. y) . D . x (x. y)!- 

= : (x, y) z <f> (x, t/). D . yfr (x, y). x (x, y) 

Dem. 

b . *476 . Dh.(/>(x,y).D.| (x, y) : <£ (x, y) . D . x (•*’. y) : 

= : <f> (x. y). D . + (x, y) . x (x, y) :• 

[*1111 -33] D h (x. y) : 0 (x, y) . D . >/r (x, y) : <^> (x. y> . D . x (x. y) : 

= : (x, y): <f> (x, y). 3 . + (x, y). x (*» y>:: 

[*1131] Dh: (x, y): 4> (x, y). D . ^ (x, y)(x, y): <f> (x, y). 3. x (*• y) 

= : (x. y) : «^ (x, y) . D . (x, y) . X (*- y> :: 

D 1-. Prop 

*11-4. b :: (x, y): *t> (x, y). = . ^ (x. y) (x, y) : x (*» y) • - • y) 3 

(x, y) : </> (x, y) . x (x. y). = . ^ (x, y) . 0 (x, y) 

Deni. 

h . *11 31 . D 1-:: Hp. D :. (x, y) :. <f, (x. y). s . + (*, y): * (®. y) • = • e (*• !- 

[*438.*1 111-32J 3 :. (*, y) : <f> (x, y). x (*. y) • = • + (*. y) • 6 (x< V) " 

D I-. Prop 
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*11*401. H :: (.r, y) z 0 (.r, y) . = .yfr (.r% y) : D 

{.v, y): 0 (.1*. y). x (.r, y > . = . 0* //) . * . y) U11 -4 * . 1< 11 

‘ *11-41. h (g.r, y) . 0 (.r, y) : v : (g.r, y). >/r y) : 

s : (a-*'- i/) : <t> //) • v . yfr {.r, y) [*10 42 *2S I | 

*11 42. h :. (g.r, y) . 0 (a*. y) . >/r (.r, y) . D : (g.r. y) . 0 (.r, y): (gj\ y) . 0 (.r, y) 

[*10*5] 

*11*421. h (.*, y) . 0 (.r. y). v . (.r, y). yjr (.r. y): D : (.r, y): 0 (.r, y) . v . 0 (.r, y) 

[*■ >'+- ^ . lWp . *4 5,i] 

*11 43. I- (gx, y): </>(.r,y) . D ./>: s : (x, y). £(x,.»/) . D ./> [*10-3+'2Sl] 

*1144. H :• (x, y): ^ (x, y) . v . p s s : (x, y). $ (x, y) . v . y [*102-271] 

*11'45. l-:.(ar,y):p.*(x.y): = :p:(ax,y).^(x,y) [*10'33'281] 

*1146. h (gx. y) :y . D . <*> (x, y) : = :y . D . (gx, y) . $ (x, y) [*10-37-281] 

*11-47. >* i. (x, y) : y . £ (x, y) : = : y : (x, y) . <fi (x. y) [*10-33-271] 

*115. 1-(a*) :~l(y) •■#>(*. y)l: = :~|(x,y).^>(x,y)j: = :(gx,y)—<t> (x, y) 
Dem. 

h . *10 253 . D h (gar) : ~ {(y) . 0 (x, y)) : 3 :~ \(x) : (y) . 0 (a:, y)| : 

[(*1101)] = s ~ {(or, y). 0 (a:, (1) 

h . *10*253 . D h |(y) . 0 (*. y)). = . (gy) —0 (*, y): 

[*10*11-281] D h (ga:) :~ |(y) . 0 (x, y» : = : (ga-) : (gy) .^<f>(x,y) z 

[(*1103)] = :(g*.!/) • ^ <P (*,!/) (2) 
K(l).(2). Dh.Prop 

*11 51. h (gar) : (y) . 0 (a:, y) : s {(*) : (gy) —0 (a:, y)| 

Dem. 

h • *10'252 . Transp .Dh:. (ga:): (y) . 0 (a:, y) : = : ~[(a-) : ^(y) . 0 (a:, y)] (1) 
1-. *10*253 . D h ~(y) . 0 («, y) . = : (gy) . ~0 (a:, y) 

[*1011*271] D h :.(a:):~(y).0(a;,y): 3 : (a:) : (gy) .~0 (a:, y) 
[Transp] 3 h :—[(a:) : — {(y) . 0 (ar, y)|] . =:• \(x) : (gy).~0(a:, y)) (2) 

^ • (1) • (2) . D h . Prop 

*11*62. h (ga:, y) . 0 (a:, y) . 0- (x, y) . = -~ {(ar, y) : 0 (a:, y) . --0- (a:, y)J 
Dem. 

h. *4*51*62. D 

1- :*~|0(a:,y).^r(a:,y)) . = :0(a:, y).D—0(a:,y) (1) 

1-. (1). *11-11*33. D 

h (a:, y)-(0 (x, y) . yfr (x, y)| : = : {x, y) : 0 (a:, y) . D —(a:, y) (2) 

h : (2) . Transp . *11 22 . D h . Prop 

*11-621. H :—(ga:, y) . 0 (a:, y) —^ (a:, y) . = s (x, y) z 0 (xt y) . D . -0 (a:, y) 

r*ll-52. Transp. 
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*11*53. H (x, y). <f>x 3 x/ry • = : (3*) . </>x . 3 . (y) . x/ry 

I Jem. 

h • *10*21*271 . 3 h <x, y) . </>.» 3 x/^y . = : (x): «/>x. 3 . (y) . x/ry : 

[*10-23] s : (3-*). «#>-r. D . (y). x/ry 3 H . Prop 

*11*54. H (gx, y). <f>j-. x/ry . = : (3 c). <f>x z (gy). x/ry 

Deni. 

h. *10*35. 3 h (gy) . $x . x/ry. s : <£x s (gy). x/ry s. 

[*10*11*281] 3 I-(gx, y). <t>x. ^y. s : (gx): <*>x : (gy). x/ry: 

[*10-35] = : (3-'*) • +*: (3'/) • s. D H . Prop 

This proposition is very often used. 

*11*55. h (gx,'/). $x. x/r (x, //). 2 : (gx): 0x : (gy) . x/r (x. y) 

Dem. 

h . *10*35 .31-:. (gy). <f>r . x/r (x, y). s : </>x: (gy). x/r (.r, y) 

[*1011] 3 h (x)(gy). </>x. ^ (x, y). s s $x: (gy). x/r (x. y) 

[*10-2*1] 3 h :.(gx):<gy). $x. x/r(x,y).s:(g.i:):$x:(gy).x/r(x,y):.3H.Prop 

This proposition is very often used. 

*11-56. H (x) . </>x: (y). x/ry : s : (x, y). </>x. x/ry 

Dem. 

H . *10-33 . D h :: (/) . tf>x z (y) . x/ry: = (x)<f>xz (y) . x/ry (J) 

h .*10*33. 3h <*>x :(y). x/ry s » : (y). </>x. x/ry 

[*1011] 3 h (x)<£x : (y). x/ry : = : (y). *f>x. x/ry ;. 

[* 10 271 ] 3 H :: (x)</>x: (y). x/ry:. ■ : (x) s (y). </>r. x/ry: 

[(*1101)] s : (x, y). </>x . x/ry (2) 

h.(l).(2).Dh. Prop 

*11*57. h : (x). 4>x. 5 . (x. y). tf>r. </>y [*11’56 . *4*24] 

The use of *4 *2+ here depends upon the fact that (x). <f>x ami (y). 4>'J arc 

the same proposition. 

*11 58. h : (gx) .</>./-. = . (gx. y) . <f>x . «/>y [*11*54 . *4 24] 

*11-59. h :. <f>x. 3X . x/rx: 3 : «#>x . </>y . 3X.„. x/rx . x/ry 

Dem. 

h .*11*57 . 3 h </>x. 3X . x/rx : s : (x. y) 

[*3-47. *11-32] 3:(x.y) 

h - 9*111 . 3 h (x, y) : </>x. </>y . 3 . x/rx 

<f>x. 3 . x/rx : </>y. 3 . x/ry : 

$x. </>y. 3 . x/rx. x/ry (1) 

x/ry : D : <£x. </>y . 3 . x/rx. x/ry (-) 

h . (2) j . *4 24 . 3 h Hp (2) . 3 : </>x. 3 . x/rx 

I-. (3). *10-11*21.3 
h :. (x, y) : </>x . </»y . 3 . x/rx . x/ry : 3 : <f>x. 3X . x/rx 

h . (1) . (4) . 3 h . Prop 
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*116. h :: (gx) (gy) . </>(**’, #/) . yfri/ : *.r (gy)(g.r). «/>(.,-. y). Y.,-: ^ v 

This proposition is very frequently employed in subset] i lent proofs. 

Deni. 

h . *10*85 . Dh. (ay) . <f> (.v, //). ^-y : x-r : = : (gy) : <f> (x, y) . ^ry . Y.r 

[*10*11*281] D h :: (gx) (gy) . <£ (x, y) . >fry : x.v : 

= - (a-*)(ay) • <t> (•*•» y). . x-r:- 
[*11 *23] = S. (gy) (gx) . 0 (.r. y) . >/ry . Yx 

[*11*341.Perm] = (gy)(g.r) .</> (x, y) . Yx . ^y 

[*10*35*281] = (gy) (g.,) . </> (a:> ,,) . :oh. prop 

*11 61. h (gy) : 0.r . Dx . (x. y) : D : «*>x . Dx . (gy). yfr (x, y) 
Deni. 

K*11*26. DI-:iHp.Ds.(*)s.(gy)s^r.D. V'(^.y) (1) 

h . *10 37 . D H :.(gy): </>x . D . >/r (x, y) : D : <£x . D . (gy) . >/r(x.y) 

[*10*11*27] D h (gy) 3. ^r(ar,y):.D:.(x)s^r.D.(gy).a.(a:,y) (2) 
K(l).(2).Dh. Prop 

*11 62. h :: 0x . * (x, y) . Dx> v. *(x.y) z = :. <f>x. Dx : yf, (x, y). D„. Y (x, y) 

Dem. 

h . *4*87 . *11*11*33 . D 

h !! ** • * <*»y) • D*.y • X<*>y) = = :• (*. y) </>x. D : (x. y). D . v (x,y) 

[*10 21*11*271] = :. (X) <£x. D : (y) : ^ (x, y). D . ^ (x, y) :: 

D h. Prop 
*11 63. h ~(g*. y). <*> (x, y) . D : 0 (a:, y) . Dx.y . * (x. y) 

Dem. 

J-. *2*21 .*11*11 . DH :.(x,y):—<f> (x, y) . D :<*>(*, y). D . ^ (x, y) 

r ! ! o!3 D h (x’ —<t>(x,y).D: <*> y) : <t> (*. y) - ^ ^ (x, y) :. 
[*1 l*2oJ D I- :—(gar, y) . 0 (x, y) . D : (x, y) '• <f> (x, y) . D . \fs (x, y):. 

*11 7. h :. (gx, y) : <£ (x, y). v. </> (y, x) : a . (gx, y) . <f>(x, y) D ^ ’ P,°P 
Dem. 

h . *11*41 . D I-:. (gx, y) : (x, y) . v . <f> (y, x) : 

= * <3*. y) • 0 (*. y) . v . (gx, y) . 0 (y, x) : 

ri s : <3** y) • <t> (*. y) • V . (gy, X). 0 (y, x) : 
1*4 25J = . (g*, y) . <f> (x, y) :. D I- . Prop 

In the last line of the above proof, use is made of the“fuct that 

(a*> y) • <f> (x, y) and (gy, x) . <f> (y, x) 

are the same proposition. 

The first use of the following proposition occurs in the proof of *234 12. 

Its utility lies in its enabling us to pass from a hypothesis 

4>z.Xw- D*. «> - ir* • 

containing two apparent variables, to the product of two hypotheses each 
containing only one. 
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*1171. H::(g^) . «2>j : (gw). \iv : 3 :. 

<f>z . 3*. 02 : x11' • <• • 0w • ““ • • — • 02 . XW. 3*,w. 0-2.9w 

Dem. 

h . *101 . *3-47 . 3h:. 02 . 3,. 02 : • #w : 
3 : <pz. ■ XW .3. 02 . 0W a) 

1- .(1). *11-11*3. 3h:. 02 . 3, . 02 : xw • 3.c • #w : 

3 : <f>z, XW . 02 . 0W (2) 

h .*10-1 . 3 h ::0. ’•Xw . 3,.„.02. 0w: 3 :. 02 . xw • x. ** . 0w:. 

[*10-28] 3 (gw). 4>z . xw • ^ • (H"') •y\rz'Gw '• 

[*10-351 3:. 02: (gw) .xu»:D:^: (gw). 0w 
(3) 

H . (3). Comm . *3 2<>.31-:: (gw) . \w : ^ :• 4>z • Xw • : 

3 : 02 . 3 . 0-2 (*1) 

h . (4). *1011 *21 .Dl*:: (gw) . xw • ^ 4>z • Xw* ^.^•yfrz • dw: 
3 : 02.3,. 02 (5) 

Similarly I*:: (g*) 3 <t>* • xw • 3/.* • ^z • : 

3 : x'» • 3.<* • #w (fi) 

h .(5). (6). *3-47 .Comp. 3 

h :: Hp . 3 :. 02 . \,u • 3*.* . 0* • 0w: 3 :02.3,. 02 : x*0.3* . ^ 

h .(2).(7). 3 H . Prop 



*12. THE HIERARCHY OF TYPES AND THE AXIOM 

OF REDUCTIBILITY 

The primitive idea "(a:). has been explained to mean "</>.,• is always 

true, i.e. “all values of <f>.v are true." Rut whatever function <f> may be, there 

will be arguments x with which <£./• is meaningless, i.e. with which as argu¬ 

ments <f> does not have any value. The arguments with which <f>.r has values 

form what we will call the “range of significance’' of </>.»•. A "type'' is defined 

as the range of significance of some function. In virtue of *91-1, if <£.,•, 

and \frx are significant, i.e. either true or false, so is yfry. From this it follows 

that two types which have a common member coincide, and that two different 

types are mutually exclusive. Any proposition of the form (.r). i.e. any 

proposition containing an apparent variable, determines some type as the 

range of the apparent variable, the type being fixed by the function <f>. 

The division of objects into types is necessitated by the vicious-circle 

fallacies which otherwise arise*. These fallacies show that there must be 

no totalities which, if legitimate, would contain members defined in terms of 

themselves. Hence any expression containing an apparent variable must not 

be in the range of that variable, i.e. must belong to a different type. Thus 

the apparent variables contained or presupposed in an expression are what 

determines its type. This is the guiding principle in what follows. 

As explained in *9, propositions containing variables are generated from 

propositional functions which do not contain these apparent variables, by the 

process of asserting all or some values of such functions. Suppose <f>u is a 

proposition containing a; we will give the name of generalization to the 

process which turns <f>a into (x). <f>x or <gx). <f>x, and we will give the name 

of generalized jiropositions to all such as contain apparent variables. It is 

plain that propositions containing apparent variables presuppose others not 

containing apparent variables, from which they can be derived by generaliza¬ 

tion. Propositions which contain no apparent variables we call elementary 

propositions +, and the terms of such propositions, other than functions, wc call 

individuals. Then individuals form the first type. 

It is unnecessary, in practice, to know what objects belong to the lowest 

type, or even whether the lowest type of variable occurring in a given context 

is that of individuals or some other. For in practice only the relative types 

of variables are relevant; thus the lowest type occurring in a given context 

may be called that of individuals, so far as that context is concerned. Accord¬ 

ingly the above account of individuals is not essential to the truth of what 

• Cf. Introduction, Chapter II. 
t Cf. pp. 91. 92. 

R& W I 
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follows: all that is essential is the way in which other types are generated 

from individuals, however the type of individuals may be constituted. 

By applying the process of generalization to individuals occurring in 

elementary propositions, we obtain new propositions. The legitimacy of this 

process requires only that no individuals should be propositions. That this is 

so, is to be secured by the meaning we give to the word individual. We may 

explain an individual as something which exists on its own account; it is then 

obviously not a proposition, since propositions, as explained in Chapter II ot 

the Introduction (p. 43). are incomplete symbols, having no meaning except 

in use. Hence in applying the process of generalization to individuals we run 

no risk of incurring reflexive fallacies. We will give the name of first-order 

prajmsitions to such as contain one or more apparent variables whose possible 

values are individuals, but contain no other apparent variables. First-order 

propositions arc not all of the same type, since, ns was explained in *9, two 

propositions which do not contain the same number of apparent variables 

cannot be of the same type. But owing to the systematic ambiguity of nega¬ 

tion and disjunction, their differences of type may usually be ignored in practice. 

No reflexive fallacies will result, since no first-order proposition involves any 

totality except that of individuals. 

Let us denote by '* <f>!x" or "</>! (?, y)" or etc. an elementary function whose 

argument or arguments are individual. We will call such a function a predi- 

cative fmiction of an individual. Such functions, together with those derived 

from them by generalization, will be called first-order functions. In practice 

we may without risk of reflexive fallacies treat first-order functions as a type, 

since the only totality they involve is that of individuals, and, by means of the 

systematic ambiguity of negation and disjunction, any function of a first-order 

function which will concern us will be significant whatever first-order function 

is taken as argument, provided the right meanings are given to the negations 

and disjunctions involved. 

For the sake of clearness, we will repeat in somewhat different terms our 

account of what is meant by a first-order function. Let us give the name of 

matrix to any function, of however many variables, which does not involve any 

apparent variables. Then any possible function other than a matrix is derived 

from a matrix by means of generalization, i.e. by considering the proposition 

which asserts that the function in question is true with all possible values or 

with some value of one of the arguments, the other argument or arguments 

remaining undetermined. Thus e.g. from the function <f> (x, y) we shall be able 

to derive the four functions 

lx). <f> (x, y), (3*) . <p Or, y), (y) . <f> (x, y), (ay) • <t> (*. !/)• 

of which the two first are functions of y, while the two last are functions of x. 

(All propositions, with the exception of such as are values of matrices, are also 

derived from matrices by the above process of generalization. In order to obtain 
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a proposition from a matrix containing // variables, without assigning values 

to any of the variables, it is necessary to turn all the variables into apparent 

variables. Thus if <f> (.r, y) is a matrix. (.»•. //) y) is a proposition.) \\V 

will give the name rirst-ori/er matrices to such as have only individuals for 

their arguments, and we will give the name of first-order /'auctions (of anv 

number of variables) to such as either are first-order matrices or are derived 

Irom first-order matrices by generalization applied to some (not all) of the 

arguments to such matrices. First-order propositions will be such as result 

from applying generalization to alt the arguments to a first-oixler matrix. 

As we have already stated, the notation “<*>! 2" is used for any elementary 

function of one variable. Thus "<f>! .1” represents any value of any elementary 

function of one variable. It will be seen that “<*>!.r” is a function of two 

variables, namely <f>! 3 and x. Since it contains no apparent variable, it is 

a matrix, but since it contains a variable (namely <f> ! 2) which is not an in¬ 

dividual, it is not a first-order matrix. The same applies to <f> ! a, where a is 

some definite constant. We can build up a number of new matrices, such as 

~<£!a, ~<f>lx, <f> l x v </>! y, tfilxvyfrlx, (filxVyfrly, 

<b l X . "5 . yfr l x, <f>lx .yfrlx, 4> l x V >fr l y v %'• *, and so on. 

All these are matrices which involve first-order functions among their argu¬ 

ments. Such matrices we will call second-order matrices. From these matrices, 

by applying generalization to their arguments, whether to such as are functions 

or to such (if any) as are individuals, we obtain new functions and propositions. 

Such functions (together with second-order matrices) will be called second- 

order /unctions, and such propositions will be called second-order propositions. 

Thus we are led to the following definitions: 

A second-order matrix is one which has at least one first-order matrix 

among its arguments, but has no arguments other than first-order matrices 
and individuals. 

A second-order function is one which cither is a second-order matrix or 

results from one by applying generalization to some (not all) of the arguments 
to a second-order matrix. 

A second-order proposition is one which results from a second-order matrix 

by applying generalization to all its arguments. 

In addition to the above illustrations of second-order matrices, we may 

give the following examples of second-order functions: 

(1) Functions in which the argument is <f> ! 2 : (x) . <J> l x, (34:) . 0 ! x, 

<f> l a . D . <£ l b, where a and 6 are constants, <f>! * . Dx. g \ x, where o! 2 is a 

constant function, and so on. 

(2) Functions in which the arguments are <f>! 2 and yfrl 2: 

<plx yfrlx, 4>lx.=x.yfrlx, (3*) . <f>x . yfrx, <f> l a . D . yfr l b, 

where a and b are constants, and so on. 

11—2 
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(3) Functions in which the- argument is an individual x: (<f>).<t>lx, 

('•!</>). <J>! x, 4>! .r . . <f>! a, where a is constant, and so on. 

<4» Functions in which the arguments are $ ! 3 and .r: ! .r, <f>! x. D . <f>! a, 

where a is constant, (3 : <f> !.r. = . \fc !.#•, and so on. 

Examples of secnnd-ord«-r functions might, of course, be multiplied in¬ 

definitely, but the above seem sufficient for purposes of illustration. 

A second-order matrix of one variable will be called a predicative second- 

order fn net inn of one ca viable or a predicative function of a first-order matrix. 

Thus </>! a, p ! a and <f>! n D <f>! h are predicative functions of <p ! 2. Similarly 

a function of several variables of which at least one is a first-order matrix, 

while the rest are either individuals or first-order matrices, will be called 

predicative if it is a matrix. 

It will be seen, however, that a second-order function may have only 

individuals for its arguments; instances were given just now under the 

heading (3). Such functions we shall not call predicative, since predicative 

functions of individuals have already been defined as being such ns are of the 

first order. Thus the order of a function is not determined by the order of its 

argument or arguments; indeed, the function may be of any order superior to 

the order or orders of its arguments. 

A variable matrix whose argument is <f>! * will be denoted by fl <f>! 5, and 

generally, a matrix whose arguments are 0 ! 3, yfr ! 3,... x, //. ... (where there is 

at least one function among the arguments) will be denoted by 

/!(<*>! 3. yfr ! 3, ... j-. 1/. ...). 

Such a matrix is not of the first or second order, since it contains the new 

variable whose values are second-order matrices. We proceed to construct 

new matrices as we did with the matrix <t> ! .7; these constitute third-order 

mat rices. These together with the functions derived from them by generali¬ 

zation are called third-order Junctions, ami the propositions derived from third- 

order matrices by generalization are called third-order propositions. 

In this way we can proceed indefinitely to matrices, functions and propo¬ 

sitions of higher and higher orders. We introduce the following definition: 

A function is said to Ik* predicative when it is a matrix. It will be 

observed that, in a hierarchy in which all the variables arc individuals or 

matrices, a matrix is the same thing as an elementary function (cf. pp* 

127, 128). 

"Matrix” or “predicative function ” is a primitive idea. 

The fact that a function is predicative is indicated, as above, by a note ot 

exclamation after the functional letter. 

The variables occurring in the present work, from this point onwards, will 

all be either individuals or matrices of some order in the above hierarchy. 

Propositions, which have occurred hitherto as variables, will no longer do so 



SECTION B] THE AXIOM OK REIH’CIBILITY 10 r> 

except, in a few isolated cases of which no subsequent use is made. In practice, 

for the reasons explained on p. 10*2. a function of a matrix may he regarded 

as capable of any argument which is a function of the same order and takes 

arguments of the same type. 

In practice, we never need to know the absolute types of our variables, but 

only their relative types. That is to say. if wo prove any proposition on the 

assumption that one of our variables is an individual, and another is a function 

of order n, the proof will still hold if. in place of an individual, we take a 

function of order m, and in place of our function of order n we take a function 

of order n + m, with corresponding changes for any other variables t hat may 

be involved. This results from the assumption that our primitive propositions 

are to apply to variables of any order. 

We shall use small Latin letters (other than /). 7, /•, s) for variables of the 

lowest type concerned in any context. For functions, we shall use the letters 

<t>> X> 0>f F (except that, at a later stage. F will be defined ns a constant 

relation, and 6 will be defined ns the order-type of the continuum). 

We shall explain later a different hierarchy, that of classes and relations, 

which is derived from the functional hierarchy explained above, but is more 

convenient in practice. 

When any predicative function, say <f>! 2, occurs as apparent variable, it 

would be strictly more correct to indicate the fact by placing '•(<*>! 2)’* before 

what follows, as thus: "(<£! 2)./(<*>! 2).M Hut for the sake of brevity we 

write simply "(<£)” instead of "(<*» ! 2).M Since what follows the <fi in brackets 

must always contain <f> with arguments supplied, no confusion can result from 

this practice. 

It should be observed that, in virtue of the manner in which our hierarchy 

of functions was generated, non-predicative functions always result from such 

as arc predicative by means of generalization. Hence it is unnecessary to 

introduce a special notation for non-predicative functions of a given order and 

taking arguments of a given order. For example, second-order functions of an 

individual x are always derived by generalization from a matrix 

/!(<£! 2, yfr ! 2, ... x, y, 2. ...), 

where the functions /, <f>, \fr,... are predicative. It is possible, therefore, without 

loss of generality, to use no apparent variables except such as are predicative. 

We require, however, a means of symbolizing a function whose order is not 

assigned. We shall use u<f>x" or "fix ! *)” or etc- to express a function (<f> or/) 

whose order, relatively to its argument, is not given. Such a function cannot 

be made into an apparent variable, unless we suppose its order previously fixed. 

As the only purpose of the notation is to avoid the necessity of fixing the order, 

such a function will not be used as an apparent variable; the only functions 

which will be so used will be predicative functions, because, as we have just 

seen, this restriction involves no loss of generality. 



MATHEMATICAL LOGIC [PART I l r,c> 

\\ o have now to state and explain the axiom of red ucibility. 

It is important to observe that, since there are various types of propositions 

ami functions, ami since gon<-rn fixation can only be applied within someone 

type (or. by means of systematic ambiguity, within some well-defined and 

completed set of types), all phrases referring to "all propositions” or "all 

functions,” or to “some (undetermined) proposition”or"somo (undetermined) 

function,” are prim a facie meaningless, though in certaincases they are capable 

of an unobjectionable interpretation. Contradictions arise from the use of 

such phrases in cases where no innocent meaning can be found. 

affecting the truth or falsehood of its values. This seems to be wlmt common- 

sense effects by the admission of classes, (liven any propositional function 

of whatever order, this is assumed to be equivalent, for all values of .r, to a 

statement of tin- form **.r belongs to the class a." Now assuming that there 

is such an entity as the class a. this statement is of the first order, since it 

involves no allusion to a variable function. Indeed its only practical advantage 

over the original statement \}r.c is that it is of the first order. There is no 

advantage in assuming that there really are such things as classes, and the 

contradiction about the classes which are not members of themselves shows 

that, if there are classes, they must be something radically different from in¬ 

dividuals. It would seem that the sole purpose which classes serve, and one 

main reason which makes them linguistically convenient, is that they provide 

a method of reducing the order of a pmpositioual function. We shall, therefore, 

not assume anything of what may seem to be involved in the common-sense 

admission of classes, except this, that every propositional function is equivalent, 

for all its values, to some predicative function of the same argument or argu- 

men ts. 

This assumption with regard to functions is to be made whatever may be 

the type of their arguments. Let fu be a function, of any order, of an argument 

ii, which may itself be either an individual or a function of any order. If/*s 

a matrix, we write the function in the form flu; in such a case we call / a 

predicative function. Thus a predicative function of an individual is a first- 

order function; and for higher types of arguments, predicative functions take 

the place that first-order functions take in respect of individuals. We assume, 

then, that every function of one variable is equivalent, for all its values, to 

some predicative function of the same argument. This assumption seems to 

be the essence of the usual assumption of classes; at any rate, it retains as muo i 



SECTION b] THE AXIOM OF REIU'CI HILITV U',7 

of classes as we have any use for.and little enough to avoid ilm emit radiet ions 

which a less grudging admission of classes is apt. to entail. We will call this 

assumption the axiom of classes, or the axiom of reducibilit//. 

We shall assume similarly that every function of two variables is equivalent, 

for all its values, to a predicative function of those variables, i.c. to a matrix. 

This assumption is what seems to be meant by saying that any statement about 

two variables defines a relation between them. We will call this assumption 

the axiom of relations or (like the previous axiom) the axiom of redncibilit•/. 

In dealing with relations between more than two terms, similar assumpt ions 

would be needed for three, four, ... variables. But. these assumptions are not 

indispensable for our purpose, and are therefore not made in this work. 

Stated in symbols, the two forms of the axiom of reducibility are as follows: 

*121- Ma/> :**•■••/!* pP 

*1211. h: (a/) : <f> (*, y) . =,,v ./! (x, y) Pp 

We call two functions <f>x, \fr$ formally equivalent when <f>.v. =, . \Jr.c, and 

similarly we call <f> (5, p) and yjr(£, p) formally equivalent when 

</> (x, y) . . yfr (x. y). 

Thus the above axioms state that any function of one or two variables is 

formally equivalent to some predicative function of one or two variables, as 

the case may be. 

Of the above two axioms, the first is chiefly needed in the theory of classes 

(#20), and the second in the theory of relations (*21). But the first is also 

essential to the theory of identity, if identity is to be defined (as we have done, 

in *13*01); its use in the theory of identity is embodied in the proof of *13101, 

below. 

We may sum up what has been said in the present number as follows: 

(1) A function of the first order is one which involves no variables except 

individuals, whether as apparent variables or as arguments. 

(2) A function of the (a + l)th order is one which has at least one argument 

or apparent variable of order n, and contains no argument or apparent variable 

which is not either an individual or a first-order function or a second-order 

function or ... or a function of order n. 

(3) A predicative function is one which contains no apparent variables, 

i.e. is a matrix. It is possible, without loss of generality, to use no variables 

except matrices and individuals, so long as variable propositions are not 

required. 

(4) Any function of one argument or of two is formally equivalent to a 

predicative function of the same argument or arguments. 



*13. IDENTITY 

Summary o f *13. 

The propositional function ‘V is identical with y” will be written “.r = y." 

We shall find that this use of the sign of equality covers all the common uses 

of equality that occur in mathematics. The definition is as follows: 

*13 01. x *=;/. = : (<£): 0 ! x. D . <f>! y Df 

This definition states that .r and y are to be called identical when every 

predicative function satisfied by x is also satisfied by y. We cannot state that 

every function satisfied by x is to l>e satisfied by y, because x satisfies functions 

of various orders, and these cannot all be covered by one apparent variable. 

Hut in virtue of tin- axiom of roducibility it follows that, if x*= y and a*satisfies 

\Jsx, where ^ is any function, predicative or non-predicative, then y also satisfies 

yjry (cf. *13 101, below). Hence in effect the definition is as powerful as it 

would be if it could be extended to cover all functions of .r. 

Note that the second sign of equality in the above definition is combined 

with “Df,” and thus is not really the same symbol as the sign of equality 

which is defined. Thus the definition is not circular, although at first sight 

it appears so. 

The propositions of the present number are constantly referred to. Most 

of them are self-evident, and the proofs offer no difficulty. The most important 

of the propositions of this number are the following: 

*13101. h : x = y . D . yJrxO >\ry 

I.e. if x and y are identical, any property of x is a property of ;/. 

*1312. h : x = y . D . \frx = yfry 

This includes *13101 together with the fact that if x and y are identical 

any property of y is a property of x. 

*13T5T6T7, which state that identity is reflexive, symmetrical and transitive. 

*13191. h y = .r. D„ . <f>y : s . tf>x 

I.e. to state that everything that is identical with x has a certain property 

is equivalent to stating that x has that property. 

*13195. b:(3y).y = x.<t>y. = .<f>x 

I.e. to state that something identical with x has a certain property is 

equivalent to saying that x has that property. 

*13*22. h : (a*. w).z = x.w = y.<p(z,w).==.4>(x,y) 

This is the analogue of *13’195 for two variables. 
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*13 01. ;f = y . = : (<f>) : <f>! .«■. 3.0 !y 1)1’ 

The following definitions embody abbreviations which are often convenient. 

*13*02. # + y • = • = y) Pf 

*13 03. a' = y = z . = . .«• — y. i/ = r 1)1 

*131. h a? = y. = : 0! . 3* . 0! y [*4*2 . (*13 01). (*10 02)] 

*13*101. h : a* = y . 3 . >/r.r 3 >/ry 

Dem. 

h . *12*1 . Dh (g0)y/r.r . = .</»! .r: >Jry . = . 0 ! y (1) 

h . *13*1 . 3 h :: Hp. 3 0! .r. 3$ . 0! y 

[*4*84*85.*10*27] 3 >/r.r . = . 0 ! .r : 0-y . = . 0 ! y : 3* : 0.r . 3 . 0y 

[*10-23] 3 (a0): 0* . = . <f> lx: yjri/ . = . 0! y: 3: 0\r. 3 . 0-y (2) 

h . (1) . (2) . 3 1-. Prop 

In virtue of this proposition, if .r — y. y satisfies any function, whether 

predicative or non-predicative, which is satisfied by .r. It will be observed 

that the proof uses the axiom of reducibility (*12*1). But for this axiom, two 

terms x and y might agree in respect of all predicative functions, but not in 

respect of all non-predicative functions. We should thus be led to identities 

of different degrees, according to the degree of the functions in respect of 

which x and y agreed. Strict identity would, in this case, have to be taken as 

a primitive idea, and *13*101 would have to be a primitive proposition, as would 

also *13*15*16-17. 

*1311. h x y . = :</>! x. =* . 0 ! y 

Dem. 

H. *10 22. 3t-:.0!e.s» 

[*13*1] 

h . *13*101 . 3h:.x 

h . *13*101 . *1*7 . 3h:.x = y.3 

[Transp] 

h . (2) . (3) . Comp . 3 h : x = y . 

[*10*11*21] 3H:.x = 

h . (1) . (4) . 3 h . Prop 

*1312. h : x = y . 3 . yfrx = yjri/ 

Dem. 

h . *13*101 . Comp . 3 h s ft* 

[Transp] 

*1313. h : yfrx . x ■* y . 3 . 0y 

*13*14. 1-: yfrx . ~>/ry . 3 . a: =$= y 

*1316. \-.x = x 

*13*16. V :x = y 

. 0 ! y : 3 : 0 ! x . 3* . 0 ! y : 

3 : .r = y 

y . 3 . 0 ! x 3 0 ! y 

^0 ! x 3 ^0 ! y . 

3.0 ! y 3 0 ! x 

3.0 ! x = 0 ! y : 

y.3:0!x.=*.0!y 

y . 3 . yjfx 3 0*y . ~ 0x 3 ~ 0y . 

3 . i/rx = 0-y :3h. Prop 

[*13*101 . Comm . Imp] 

[*13*13. *4*14] 

[Id. *10 11 .*13 1] 

[*13*11 .*10*32] 

o) 
(2) 

(3) 

(4) 

y = * 
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*1317. h : X = y.y = z.D.x = z 

Dem. 
h . *131 . D H :: Hp . D <f>! .r. . <£ ! y : 0 ! y . D* . <f>! 2 

[*10 3] D <f>! x . . <f>! s :: D 1-. Prop 

In the* above use of *10 3. <f>! .r, <f>! y. <f>! z are regarded as three different 

functions of if>, and 0 replaces the x of *10*3. 

The above three propositions show that identity is reflexive (#1315), 

symmetrical (*1310). and transitive (*1317). These are the three marks of 

relations having the formal properties which we associate commonly with the 

sign of equality. 

*13171. Ih:x-y.x«*. D.y-s [*1316 17] 

*13 172. I- : y = x. * = x. D . y = * (*131617] 

*1318. h:xay./ + r.D.// + ; [*13’17 .*4'14] 

*13181. h:x-y.y + z.D.x+* [*13171 .*414] 

*13182 h :..r- if . D :* = .r. = .r = y [*1317172 . Exp.Comp] 

*13 183. h :. x = y . = : z = = y 

Dem. 
K *13182. *10 11 21 . D H:..r«y .Dj x-y a) 

h . *10*1 . Dbz.; : =* x . =,. z * y : D : x = x. D . x = y : 

[*1315] D: x * y (2) 

h .(1).(2). D h . Pi •op 

*1319. h •(g^).y-x [*13 15. *10 24] 

*13191. h :. y - x . . <£y : = . 4>x 

Dem. 
K*101. DH y-ar.D„.^y: D : x = x. D . <£x: 

[*1315] D: 0x (1) 

h .*13 12. Dh:. y = x. D : 0.r. 3.<f>yz. 

[Comm] D h :. <f>x. D z y = x. D.<f>y:. 
(2) [*10 11-21] Dh:. $x.D:y-x. -\-4>y 

V .(1).(2). D h . Prop 

This proposition is constantly used in subsequent proofs. 

*13192. K (gc)z x = b. =x. x =• c z yfre z = . yfrb 

Dem. 
V . *4 2 . *3 2. 0 \- zz yjrb . O z. x = b . =x. x = b z yfrb z. 

[*10 24] D:.(gc):a- = 6.s,.a: = c:^c (1) 

H . *101. D h * - 6. s,. x - c s yfre: D : 6 = 6. = . b = c s yfre s 

[*5501 .*1315] Dzb = c.yfrcz 

[*13T3] 3: 

I-. (2) . *1011-23 .Dh. (gc) : x = b . =,. x = c : yfre z D . yfrb (3) 

I-.(1).(3). D h . Prop 

This proposition is useful in the theory of descriptions (*14). 
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*13193. b z <f>.v II III
 

• • x = y 

Dem. * 

b • Simp . D b : <f>.r . x = y . D . .v = y 0) 
b. *1313. D b : <p.v . x = y . D . <f>y (2) 

b . (1) . (2) . Comp . D b: (f>.r . .r = y . D . <f>y ..v = y (3) 

b . *1316 . Fact D b : (f>y .x = y . D . <f>y . y = .r . 

~(3)^1 
x> !/J 

D . </>.<•. y = .c. 

*13 16. Fact] D . <f>.v . x = y (4) 

b . (3) . (4) . D b . Prop 

This proposition is very often used. 

*13194. b : <px . x = y .= . <f>x . <f>y . x = y [*1313. *4-71] 

This proposition is used in *37 65 and *10114. 

*13 195. b : :(ay).y = x.<t>!/ . <f>x 

Dem. 

b. *3 2. *1315. D b : <f>x . D . x — * . <px . 

[*1024] D • (a^) -!/~x-<t>y (1) 

b . *13*13 . *1011.3b:. (y) z y = x. <f>y . D . <f>. v z 

[*10-23] 3 •“ :• (ay). y = x. <f>y. D . <f>x (2) 

b.(l).(2). D b . Prop 

The use of this proposition in subsequent proofs is very frequent. 

*13196. b z. ~<f>x . = z <f>y . Dv . y^x [*13195 . Transp . *1051] 

*1321. b z = x.w = y.DZ)U, .<t>(z,w)z = .<f>(x, y) 

Dem. 

b. *11-62. D 

h :: t *- x. w -■ y. <f> (st w) : a :• * — a:. D, 2 to — y. Dw. 0 (*, w) s. 

[*13-191] = u; =-y. D,„. <f) (x, w) 

[*13T91] = :. <£ (x, y) :: D I-. Prop 

This proposition is the analogue, for two variables, of *13191. 

*13 22. b : (32, w) . z = x . w = y . <}> (z, w) . = . <f> (x, y) 

Dem. 

1-. *1155 .Dbz. (3 z, w). z = x. w = y. <f> (z, w) . 

= : (a*) zz = x: (aw) .io = y .<f>(z,w)z 

[*13195] = : (aw) . w = y. <f> (x, w) z 

[*13T95] = : <f> (x, y) D b . Prop 

This proposition is the analogue, for two variables, of *13195. It is fre¬ 

quently used, especially in the theory of couples (*54, *55, *56). 

The following proposition is useful in the theory of types. Its purpose is 

to show that, if a is any argument for which “ <f>a ” is significant, i.e. for which 

we have (f>a v~tf>a, then "<f>x” is significant when, and only when, x is either 
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identical with a or not identical with a. It follows (as will be proved in *20*81) 

that, if and are both significant, the class of values of.r for which 

is significant is the same as the class of those for which “yjrx” is signi¬ 

ficant, i.e. two types which have a common member are identical. 

In the following proof, the chief point to observe is the use of *10 221. 

There are two variables, a and .«*, to be identified. In the first use, we depend 

upon the fact that 4>o and .r = a both occur in both (4) and (5): the occurrence 

of (f)ii in both justifies the identification of the two </'s, and when these have 

been identified, the occurrence of x = n in both justifies the identification of 

tin* two ./*. (1’nless the iTs had been already identified, this would not be 

legitimate, because “.r = «' is typically ambiguous if neither .r nor a is of 

given type.) The M-coiid use of *10*221 is justified by the fact that both <fm 

ami 4>r occur in both <2t and (G). 

*13 3. b ::</>•» v ^ </>»/. D <t».r v . = : x = a . v . x + a 

I fern. 

b • *2* 11. D h . <f>.r v (f>.i (1) 

b . (1). Simp . D b : <f>u v ^ <f>a . D . <f>x v ~(f>x (2) 

b. *2* 11 . Db:j' = d.v.j + a (3) 

b. (3). Simp. D b :. <f>.i . D —a . v .« + a (**) 

b . *13 101 . Comm . D b <f>n v ^ <f>»i .D:x = o.D. <f>x v *>*<l>x (5) 

b . (4). (5). *10*13*221 . D 

b :: (f>ti v *—• 0// . D : .r = </. v ..r + n :. tfxi . D s .r — a . D . <f>rv ~<f>r (C) 

b.(2).(6).*10*13*221 . D 

b :: <f)ii v^<fxi. D . <f>xv^<f>xz. <f)a .D:ar*»a.v..r :. 

<f>a v~<j>a . D :.r=»o . D . <f>xv~<t>* (7) 
b . (7). Simp . D 

b :: <f)d v ~<f>a . D . :. <fxi .D:x = a.v..r+a (3) 

b . (8). *5*35 . D b :: <fta v~<f>a . D s. ^.r v . =: x = a . v •a? + a:: 

D b. Prop 



#14. DESCRIPTIONS 

Summary o f #14. 

A description is a phrase of the form “ the term which etc.." or. more 

explicitly. “ the term .r which satisfies where <p.7 is some function satisfied 

by one and only one argument. For reasons explained in the Introduction 

(Chapter III), we do not define “ the .r which satisfies hut we define any 

proposition in which this phrase occurs. Thus when we say : “ The term .v 

which satisfies <f>x satisfies yfrx,” we shall mean: “There is a term b such that 

is true when, and only when, x is b, and yfrb is true.” That is. writing 

" Ox) (<t>x) ” for “ the term x which satisfies <pj ," yfr (?.i) (<f>.t) is to mean 

(3^): <t>-c . . x = 6 : yfrb. 

This, however, is not yet quite adequate as a definition, for when (ix)(<f>,v) 

occurs in a pro|>osition which is part of a larger proposition, there is doubt 

whether the smaller or the larger proposition is to be taken as the “ yfr (/./•)(</>./•).” 

Take, for example, yfr (ix) (<f>x) . D . p. This may be either 

(31&) : 4>x • =x . x — b : yfrb : D . p 

or (gfc) <fjx . s, . x = b : yfrb . D . p. 

If “ (gt) : <f>x. =*. x — b ” is false, the first of these must be true, while the 

second must be false. Thus it is very necessary to distinguish them. 

The proposition which is to be treated as the “ yfr (ix)(<f>x) ” will be called 

the scope of (ix)(<f>x). Thus in the first of the above two propositions, the 

scope of (ix)(<f>x) is yfr (ix) (<f>x), while in the second it is yfr (ix) (<f>x) .Z). p. 

In order to avoid ambiguities as to scope, we shall indicate the scope by 

writing “ [(ix) (<£*•)] ” at the beginning of the scope, followed by enough dots 

to extend to the end of the scope. Thus of the above two propositions the 

first is 

[Ox)(<t>x)].yfr(ix)(<f>x). D.p, 
while the second is 

[(**) (£*)] : ^ Ox) (<f>x) . D . p. 

Thus we arrive at the following definition: 

#14 01. [Ox) (<f>x)] . yfr (ix) (<f>x) . = : (^b) : <f>x . =x . x = b : yfrb Df 

It will be found in practice that the scope usually required is the smallest 

proposition enclosed in dots or brackets in which " (ix) (tf>x) ” occurs. Hence 

when this scope is to be given to (ix)(<f>x), we shall usually omit explicit 

mention of the scope. Thus e.g. we shall have 

a + (ix) (<px) . = : (a&) z<f>x .=x.x = b-.a^b, 

~la = Ox) (<f>x)}. = . ~ l(g6) : <f>x. =x . x = 6 : a = 6j. 
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Of these the first necessarily implies (yfc): <f>.r. =x . x = h, while the second 

does not. We put 

*14 02. E !(hr) (<f>r) . = : (%|&):<f>r. =x . .#• = b Df 

This defines: “The x satisfying <f>.7 exists.” which hohls when, 

when, <f>7 is satisfied by one value «>f x and by no other value. 

When two or more descriptions occur in the same proposition, there is 

m-ed of avoiding ambiguity a* to which has the larger scope. For this purpose, 

we put 

*14 03. [( U’) (</>•'*), (l.r)(yjrx■)]./(< tx)(<f>x). (l^)(^rjr)| . = : 

(( U H</m )] : [(U)(>/r.r)] ./{( ix)(<f>.r), (l.r)(>/r.r)j Df 

It will be shown (*14 113) that the truth-value of a proposition containing 

two descriptions is unaffected by the question which has the larger scope. 

Hence- we shall in general adopt the convention that the description occurring 

first typographically i> t«. have the larger scope, unless the contrary is expressly 

indicated. '1‘hus e.y. 
(ix)(<^r)-(/x)(^x) 

will mean (36): <f>x . = x . x — b z b = (lx)(yfr.r), 

»>. t^):. <*m . (3c): yfrx. mx.x-czb-c. 

By this convention we are able almost always to avoid explicit indication of 

the order of elimination of two or more descriptions. If, however, we require 

a larger scope for the later description, we put 

*14 04. [(lx)(^)]./Uir)(^r). (ix)(>/rx» . = . 

[(lx)(^r.r), (l*)(£r)]./{(?*)(£.r), (u)(^x)| Df 

Whenever we have E!(/.r)(</>.r),(i.r)(^>.r) behaves, formally, like an ordinary 

argument to any function in which it may occur. This fact is embodied in 

the following proposition: 

*14 18. h E ! (ix)(tf>x). D : (x). ^.r. 0 . \\r (ix){<f>x) 

That is to say. when (ix)(<f>x) exists, it has any property which belongs to 

everything. This does not hold when (ix) (<f>x) does not exist; for example, 

the present King of France does not have the property of being either bald 

or not bald. 

If (J-7*) (<t>x) has any property whatever, it must exist. This fact is stated 

in the proposition: 

*14 21. h : yfr (ix)(<f>x). 3 . E l(ix)(<f>x) 

This proposition is obvious, since “Kl(ix)(<f>x)” is, by the definitions, part 

of “ yjr (ix)(<ftx)." When, in ordinary language or in philosophy, something is 

said to "exist," it is always something described, i.e. it is not something 

immediately presented, like a taste or a ]>atch of colour, but something like 

“ matter " or “ mind ” or “ Homer ” (meaning “ the author of the Homeric 

and only 
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poems "), which is known by description as “tin* so-and-so." and is thus of 

the form (7.r)(</>.»). Thus in all such cases, the existence of the (grammatical) 

subject (ix) (<fxv) can be analytically inferred from any true proposition having 

this grammatical subject. It. would seem that the word *'existence M cannot 

be significantly applied to subjects immediately given ; i.e. not only does our 

definition give no meaning to “ E !.r,” but there is no reason, in philosophy, to 

suppose that a meaning of existence could be found which would be applicable 

to immediately given subjects. 

Besides the above, the following are among the more useful propositions 

of the present number. 

*14 202. b<f>x . =r . x ■* b : s : (tar) (<f>.v) = b : = : <f>x . =x.6»a:: = :& — ( ix) (<£.r) 

From the first equivalence in the above, it follows that 

*14 204 b : E! (ix) (<f>x) . = . (afc) . (?*) (<f>x) - b 

I.e. (ix)(<f>x) exists when there is something which (ix)(<px) is. 

We have 

*14 205. b : \fr (ix) (<f>x) . m . (36) . b = (?x) (<f>x) . y\rb 

I.e. (ix) (<f>x) has the property ^ when there is something which is (ix)(<f>x) 

and which has the property yjr. 

We have to prove that such symbols as “ (ix) (<f>x) ” obey the same rules 

with regard to identity as symbols which directly represent objects. To this, 

however, there is one partial exception, for instead of having 

we only have 

*14 28. b : E ! (ix)(<f>x) . = . (ix) (<f>x) = (ix) (<f>x) 

I.e. " (ix) (<fix) ” only satisfies the reHexive property of identity if (ix) (<f>x) 

exists. 

The symmetrical property of identity holds for such symbols as (ix)(<f>x), 

without the need of assuming existence, i.e. we have 

*14 13. b : a = (ix) (<f)x) . = . (ix)(tf>x) = a 

*14131. b : (ix) (tf>x) — (ix) (y^x) . = . (ix) (yfrx) = (lx) (<f>x) 

Similarly the transitive property of identity holds without the need of 

assuming existence. This is proved in *1414142144. 

*14 01. [(?*)(4>x)] . yfr (ix)(tf>x) . = : (36) : <f>x . =x . x = b : yfrb Df 

*14 02. E ! (ix) (<f>x) . = : (36) z<f>x .=x.x = b Df 

*14 03. [(7a:) (<f>x), (ix) tyx)] ./{(ix) (<f>x), (ix) (yfrx)} . = : 

[(7x) (<f>x)] : [(?a:) (^rx)J ./{(ix) (<f>x), (ix) (yfrx)j Df 

*14 04. [(7a:) (^a:)] . / ((7a:) (<f>x), (ix) tyx)}. = . 

[(la:) (yfrx), (ix) (<f>x)] ./[(lx) (<f>x), (ix) (yfrx)\ Df 
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*141. !-:.[< ix) (<f>x)]. y\r (is) (<f>x) • = • : 4>‘ - s,. x- 6 s ^6 
[*42.(*1401)] 

In virtue of our conventions as to the scope intended when no scope is 

explicitly indicated, the above proposition is the same as the following: 

*14 101. h yfr (ix)(<f>x). = : (g&): <f>.r. =, . x = b : [*141] 

*14 11. h E ! (u) (</w) . s : <3*0 : . 5* . x- b [*4‘2 . (*14-02)] 

*14111. V :.[(ix)(^rx)]./{(fx)(^X • * : 
(g*». c): <£•» . =x. x = b z yfrx. =x . x = c :/(*». c) 

l)eni. 

h. *4*2. < *140403).} 

I- ::[(ix)(*x)] •/!<«)<$•*)• <»*)<*•*>! • s :- 
[(, (f.. )]: [(i.. ) ($x)]./!(lx) (<f>x), (ix) (^x)|:. 

[♦14--1 ] a :.[<ix)<*x)]:.<ai>: £r. s,.x-/.:/!Mlx)(*x)i:. 

[*14 l] = :. (gc):. fx. sx.x = c:.<36): $x. =,.x = b : f(l, c) 

[*11-55] = :. <36, e) : <fix. s, .x- c s yfrx. 3,.x - 6 :/(<>. c) :: 0 h . Prop 

*14112. H:./I(»x)<*x).(w)(*x)|.«: 
(36. c)s *x. s,.X = 6: ^X. E,.X = c:/(».«) 

[Proof as in *14111] 

In the above proposition, we assume the convention explained on p. 1'4. 

after the statement of *14 03. 

*14-113. I-:[(w)(t*)]./|(w)(^(»)(^)l-«-/Kw)(M(i*)(+J?M 

[*14111112] 
This proposition shows that when two descriptions occur in the same pro¬ 

position, the truth-value of the proposition is unaffected by the question whic i 

has the larger scope. 

*14-12. ES(ix)(4>x). D : <f>x. <f>y . . x ».»/ 

JJem. 
f- . *14 11 D y z. Hp . D :<3*0 z<f>x.=x.x = b 

y. *4*38. *101 .*1111-3. D 

h :. </>./•. =x. x = b z O z <f>x . <py. =x.y .x = b.y = b. 

[*13172] Ox,¥.x^y 

h . (2). *1011-23 . D h (3*0 z <px. =x. x = b zD z <f>x. <f>y. 0x,y •« 

H.(l).(3). D h . Prop 

*14121. y <f>x. =x . x = b z <f>x. =x. x = c z D . b =* c 

(1) 

(2) 

3/(3) 

h . *101. D h :. Hp . D : <f>b . = . 6 = 6 : <f>b . = 

[*1315] D:<t>bz<t>b. = .b = cz 

[Ass] D : 6 = c :. D h . Prop 

*14122. yz.4>x.=x.x = bz = z<f>x.Ox.x = bz<t>bz 

= z<f>x.Ox»x = bz (gx) • 4>x 

. b = c 
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Bern. 

K *10-22. 3 h :. <p.r . =x . .r = 5 : = 0.r . 3X . .r = 5 : a- = 5.3.r . </>.r : 

[*13-191] s 0.»-. 3X. .r = 5 : 05 (!) 

h . *4 71 . 3 b:. 0.c .3 . .r = 5 : 3 0.r . = . 0.i-. .i- = 5 :. 

[*1011-27] 3 h :. 0.r . 3X . .r = 5 : 3 0.i-. =x . 0./-. .r = 5 : 

[*10-281] 3 (a o • 0 » • = • (a-* ) • <t> • • • 

[*13-195] = . 05 C2) 

h. (2). *5-32 

Ml).(3). 

. 3 h :. <^>a- .3z . a- = 6 : (g.r) . </>.r : = : </>.r . 3X . a: = 6 : 05 

3 I-. Prop 

(3) 

The two following propositions (*14123124) are placed here because of 

the analogy with *14122, but they are not used until we come to the theory 

of couples (#55 and *56). 

[*13-21] 

h . *4 71 . 

[*11-341] 

[*13-22] 

*14123. h 0 (z, w) . =,>IC . z =« x. w = y : 

= i <f>(z, tv). . * - «. w - y : 0 (.r, y) z 

s:<f>(z, w). 3,.*. z ■ x. w -y : (32, w). 0 (z, w) 
Bern. 

I- .*11-31 . 3 1-<f>(z, w). sZtU>. z — x.w — yi 

s ; <f> (z, w). 3f, w. z — x. to ™ y : x ■* a?. w « y. 3;> l4..0(2, w)z 

■ : 0 (*, w). 3f, „. 2 - a:. to - y : 0 (.r, y) (1) 

3 h :. 0 (2, to) . 3.2 = a:. to = y : 

3 : 0 (2, to) . = . 0 {z, to). z *= x, w = y z. 

[*11-11-32] DH tu) . DgtW. z = x . vj = y z 

D z <f>(z, to) 4>(z, tu) . z = x ,xu = y z 

D : (5(2, to) . 0 (x, to) . = . (32, to) . <f>(z, w). z = x . w = y . 

= .<f>(x,y) (2) 

1-. (2) . *5 32 . 3 I- s. 0 <2, to) . 3,,„. x — x.to« y : (32, to) . 0 (2, to) : 

, /n /ox ^ >> ss 0(x, to).3x.„.*-#.to«y:0Or, y) (3) 
r . (1) . (3) . 3 H . Prop 

*14 124. h (a*, y) : 0 (2, to) . . 2 = a:. to = y : 

= : (a*, y) . 0 (x, y) z 0 (z, to). 0 (u, v) . 3,,,. z - u . to - v 
Dem. 

K *14 123. *3 27.3 

** - (3*. y)z <f>(z, to) . =(, „ . 2 — x . to « y : 3 • (3a:, y) . 0 (x, y) (1) 

h . *11-1 . *3 47 .3 h z. 4>(z, w) . =z te. z = x. w = y : 

3 : <f> (2, to) . 0 (u, v) . 3 . z = a:. to = y . w = x. = y . 

[*13172] D. z = u. w = v (2) 
h. (2). *1111-35.3 

^ !• (a31, y) : 0 (*, yj) - =x.tP .z = x.w = yz 

3 : 0 (2, to). 0 (u, o) . 3.2 = u . to = V (3) 

12 
R&W X 
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K<3).*1111*3.3 

*- :-(3x,y)i<f>(z, w). =;ie.z = x. w=y : 

3 : 4>(z. w). <f> (•!, v) . 3>...,r.u.r • 2 = « • w =■ ti (4) 

h . *111.3 h :. <*> (.r, y): <*> (*. w). <f> (//, »•). 3,. . * - u. w = v: 

D:<t>(x.y):<t>(z, w).<t>(x,y).0,,„.z-x.w = y: 

[*5 33] 3 : <f> (x, y):<f>(z,io).Or,„.z = x.w=y: 

[*14123] 0 :<f>(s, w). Z = X. w = y (5) 

h . (5). * 11 11 34 45.3 

h :.(g-'*.y)' y) :</>(*. «’) •</>(". V) . 3; = W-t»: 
(6) 3:(g.r,y): </>(z.w).=:%„.z = x.w = y 

h.<1).(4). (6). 3 h . Prop 

*1413. h: a ~(ix)(4>x). = .0 x)(<f>x) = a 

Dem. 
(1) V. *141 . 3 h c/ = (ix) (</>>). = • : (g6): <frc. =x. x = b z a = b 

h . *1310 . *4*36. 0 4>x . =x . x = b : a *= b : = : <f>x. =x . x =* b : b =* a : 

[*1011-281] 3 H :.{zb):4>x.=J.x = b:« = b: 
= : (gt): tpx. =x . x = b : b = a : 

[*U-1] = :(ix)(<t>x)=*a (2) 

K(l).(2). 3 K Prop 

This proposition is not an immediate consequence of *1316, because 

•'a = (u)(<t>x)" is not a value of the function "x = y." Similar remarks 

apply to the following propositions. 

*14 131. h : (lx) (<t>x) - Ox) (y/rx) . 5 . (lx) (y/rx) - (lx) (4>x) 

Dem. 

h . *14-! . 3 y :: (u)(<*>.r) - (i.r) (y/rx) . = (36): <f>x . =,. * = b : b = (ix)(y/rx) 

[*141] = (36) z.<f>x.=x.x = b:. (3c): y/rx. =,. *- c s 6 - c 

[*11*6] a (gc) :.y/rx.=x.x = c:. (36): <f>x. =x. x = b : b = c 

[*14 1] s (gc)y/rx. =x . x = c : (ix) (<f>x) = c 

[*1413] = :.(gc):.y/rx .=x.x = c:c = (ix)(<f>x) 

[*141] = (ix)(y/rx) = (ix)(4>x) :: 3 I-. Prop 

In the above proposition, in accordance with our convention, the descriptive 

expression (ix)(<f>x) is eliminated before (ix)(y/rx), because it occurs first in 

"(»)(♦*)■(«)(♦')"; b,lt in U(1X) (y/rx) — (lx)(<t>x),n (ix)(y/rx) is to be hrs 
eliminated. The order of elimination makes no difference to the truth-vniu , 

as was proved in *14*113. 

The above proposition may also be proved as follows: 

H . *14*111 • 3 h S. (IX) (<f>x) = (lx) (y/rx) . 
= :(3c): <j>x . =x. x = b : y/rx. =x. x - c : b ■ 

[*4-3.*1316.*llll-341] =:(a6,c):^*.=..* = c:^x. =,.x = b:c- 

[*1 l-2.*14 lil] = : (J*)(**> = (>*)($*) =• 3 h • Pr0P 
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*1414. h : a = b . b = (l.r) (<f>.r). D .« = (ix) (^.r) [*13*13] 

*14142. I- : a = (7x) (<#>.»•) . (i.r)(<£.r) = (i.r> (>/r.r). D . a = (ix) (^.r) 

Dem. 

I" . *141 . D h :: Hp . D (36): <£.c. =x.x = b :<i = b 

(ge) : </> r . =x. .r = c : c = ( u) (^.r):. 

[*13195] D . =x . .r = a (gc) : </>.r. =x . .1 = c : c = (;./•){\fr.r) 

[*10 35] D (gc) <f>.v. =x. x « a s <£.r. =x. x = c : c - (1./) (^.r) 

[*14 121] D (go) :4r.sx..c = a:«-c:c = (i.r)(ifr.r) 

[*3 27.*13195] D :.a~(ix)(\lrx):: D h . Prop 

*14 144. t- : (?x) (<f>x) = ( 7x) (>/rx) . (far) (y/rx) = (lx) (Xx) . D . (I.r) (<£.r) = (i.r) <*.*•) 

Dem. 

h . *14 111 . Dh:: Hp . D (ga,5) s <f>x. =,. x«= a : yfrx. =x. x - 5 : a - 6 

(gc, rf): >//-x. =z . x = c : *x . =x . x = : c = <1 

[*13195] D (ga) s <f>x . =x . x - a : yfrx. =x . x = a 

(gc) : . »x. x - c : *x . =x . x - c 

[*11 '54] D (ga, c) : <f>x . =x . x = a : yfrx. sx . x — a : 

>jrx. bx . x - c ; x* • =x • *155 c 

[*14121.*11*42] D (ga.c) : <f>x . sx. x — a : ^x. -x .x — c : a = c 

[*14 111] D (7x)(0x) * (ix)(^x) ::9K Prop 

*14145. h : a = (7x)(<£x) . a » (?x) (^) . 3 . (ix) (<£x) = (?x) (^x) 

Dem. 

. *14*1. D h s. a = (ix) (<*>x) . 3 : (g&) : </>.r. sr. x = 6 : a = 6 : 

[*13195] = : <f>x. =x . x = a (1) 

H . (1). *141 . D H :s Hp. = <f>x. a,. x — a(g&): >/rx. 3*. x = 5 : a — 5 

[*10'35] = s. (g6) :.<f>x. =s.x=* a:\Jrx. =x.x = b:a = b:. 

[*14*111] D :.(ix)(0x) = (ix)(>/rx):: D h . Prop 

*14 15. h (?x) (tf>x) = b .D :yfr |(7x) (<f>x)\ . = . yfrb 

Dem. 
K*14'l . D 

K :: Hp . D (gc) :<£x.=x.x = c:c = 6:. 

[*13'195] D <frx . =x . x = b (1) 

Ml).*14‘l •=> 
h :: Hp . Dz.^lr {{ix)(<f>x)] ■ = : (gc) : x = 6 . =x . x- c : yjrc : 

[*13192] = : yjrb ::DK Prop 

*1416. h (7x) (<f>x) = (7x) (y\rx) .D:X \0*) (<t>*)} - = -X ((1*) (^x)j 
Dem. 

h.*141. D I- Hp . D : (g6) : tf>x . =x . x = b : b = (jx) tyx) (1) 
!■ • *14*1. D H s: tf>x. =*. x = b s D 

X 10*) (0*)} • = : (3c) • X = b . =x . X = c xc ' 
= : (2) 

12—2 

[*13192] 
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(3) K . #141315 . D b :. 6 = (is)(yfrs). D : X*> • * • X |(w) (+*>} 

I- .(2). (3). D h :.<£r . =x . x = b : b = (lx) (yjrx): 

3 : X |0-0($*)1 • s • X 10*) (^>1 (4) 
h .(1).<4).*10 1 23. D K . Prop 

*1417. h :. (Mr)(<£.r) = 6 . = : yfr ! (ix)(<f>s) .=* .>//■! 6 

Dent. 

h. *1415. *1011-21 .D 

I- :.(lx)(<px) = b . D : yjr ! (?.r)(<£j) . =+. \fr ! b (!) 

h . *101 . *422 .Dh::^!x.=x.j-=5:>/r! (ix)(<px) .=+ ,>frl b: 

0:0x)(<f>x)-b.m.b-b: 

[*1315] D :(?*)($*)-& (2) 

h .(2). Exp. *10*11 *23. D 

f- :: (gx) : X ' x • • r = ^ >lr ! (ix)(<f>s). = + ,y/r!b:D. (ix) (<f>x) = 6 (3) 

P . *121 . Df-:(gx):x!**a**x"6 (4) 

h . (3) . (4) ,Db:.y/rl (IX) (<f>x). =+. f ! b : D . (fx) (<f>x) = b (5> 

K . (1). (5) . D H . Prop 

It should bo observed that we do not have 

(is)(<t>x) = b . = : yjr ! (tx)(<f>x) . D* . ^ ! b 

for, if «—' E ! (ix)(tf>s), y\r ! (ix)(<f>x) is always false, and therefore 

ylrl(ix)(<f>x).5+ .yfrlb 

holds for all values of b. But we do have 

*14171. I- :.(ix)(4>r) = b . = : yfr ! b . D* . yfr l(ix)(<f>s) 

Dem. 

h . *1417 . D h i.(lx) (<t>x) = b . D : >\r ! b . D* . * ! (lx) (<*>x) (1) 

I-. *101 . *121 . D h + ! 6. D*. + ! (»*) (<^r) : D : b = 6 . D . (?*) (£r) = 6 : 

[*1315] D:(Lr) (<£*) = 5 (2) 

I*. (1). (2). D h . Prop 

*1418. h :. E ! (ix)(4>s) .0 :(x).+x .0 . + (ix)(<f>x) 

Dem. 

H . *101 • D h z(x).yfrx.D.ylrbz 

[Fact] D <f>x. =x. x = b : (x). yfrx z D z <f>x . =x. x = b : >frb : 

[*l(Hl-28]3l-:.(l[6):*x.=..*-6: (x).*x: 3 : (g&) = <#■*•=* ■ * = i : *hu 

[*10-35] D h :: (gi) : .=z. x = 6 :.(x). :.0 : (gi): <#>x .=,.x = b: irbu 

[*14111] D I-:. E! (?x) (tf>x): (x). >frx: D : ^(Jx)(^x) :■ 3 • Pr°P 

The above proposition shows that, provided (?x) (<£x) exists, it has (speaking 

formally) all the logical properties of symbols which directly represent objects. 

Hence when (jx)(<£x) exists, the fact that it is an incomplete symbol becomes 

irrelevant to the truth-values of logical propositions in which it occurs. 
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*14 2. h . (7.r) (x = a) = a 

Dem. 

. *14*101 . D h (i.r)(.r = a) = a . = : (g5) : x = a . =, . x = b z b = 

[*13*195] = : .r = a . =x . a* = a 

h.(l).Id. D h . Prop 

*14*201. h : E! (ix)(<J>.r) . D . (gar) . <*>.»• 

Dem. 

h . *14*11 . Dh. Hp . D : (g&) : <£.r . =x . .r * b z 

[*10*1] D : (g6): «/>5 . = . 6 = 6 : 

[*13*15] D : (g6) . </>6 D h . Prop 

*14 202. h tf>x. =x. a: *» 6 : =: (;x) (<£.r) = b z = z <f>x. =r. b = x : = : b = 

Dem. 

h . *14*1 . D h (7a:) (<f>x) = b . = : (gc) : <£.r . =x . x = c : c = b : 

[*13*195] = : <f>x. =x.x = b D I-. Prop 

[The second half is proved in the same way as the first half.] 

*14*203. h E ! (ix)(<f>x) . = z (ga:) . tf>x z <f>x . <f>y . D«,v .x = y 

Dem. 

D h E ! (ix)(<f>x) . D : (ga:) . <f>x z <j>x . <f>y . DXtJ/. .r = i 

D h <f)b z <px . . Df y . x y z D z <f)b z <f>x . tf>b . Dx . i 

D : <f>b z <f>x . Dx . a: = b 

D : a: = b . Dz . <f>x : 

<f>x. Dx . x *= 

[*10*22] D:<f>x.=x.x = b 

K . (2) . *10*1*28 . D h :.(g6):</»6 z <f*x. <f>y . D«,y . a: = y:D:(g6) z <f>x. =x 

[*10*35] D h :.(g6).«/>6 z <f>x. <f>y . Dx#y. a: = y:D:(g6) z<f>x.=x 

[*14*11] DzE!(ix)(<fix) 

h . (1). (3) . D h . Prop 

*14 204. h :. E ! (?x) (<*>a:). = : (g6) . (ix) (<f>x) = 6 

Dem. 

h . *14*202 . *10*11 . D 

h(6) <f>x. =x. x « b s 3 : (7a:) (<£ar) = 6D 

[*10*281] h (g6) : <f>x . =x. x = 6 : = : (g6) . (7a:) (<£x) = 6 

h. (1). *14*11. Dh. Prop 

*14 206. h : yjr (ix) (<f>x). = . (g6). 6 = (ix) (<f>x) . +b [*14*202*1] 

*14*21. h : yfr (ix) (4>x) . D . E ! (7a:) (<fix) 

Dem. 

h . *14*1 . D 

h ^ {(7a:) (<f>x)). D : (gfe) : <f>x. =*. x = 6 : yjrb : 

[*10*5] D s (gb) z<f>x.=x.x=bz 

[*14-11] D s E ! (ix) (*f>x) D h . Prop 

h. *14*12*201 

h . *10*1 . 

[*5*33] 

[*13191] 

(1) 

()x)(<f>x) 

(1) 
= 5: 

bz 

(2) 
.x = bz. 

• x~bz 

(3) 

(1) 
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This proposition shows that if any true statement can be made about 

(7x)(0x), then (?x)(0.r) must exist. Its use throughout the remainder of the 

work will be very frequent. 

When (ix)(0x) does not exist, there are still true propositions in which 

'‘(/x)(0.r)” occurs, but it has, in such propositions, a secondary occurrence, 

in the sense explained in Chapter III of the Introduction, i.e. the asserted 

proposition concerned is not of the form \jr (ix)(0x), but of the form 

f\>\r (i.r)(0.r)}, in other words, the proposition which is the scope of (7x)(0r) 

is only part of the whole asserted proposition. 

*14 22. h : E ! (7x) (0x). = . 0 (>.r) (0x) 

Dem. 

h. *14122. D 1-<f>s. =x. x = 6.: D . 06 (1) 

h . (1). *4*71 . D h 0x . =x . x = 6 : = : 0x. =x. x = 6: 06 

[*1011281] D h M36): 0 / . =, ,x = 6: = : (36): 0x. =z.x = 6 : 06 

[*1411101] D h : E!(i.r)(0x). = . 0(?.r)(0x): D I-. Prop 

As an instance of the above proposition, we may take the following: “The 

proposition 'the author of Waverley existed’ is equivalent to ‘the man who 

wrote Waverley wrote Waverley."’ Thus such a proposition ns "the man 

who wrote Waverley wrote Waverley” does not embody a logically necessary 

truth, since it would be false if Waverley had not been written, or had been 

written by two men in collaboration. For example, " the man who squared 

the circle squared the circle" is a false proposition. 

*14 23. 1- : K ! (ix)(0x . yfrx) .= ,<$> J(ix)(0x. 0-x)) 

Dem. 

h . *14-22 . D h E! (ix)(0.r . 0x) . 

= : [(lx) (0x . 0\r)] : 0 [(7x) (0x . yjrx)} . 0* ((lx) (0x . 0*)l 

[*10-5.*3-26] D: 0 {(7x)(0x. 0r.r)| (1) 

h . *14 21 . D h : 0 ((ix) (0x. 0\c)| . D . E ! (/x)(0.r. >/rx) (2) 

h.(l).(2).DH. Prop 

Note that in the second line of the above proof *10*5, not only *3’26, is 

required. For the scope of the descriptive symbol (?x)(0x. 0-x) is the whole 

product 0 |(?x)(0x. 0-x)| . |(ix)(0x . 0x)|, so that, applying *14-1, the 

proposition on the right in the first line becomes 

(36): <f>x . yjrx. . x = 6 : 06 . yfrb 

which, by *10 5 and *3 26, implies 

(36): 0x. yfrx .=,.*=6: 06, 

i.e. 0[(ix)(0x.0>x)). 

*14 24. h E ! (lx) (0x). = : [(7x) (0x)] : 0y. =v. y = (7x) (0x) 

Dem. 

h .*14*1 .DP:. [(7x) (0x)] : 0y. . y = (7x) (0x): 
= = (36) : 0y. =y. y = 6; 0y. =y - y = ^: 
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[*4‘24.*10-2S1] = : (g6) : <f>y . =,,. >/ = b z 

[*1411] = : E! (#.*•) (<f>x) D h . Prop 

This proposition should be compared with *14 241, whore, in virtue of the 

smaller scope of (?x)(<£.v), we get an implication instead of an equivalence. 

*14 241. h E! (ix)(</>.c) . D : <f>y . =,,. y = {lx) (<p.r) 

Dem. 

b . *14 203 . D h :: Hp . D (f>y . <f>x. D . y = x :. 

<f>x . D . y = .r :: 
<£x. Dx.y = x:. 

<f>y z <f>x. Dx. y — a : 

y = x . Dx . <f>x: <f>x. D, . y « a: 

<f>x.=x.y = xz 

y = (ix)(<f>x) Prop 

[Exp] D <£y. D 

[*1011-21] Dh::Hp.D:.<*>y.D 

[*471] D:.*y.s 

[*13191] = 

[*1022] = 

[*14202] s 

*14242. h:.£x.=x.x = 6:D:^5. = .>/r(ix)(<f>x) [*14-202-15] 

*14 26. h :. E! (ix) (<£x) . D : </>x Dx >/rx . = . >/r (>*) (<*>x) 

Dem. 

h . *4-84 . *10-27-271 . D h :: <*>x . =x . a = b : D <*>x Dx >/rx . s : a = b . Dx . >/rx : 

[*13191] = 

[*14-242] =.+(ix)(4>x) (1) 

h . (1) . *1011-23 . D h :. (g&) : <*»x. =x . x « 5 : 

D z <f>xDx\lrx . = . \lr(7x)(<bx) (2) 
h. (2). *1411. Dh.Prop 

*14 26. I-E ! (?x) (<f>x) . D : (gx). <f>x . >/rx. = . {(?x) (<£x)) . = . tf>x Dx \^x 

Dem. 

h.*1411 . D 

b :. Hp . D : (g&) : <f>x . =x . x = b (1) 

b . *10-311. D b :: tf>x . =x . x = 6 : D <f>x. . =x . x = b . yfrx :. 

[*10281] D (gx). <f>x . >/rx. = . (gx) . x = b . >^x . 

[*13*195] = . yfrb ■ 

[*14-242] =. {(?x) (<£x)) (2) 

h. (2). *1011-23. D 

h s- (3&) : 4>x . =x . x = b z D : (gx) . <px . yfrx . = . yjr {(?x) (</»x)} (3) 

h.(l). (3). *14 25. Dh.Prop 

*14 27. h E ! (?x) (<£x) . D : <£x Hx yfrx . = . (?x) (<£x) = (?x) (>/rx) 

Dem. 

h. *4*86-21. Dh::0x.= . x = 6 : D :. (f>x . = . ^rx : = : >/rx. = . x = 6 (1) 

h . (1). *10*11-27 . D h :: <px . =x. x = 6 : D (x) :. <f>x . =. yfrx z = z yfrx . = . x = b z. 

[*10 271 ] D (fix . =x. i/rx : = : >/rx . =x. x = 6 : 

[*14-202] =: 6 = (**)(**): 

[*14-242] = : (JX) ($x) = (lx) (+x) (2) 

I-. (2). *1011-23 . *1411. D h . Prop 
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*14 271. K <f>x. =x . yfrx: D : E ! (i.r) (<p.r). = . E ! ()x) (yfrx) 

Dem. 

b . *4*8G . D H :: <£./ = yjrx. D <f>.r. = . x = 6 : = : yjrx. = . x = b :z 

[*101127] Dh:: Hp . D (x)tf>x . = . .r = b : = : yfrx. = . x = b 

[*10*271] D :.(.r) : <f>x . = . x = b : = : (x) : yjrx . = .x = b:: 

[*1011’21] D b :: Hp . D ^x • s,. x =6 : = : . =x. x = b 

[*10 281 ] D (gi») : <f>x. =x . x = 6 : = : (g&) : =x. x = b:: 

D b. Prop 

*14 272. b <f>x . =x . yfrx : D : ^ (#x)(</m) • = • X (*x)(>/rx) 

J>em. 

b . *4 80 . Dh:: <f>x = \^x. D <f>x . = . x = 6 : = : yfrx. = . x = b 

[*1011414] D b :: Hp. D </>./ . =x ,x = b : = : yfr.r. =x . x = b 

[Fact] D <f>x. =x. x = 6 : *5 : = : yjrx. =x. x = b : *6 

[*1011-21] D b :: Hp. D :.(6)<*>x . =x . x =b:Xb:B lyjrx . =z.s=«&:x&:. 

[*10 281] D (g&): <f>x. =x. x = h s xb • = 

s(3&): • ■«.*-& s 

[*14101] D ^(jx)(</>x). = . x(*x) ('/r*c):: ^ *" • ProP 

The above two propositions show that El(ix)(,<f>x) and x(1X)(4>X) arc 

" cxtensioual " properties of ^.7, t,e. their truth-value is unchauged by the 

substitution, for <£.7, of auy formally equivalent function yjr£. 

*14 28. b : E l(tx)(<f>j ). = .<?x)(tf>x)=* (ix)((f>x) 

Dem. 

b . *13*15 . *4 73 . D b Qx . =x. x = b : = : <f>x. =, . x «= 6 : b = 6 (1) 

h . (1) . *1011-281 . D 

1- :.(g6):<£x. =x.x = b: = :(^b):4>.c.=x.x=b:b = b (2) 

h. (2). *14111 .DK Prop 

This proposition states that (tx)(<f>x) is identical with itself whenever it 

exists, but not otherwise. Thus for example the proposition “the present 

King of France is the present King of France ” is false. 

The purpose of the following propositions is to show that, when El(ix) (4>x), 

the scope of (ix)(<f>x) does not matter to the truth-value of any proposition 

in which (ix)(<f>x) occurs. This proposition cannot be proved generally, but 

it can be proved in each particular case. The following propositions show 

the method, which proceeds always by means of *14 242, *10 23 and *1411. 

The proposition can be proved generally when (ix)(<f>x) occurs in the fonn 

X (ix)(<f>x), and x (1x)(<t>x) occure iu what we may call a “ truth-function, t.e. 

a function whose truth or falsehood depends only upon the truth or falsehood 

of its argument or arguments. This covers all the cases with which we are 

ever concerned. That is to say, if x (7x)(<£x) occurs in any of the ways which 

can be generated by the processes of *1—*11, then, provided E!(7x)(^x)> 

the truth-value of /l[(7x) (<£x)] . x (7x) (<£x)J *3 same “ tbafe of 

[(?*) (<t>x)] .f ix (*r) («£*)). 



SECTION B] DESCRIPTIONS 185 

This is proved in the following proposition. In this proposition, however, the 

use of propositions as apparent variables iuvolves an apparatus not required 

elsewhere, and we have therefore not used this proposition in subsequent 

proofs. 

*14 3. h up = q . . f(p) =f(q) : E ! : D : 

^ /{[(I*) (♦*)]-* (!*)(**)) • = (<#».«*)] ./|X(m)(<#>.!•)} 
Dem. 

H . *14 242 . D 

H <f>x. =x. x - b : D : [(?*) (</>*)] . x (*•*)(</>.<•) . = . x& 

K(l). Dh z.p = q . D,,., ./(p) =/(q)z 4>x.=x..v = b 

/|[(ix)(«^r)] . x (»•*) (^>*>! • = • 
h . *14-242 . D 

: D: 

/(**> 

(1) 

h 4* .»•. «-6 : D : [(?a;)(<*>x)] ./1x0*)(£*)1 • = •/(*&> (3) 

K(2).(3).D 

h s. p = <7 . DPt9 ./(j>) =/(<?) :**.*,.«-6: D : 

/IK7*) (4>x)] . x 0*) ($*)) . s.[(?x)(^ar)]./(x(».r)(^r)J (4) 

h . (4) . *10-23 . *14*11 . D h . Prop 

The following propositions are immediate applications of the above. They 

are, however, independently proved, because *143 introduces propositions 

(p, q namely) as apparent variables, which we have not done elsewhere, and 

cannot do legitimately without the explicit introduction of the hierarchy of 

propositions with a reducibility-axiom such as *121. 

*14*31. h :: E ! (7x) (<f>x) . D [(?*) (fr)]. p v x (?*) (fc). 

= s p - v . [(*r) (<f>x)] . x Ox) (<f>x) 
Dem. 

h .*14-242. D h z. <f>x .=x.x = bzO z[0x)(<f>x)].pv X0x)(<f>x). = .pv xb (1) 

h . *14*242 . D 1- :. (f>x . =*. x = 6 : D : [(ij;)(0j:)] . x(1x)(<f>x) • - • X^ '• 

[*4-37] D :p v [(»*)(<£*)] x(?*)(<£*) .= ,pvxb (2) 

h . (1) . (2) . D h :. <*>x . =x. x = 6 : D : [(*r) (<£*)] . p v x Ox) (<f>x) . 

= . p v [(?*) (<f»x)l x (»#) (<fre) (3) 
h . (3) . *10 23 . *1411 . D h . Prop 

The following propositions are proved in precisely the same way as *14 31; 

hence we shall merely give references to the propositions used in the proofs. 

*14-32. h s. E ! Ox) (<f>x) . = : [(ix) (<f>x)) . 

[*14-242 . *4*11 . *10-23 . *1411] 

X0x) (</>*). 

= — ([(*«> (<px)] . x Ox) (<f>x)\ 

The equivalence asserted here fails when ~E ! (?x) (<px). Thus, for example, 

let <f>y be “ y is King of France.” Then Ox)(<t>x) = the King of France. Let 

XV be “y *8 bald.” Then [(?#) (<f>x)] .~x 0X) (<f>x) . = . the King of France 

exists and is not bald ; but ~{[(m)($b)] . x (**)($*)). = . it is false that the 

King of France exists and is bald. Of these the first is false, the second true. 
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Either might be meant by “the King of France is not bald,” which is am¬ 

biguous; but it would be more natural to take the first (false) interpretation 

as the meaning of the words. If the King of France existed, the two would be 

equivalent; thus as applied to the King of England, both are true or both false. 

*14 33. b :: E ! (ix) (<£./-). D [(ix)(<£x)]. p D x (ix)(<f>x). 

= :p.O. L(ix) (<*>x)] . x (»*) (4>x) 
[•14-242 . *4 85 . *10 *23 . *14 11] 

*14 331. b :: E! (?.#•) (<f>x). D [(ix)($x)]. ^(ix)(</>x) Dp . 

= : [(?x) (<*>x)]. x 0*) (♦*) • D -P 
[*4-84 . *14-242 . *10 23 . *1411 ] 

*14 332. b :: E ! (is)(<f>x) . D [(ix)(</>x)] . p = xO*)(<t>x) • = 

:/>. = . [(?x) (</>x)] . x (**) (£c) 
(*4 8G . *14 242 . *10 23 .*1411] 

*14 34. b :. p i [(tx) (. x (,.c) (£r); a : [(ix) (<f>x)]: p. x (»*) (♦*) 

This proposition does not require the hypothesis E!(*r)($x). 

Dent. 

b . *14*1 . D 

b p : [(ix) (<f>x)]• x <*0 («M: ■ :/>! (gfr): $x. g„. x - 6: *6: 

[* 10 35] = : (gft) ; p • <f>x. =x. x = 6: x^! 

[*141] = : [(ix)(0x)]: p. X(tx)(4>j:)^ ^ • ProP 

Propositions of the above type might be continued indefinitely, but as they 

are proved on a uniform plan, it is unnecessary to go beyond the fundamental 

cases of p v q, ~p, p D q and />. 7. 

It should be observed that the proposition in which (tx)(<f>x) has the 

larger scope always implies the corresponding one in which it has the smaller 

scope, but the converse implication only holds if either (a) we have E ! (ix)(<^) 

or (6) the proposition in which (jx) (</>x) has the smaller scope implies 

E! (?x) The second cose occurs in *14 34, and is the reason why we 

get an equivalence without the hypothesis E!(ix)($x). The proposition in 

which (ix)(<f>x) has the lurger scope always implies E!(ix)(<£x), in virtue of 

*14-21. 



SECTION C 

CLASSES AND RELATIONS 

*20. GENERAL THEORY OF CLASSES 

Summary of *20. 

The following theory of classes, although it provides a notat ion to represent 

them, avoids the assumption that there are such things as classes. This it does 

by merely defining propositions in whose expression the symbols representing 

classes occur, just as, in *14, we defined propositions containing descriptions. 

The characteristics of a class are that it consists of all the terms satisfying 

some propositional function, so that every propositional function determines a 

class, and two functions which are formally equivalent (i.e. such that whenever 

either is true, the other is true also) determine the same class, while conversely 

two functions which determine the same class are formally equivalent. When 

two functions are formally equivalent, we shall say that they have the same 

extension. The incomplete symbols which take the place of classes serve the 

purpose of technically providing something identical in the case of two functions 

having the same extension ; without something to represent classes, we cannot, 

for example, count the combinations that can be formed out of a given set of 

objects. 

Propositions in which a function <f> occurs may depend, for their truth- 

value, upon the particular function </>, or they may depend only upon the 

extension of <f>. In the former case, we will call the proposition concerned an 

intensional function of <f>; in the latter case, an extensional function of <f>. 

Thus, for example, (x). <f>x or (gx) . tf>x is an extensional function of <f>, 

because, if <f> is formally equivalent to yfr, i.e. if <f>x. =,. yfrx, wc have 

(*) . <f>x . s . (x) . yfrx and (ga?) . <f>x . = . (gar) . yfrx. But on the other hand 

"I believe (x) . <px” is an intensional function, because, even if <ftx . =x . yfrx, 

it by no means follows that I believe (x). yfrx provided I believe (x). <f>x. The 

mark of an extensional function f of a function <f>! 2 is 

<t>lx.=x.yfrlx:D^:f(<t>l2). = ./(ylr!n 

(We write “<£ !$” when we wish to speak of the function itself as opposed to 

its argument.) The functions of functions with which mathematics is specially 

concerned are all extensional. 

When a function of <f> ! 2 is extensional, it may be regarded as being 

about the class determined by <f>! 2, since its truth-value remains unchanged 

so long as the class is unchanged. Hence we require, for the theory of classes, 

a method of obtaining an extensional function from any given function of a 

function. This is effected by the following definition: 
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*20 01. / |2 (yfrz)I. - : (3*) 8 * ! x. s,. ifrx : / (* ! ?) Df 

Here |3 (^r^)j is in reality a function of yfrS, which is*dcfined whenever 

/•</>! 2| is significant for predicative functions <p ! 2. But it is convenient to 

regard f z{y\r~)\ as though it had an argument z (yfrz). which we will call 

"the class determined by the function yfrz." It will be proved shortly that 

f \z (^r)| is always an erfensional function of yjfz, and that, applying the 

definition of identity (*13*01) to the fictitious objects 2 (<pz) and 2 (y^z), we 

have 

z(<f>z)=2 (yfrz) . = : (x) : tf>x. = . yfrx. 

'l'liis last is the distinguishing characteristic of classes, and justifies us in 

treating 2 (yfrz) as the class determined by \frz. 

Wit h regard to the scope of 2 (y/rz), and to the order of elimination of two 

such expressions, we shall adopt the same conventions as were explained in 

*14 for (ix)(<f>x). The condition corresponding to 

E ! (ir)(y/rx) is (g<£) :<p\x.=x. ^x, 

which is always satisfied because of *12*1. 

Following Peano, we shall use the notation 

xcz (\Jrz) 

to express "x is a member of the class determined by yjrz" We therefore 

introduce the following definition: 

*2002. xc(0!2). = .0!x Df 

In this form, the definition is never used; it is introduced for the sake of the 

proposition 

h x ( 2 (+z). = : (g</>): . a„. 0 ! y : <f> l x 

which results from *20 02 and *20*01, and leads to 

V : x € 2 . = . yfrx 
by the help of *12*1. 

We shall use small Greek letters (other than e, i, 7r, </>, yjr.x- 0) to represent 

classes, i.e. to stand for symbols of the form 2 (<f>z) or 2(0! z). When a small 

Greek letter occurs as apparent variable, it is to be understood to stand for a 

symbol of the form 2 (<f>! z), where <f> is properly the apparent variable con¬ 

cerned. The use of single letters in place of such symbols ns 2(4>z) or 2 (<£!*) 

i9 practically almost indispensable,since otherwise the notation rapidly becomes 

intolerably cumbrous. Thus "x € a” will mean "x is a member of the class a. 

and may be used wherever no special defining function of the class a is in 

question. 

The following definition defines what is meant by a c/ass. 

*20 03. Cls = a [(g<*>) . a - 2 (£!*)) Df 

Note that the expression “a {(g<£). a = 2 (<f>! z)\” has no meaning m 

isolation: we have merely defined (in *20*01) certain uses of such expressions. 

What the above definition decides is that the symbol “Cls” may replace the 

symbol "a {(g<£). a = 2 (<f>! z)\" wherever the latter occurs, and that the 
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meaning of the combination of symbols concerned is to be unchanged thereby. 

Thus “Cls," also, has no meaning in isolation, but merely in certain uses. 

The above definition, like many future definitions, is ambiguous as to 

type. The Latin letter z, according to our conventions, is to represent the 

lowest type concerned; thus <f> is of the type next above this. It is convenient 

to speak of a class as being of the same type as its defining function ; t hus a 

is of the type next above that of z. and “Cls" is of the type next above that 

ot a. Thus the type of “Cls" is fixed relatively to the lowest typo concerned; 

but if, in two different contexts, different types are the lowest concerned, the 

meaning of “Cls” will be different in these two contexts. The meaning of “ Cls" 

only becomes definite when the lowest type concerned is specified. 

Equality between classes is defined by applying *13 01, symbolically un¬ 

changed, to their defining functions, and then using *20 01. 

The propositions of the present number may be divided into three sets. 

First, we have those that deal with the fundamental properties of classes; 

these end with *20 43. Then we have a set of propositions dealing with both 

classes and descriptions; these extend from *205 to *2059 (with the ex¬ 

ception of *20*53*54). Lastly, we have a set of propositions designed to prove 

that classes of classes have all the same formal properties as classes of in¬ 

dividuals. 

In the first set, the principal propositions are the following. 

*20 15. h yjrx . s,. yx : = . 2 (yfrz) = 2 ixz) 

I.e. two classes are identical when, and only when, their defining functions 

are formally equivalent. This is the principal proporty of classes. 

*2031. H 2 (yjrz) = z (xz) • = : x e 2 (yfrz) . =x.xez (x*) 

I.e. two classes are identical when, and only when, they have the same 

members. 

*20 43. z. a = @ . = : x € a . =x . x e ft 

This is the same proposition as *20*31, merely employing Greek letters 

in place of 2(yfrz) and z (*z). 

*2018. h 2(</>*) = 2 (irz) . D :/(2 (*«)). = -/{2«*» 
I.e. if two classes are identical, any property of either belongs also to the 

other. This is the analogue of *13*12. 

*20*2*21*22, which prove that identity between classes is reflexive, symmetrical 

and transitive. 

*20*3. h : x e 2 (yfrz) . = . yfrx 

I.e. a term belongs to a class when, and only when, it satisfies the defining 

function of the class. 

In the second set of propositions (*20*5—*59), we show that, under suitable 

circumstances, expressions such as (ix)(<f>x) may be substituted for x in *20*3 
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and various other propositions of the first set, and we prove a few properties 

of such expressions as < ia) ( fa),” i.e. “ the class which satisfies the function /.” 

Here it is to be remembered that '* a ” stands for “5(cf>z)," and that "fa" 

therefore stands for Mf{5($z)J.” This is, in reality, a function of <f>z, namely 

the cxtensional function associated with f(\jrlz) by means of *2001. Thus 

an expression containing a variable class is always an abbreviation for an 

expression containing a variable function. 

In the third set of propositions, we prove that variable classes satisfy all 

the primitive propositions assumed for variable individuals or functions, whence 

it follows, by merely repeating the proofs of the first set of propositions (*20*1 

— '43), that classes of classes have all the formal properties of classes of in¬ 

dividuals or functions. We shall never have occasion explicitly to consider 

classes of functions, but classes of classes will occur constantly—for example, 

every cardinal number will be defined as a class of classes. Chisses of relations, 

which will also frequently occur, will be considered in *21. 

*20 01. f\t(^*)J. - : <f> lx. sr. yjrx:f\<f>! 2| Df 

*20 02. x€(<t>'.z).~ .<t>lx Df 

*20 03. Cls«a Kg*).a« $($!*)) Df 

The three following definitions serve merely for purposes of abbreviation. 

*20 04. r, y € a . — . r € a . i/1 a Df 

*20 05. x,y,z ta.-./,yta.:ea Df 

*20 06. x~*c a. m . ^(xt a) Df 

The following definitions merely extend to symbols representing classes 

the definitions which have already been given for other symbols, with the 

smallest possible modifications. 

*20 07. («)./a.-.(0)./(3(*!«)| Df 

*20 071. (3<*)./««- -(3$>•/!*<♦ **>l Df 
*20 072. [(ia) (</>a)] ./(?a) (<f>a). = : (37): <f>a . =. . a = 7 :fy Df 

*20 08. /Ja(^a)| . = :(3^):>/ra.=. . <f> l a z f(<f> l a) Df 

*20081. acyfr!a. = .'l'la Df 

The propositions which follow give the most general properties of classes. 

*201. I- :./|3<**)! • = s <3<f>) :</»! x. =x. :/{*/,! [*4*2 . (*20 01)] 

*20 11. h -=z-Xx:D:f I2 (+z)\ • = -f\z (Xz)\ 

Dem. 

h . *4-80 .D\-zz Hp. D <f>! x. =x. ^x: =* : <p ! x. =z. *x 

[*4 36] O z. <t>lx ,=x . yfrx zf\<t> ! 2) :=*:<£!*. =x . *x :/(</>! * 1 

[*10*281] 3 (3<t>) : <t>! x. =x . yfrx :/[</>! z\ : 

= :(3<f>) z <f> l x. =x • Xx zf W 1 

D :./[3(^» . = • P™P [*20-1] 
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This proves that, every proposition about a class expresses an extensional 

property of the determining function of the class, and therefore does not 

depend for its truth or falsehood upon the particular function selected for 

determining the class, but only upon the extension of the determining function. 

*20111. h :./(<*,! . =*. g(4>! ?) : D :/(£(</>! -)] . =,. <j |3 (0 ! z)| 

Detn. 

H . Fact. Dh:: Hp . 3 :. <filx. =, . ^ ! * :/(>/r!2): = :<£!,r.=,.>Jr!.r: :: 

[*1011 21] DhstHp.D :.<*>!*. =,.^!*:/(ifr! 2): <7(^12):. 

[*10-281] 3:.(a^-):<#.!*.=,.^!x:/(^!2):s:(a^):^!*.Sx.-f !..:j7(^!2):. 

[*201] D :./(2(* l *)). = . g [2 (^!.r)] ‘ (1) 

H.(l). *1011-21. Dh. Prop 

*20 112. I- (a!7) :./(2(* ! ,)) . .,, ■ (2 ! *)) 

Dem. 

h . *121 . D h <a!7) :/(<*>! 3) . =* . ^ ! («*>! 2) (1) 

h . (1) . *20*111 ,DK Prop 

Thus the axiom of reducibility still holds for classes as arguments. 

*20 12. h : <a$) :<t>lx.=x.yf,x:f{3 <**)) . = •/{* (<*>! *)! [*2011 .*121 ] 

*2013. I- yjrx . =, . Xx z D . 2 (>/rz) - $ (Xz) 

The meaning of u 2(\frz)** ^(\9) ” *s obtained by a double application of 

*20 01 to *13 01, remembering the convention that z('Z'z) is to have a larger 

scope than ^(Xz) because it occurs first. 

Dem. 

l-.*20 1.DI-::2(^)=2(x*). = :.(a<#.):^x.Sl.^!x:^!2 = 2(x*):. 

[*20-1] s-..(_'A4,,e):.^x.s,.4>lx:xx.=,.0lx:4>Si = OlS (1) 
h . *12-1 .*10-821 . D 

h :: Hp . D (a<£) : . =x . <f>! a:: • =* • <f> 1 x 

[*13-195] D (g<£, 0) yfrx . =x. <f> l x z X* • =* • & '• x z $ l 2 = 01 2 (2) 

h • (1) . (2) . D f-. Prop 

*20 14. H 2 (\/rz) = 2 (^*) . 3 : yfrx .=z.xx 

Dem. 

I-. *201 . D h :: 2 (yjrz) = z (xz) • = (3<f>) • ylrx . =, . <f>! x : <f>! 2 = 5 (^z) 

[*201] s (a<J>, 0)z.ylrx.=x.4>\xzx*-^*-O\xz<t>l2=0\$z. 

[*13*195] = (a<£) \Jrx . =x . <pl x z xx • =x • 4>'x 

[*10322] D:.^.=I.XI::Dh. Prop 

This proposition is the converse of *2013. 

*20 16. h yjrx . =x. XX z = . 2 (yfrz) = 2 (Xz) [*201314] 

This proposition states that two functions determine the same class when, 

and only when, they are formally equivalent, t.e. are satisfied by the same set 

of values. This is the essential property of classes, and gives the justification 

of the definition *20 01. 
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*20151. K(g<*>>.2(^) = 3<.*>!*) 
Dem. 

b .*2015. D b :. yjrx ,=x. <f>l x i D . z (^r*) = z (<f>! z) 

[*10*11*28] D b :. (g<£): >frx. =x . 0 ! x : D . (g<£). z(y\rz) = z(<f>! z) (1) 

b . (1). *1 21 . D b. Pmp 

In virtue of this proposition, all classes can be obtained from predicative 

functions. This fact is especially important when classes are used as apparent 

variables. For in that ease, according to the definitions *2007 071, the ap¬ 

parent variable really involved is a predicative function. In virtue of *20151, 

this places no limitation upon the classes concerned, except the limitation 

which inevitably results from the nature of their membership. A class, there¬ 

fore, unlike a function, has its order completely determined by the order ot 

its possible members, i.e. of the arguments which render its defining function 

significant. 

*2016. t-:<3*):/|3(*s)!.5./|}(*!x)| [*2012] 
*2017. h :<*> 3./|J<**>| [.2016 .*101] 

*2018. h:.2(*x) = 2<*x).3:/|2($x)|. = ./[2<*x)I [*201115] 

*20 19. h :. 2 <*.-) = 2 (Xx). a : (/):/! 2 (*.-). 3 ./! 2 (Xx) 

Dem. 

V . *2018 . *101121.3 H :. 2(*r) = 2(xx) . 3 : 

(/):/! »(**)-3. /! 2 (x*) <» 

H . *201815.3 V :: <*>! .r. s, . 'f'x : 0 ! x. s,. :/! 2 (>Jrx). 3 ./! 2(x*) ■ 3 : 
/!2(4>!x).3./!2(0!x) (2) 

h. (2). *1011-27 33.3 

h :: A ! x. s, . <tr* : 61 x. s,. X*:. (/):/! 2 (ifrx). 3 ./! 2(Xx) :. 3 :• 
(/):/! 2(^.1 x). 3./! 2(5! *):• 

[*20112.*10-1 ] 3:.^!r.=,.*!x:3:*!x.=1.tf!x:. 

[*4*2] D <t>lx.=x.0lx:. 

[*10*301*32. Hp] Ds.ifrx.s,.**:. 

[*2015] D 2 (**) «$<**) (3> 

b.(3). *1011*23*35 . D 

h :: (a*, 01: d>! x. =*. **: 0! *. s,. x*:. (/) s/12 (*x) • 3 ./! 2 (Xx) *• 
3.2(tx) = 2(xx) W 

I-. (4). *121.3 I-:.(/):/! 2(*x). 3 ./! 2<xx): 3.2 (*x) = 2(xx) (5) 

h . (1). (5). 3 h. Prop 

*20191. I-:. 2 (<[rx) = 2 (X2) . = :(/):/! 2 (-fx). s ./! 2(Xx) 
[*2018-19. *10-22] 

*20 2. 1-. 2 (<*.;) = 2 (4>x) 

Dem. , . 
h. *2015.3 1-:. 2(^x) = 2(<^x). = :^x.=x.^.x 

1-. (1) . *4 2 .*1011.31-. Prop 

(1) 



SECTION Cj CGNKRAL THEORY OF CLASSES 103 

*2021. I- = . 3(05) = 3(0:) 1*201”,. *IO-32| 

*20 22. 1- : 3 (0.-) = 3 (0j) . 3 (0j) - 3 (*;> . D . 3 ( 0j) - 3 (*;) 

[*2015.*10:U)1] 

The above propositions are not immediate consequences of *13*1",* hi* I 7. 

for a reason analogous to that explained in the note to *14* 13. namely because 

(<f>z)\ is not a value of f.r, anil therefore in particular " 3 (05) = - (0-» is 

not a value of “ x = y." 

*20 23. 1-: 3 (05) - 3 (05). 3 (05) = 3 (xj) . D . 3 (0: ) - 3 (*5) [*20*21 -22) 

*20 24. I-: 3(05) = 3(05) . 3(*5>- 3(05). D . 3 (05) = 3 (*5 > [*20*21*22] 

*20 25. h a = 3 (05). =. . a-3(05) : = . 3 (05) - 3 (05) 

Dem. 

h . *10'1 . DI-:.a-J(f-).s..a.J(^)0 : 

3 (05) = 3 (05). = . 3 (05) -3(05): 

[*20-2] 3:3(05)-3 (05) (1) 

h . *20 22 . 3 h : a = 3 (05) . 3 (05) = 3 (05) . D . ct = 3 (05): 

[Exp.Comm] 3 h 3 (05) - 3 (05) . 3 : a = 3 (05) . 3 . a — 3 (0-) (2) 

h . *20 24 . 3 h :. 3 (0-) - 3 (05) . a - 3 (05). 3 . a = 3 (05) 

[Exp] Dh:.3(05)« 3(05). D:a = 3(05).D.a = 3(05) (3) 

h . (2) . (3). 3 h :. 3 (05) - 3 (05) . 3 : a - 3 (05). a . a - 3 (05) 

[*1011-21] 3 1- :. 3 (05) - 3 (05) . 3 : a - 3 (05). =„ . a - 3 (05) (4) 

K(l).(4). 3 h . Prop 

*20 3. h : x € 3 (05) . = . 0.r 

Dem. 

h . *201 . 3 

h :: a:« 3 (05) . = (g0)0y . . 0 ! y : a; € (0 ! 3) 

[(*20 02)] = (a0) 0y . =„ . 0 ! y : 0 ! a: 

[*10-43] =:.(a0):.0y.=f/.0!y:0a::. 

[*10-35] = (30) : 0y - 3*. 0 ! y 0* 

[*12 1] = :. 0a::: 3 h . Prop 

This proposition shows that x is a member of the class determined by 0 

when, and only when, x satisfies 0. 

*20 31. h 3(05) = 3 (x^) • = :a;c3(05). =x.xez{xz) [*20T5*3] 

*20 32. h {a: €3 (05)) =3(05) . [*20*315] 

*20 33. h a = 3 (05) . = z x e a. =x. <f>x 

Dem. 

h. *20*31. D h a = 3(0z) . = : a: c a . =z . xc 3(05) (1) 

I- . (1) . *20‘3 . 3 h . Prop 

Here a is written in place of some expression of the form 3 (05). The 

use of the single Greek letter is more convenient whenever the determining 

function is irrelevant. 

R&W i 13 
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*20 34. f- x = // . = : x € a . 3« . y c a 

J)em. 

H . *4*2 . (*2007). 3 h xt a . 3„ . y € a z = : x e z (tf> l z). Of y e 2 (<f> \ z) i 

[*20*3] = z <t>l x .0* . (f> \ y : 

[*I.‘H] = : x = y 3 h . Prop 

The above proposition and *20 25 illustrate the use of Greek letters as 

apparent variables. 

*20 35. x = y . = z x t a . . y € a [*20*3 . *13*11] 

*20 4 h:af CIs . = . (3*). a - z (</>! z) [*20*3 . (*2003)] 

*20*41. h . 2 (**) < CIs [*20 4151] 

*20 42 K;(:«a) = o 

A Greek letter. sueh as a, is merely an abbreviation for an expression of 

the form thus this proposition is *20*32 repeated. 

Deni. 

h . *20*3 . * I 0* 11 . 3 h : x t 3 (\frz). =x . yjrx : 

[*20 15) 0 h . J* \x € z (^rr)l = ^(|i).DI*. Prop 

*20 43. b z.a-0 .m zxt a.m, .x€0 [*20*31] 

The following propositions deal with cases in which both classes and 

descriptions occur. In such cases, we shall, in the absence of any indication 

to the contrary, adopt the convention that the descriptions are to have a 

larger scope than the classes, in applying the definitions *14*01 and *20 01. 

*20 5. b (yfrz). = . ^ |(l.r) (</»./ )) 

Dent. 
I-. *14*1 .Oh zz (ix)(<f>.r)c z (y\rz). = (yc): 4>x. =, . X- c z ce? (yjrz) :• 

[*20 3] = (yc): <f>x. =,. x «= c : yjrc 

[*14*1] = yfr |(»x)(<£x)J :: 3 b . Prop 

*20 51. I- :. (ix) (<f>r) = b . = : (ix) (<f>x) ea.=0.bea 

Deni. 

b . *20-5-3. 3 

h:.(w)(^r)fJ(f !*). = .&«?(*!*): s :*!(>*)(£*)• = 3 

[*10 11] t-:. (»x)($.r) (a.=..k<a: = :f ! (« )(£*)• =»• 'I'i b! 

[*1417] = :(«)(£*) = &:. DK Prop 

*20 52. b E ! (ix)(<£.r). = : (y5): (ix)(^r) € a . =« . 6 ea 

Dent. 
K *20 51 .*1011-281.3 

b (y&). (ix) (<f>x) = b. = : (y6) : (ix) (<f>x) c a . =«. b e a (0 

h. (1). *14*204.3 h. Prop 

*20*53. h Q = a. 3* . </>£ : = . <f>a 

This is the analogue of *13*191. 
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K*10 1. D h fi = a . . <f>/3 : D : a = a . D . 4>a z 

[*20-2] D : <f>a O) 

h .*2018-21 .Dh./3 = a.D:</)a.D. </»/9:. 

[Comm] Dh:.0a.D:/5 = a.D. <f>@ z. 

[*1011-21] D h <pa . D : = a . . </>/$ (2) 
K(l).(2). D 1-. Prop 

*20 54. h : (g/9) . /9 = a . <£/3 . = . <f>a 

This proposition is the analogue of *13 195. 

Dem. 
h . *2018 . *1011 . D h : /3 = a . <J>£ . . <f,a : 

*2055. 

[*10-23] 

h . *20-2 . *3-2 . 

[*10-24] 

I-. 2 (<£t) = (?a) (.rea. 

3 h : (3/9) . /9 = a . <f>/3 . D . <f>a 

Z> h : </>a . D . a = a . </>a . 

D I-. Prop 

-* • 4>x) 

Dem. 

(1) 

(2) 

h . *20 33 . D h xea. mx. <f>x: =« .a— 2(<£*) 

[*20-54] D h (g/9) t e a . s, . <f>x : =. . a - /3 2 (</»j) =. /3 :. 

[*141] D H .2(<f>z) = (?a)(Te a . =, . <f>x). D h . Prop 

*20 56. h.E!(?a)(^«a.=z.fc) [*20 55 . *14 21] 

*20-57. Vz.2 (<f>z) = (7a) (/a) .0 ig{3 (<f>z)\ . = .g {(?a) (/a)| 

Dem. 

h.*141. Dhs:Hp. = s.(a/3):/a.s,.a«/3:2(^)-/3:. 

[*20-54] s:./a.=..a = 2(<^) (1) 

h . *141 . D h <7 ((7a) (/a)| . = : (3/9) :/a . =. . a = /3 : g/3 (2) 

h . (1) . (2) . D H :: Hp . D £r ((7a) (/a)] . = : (a/9): a = z (<f>z). =a . a =/3 z g/3 : 

[*13183] = : (3£) . a (**) = /9.<//9: 

[*20*54] = : *7 (2 (<£*)} :: D h . Prop 

*20-58. h . 2 (<f>z) = (70) (a = $ (<£*)} 

Dem. 

h. *4-2. *1011 . D h za = 2(<f>z). =m . a = z (<f>z) : 

[*20 54] DV:. (3/3) :. a = 2 (02). =. . a = 0 : 2 (02) = £ 

[*141] D H . 2 (02) - (ia) {a = 2 (02)) . D h . Prop 

*20-69. I-: 2 (02) = (la) (/a). = . (70) (/a) = 2 (02) 

Dem. 

V . *20-1 . D I-a (<£r) = (7a) (/a). = : (3^) z <f>x . =x. yfr l x z + l 2 = (?a) (fa) z 

[*14-13] = : (3yfr) : <f>x . =x . yfr ! x z (7a) (/a) = yjr ! 3 : 

[*201] = : (7a) (/a) = 5 (*») :.Dh. Prop 

13—2 
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In the following propositions, we shall prove that classes have all the 

formal properties of individuals, and have the same relations to classes of 

classes as individuals have to classes of individuals. It is only necessary to 

prove the analogues of our primitive propositions, and of our definitions in 

cases where their analogues are not themselves definitions. We shall take 

the propositions *10111 12121122, rather than those of *9, and we shall 

prove the analogue of *10-01. As was pointed out in *10, we shall thus have 

proved everything upon which subsequent proofs depend. The analogues of 

*200102 and of *14*01 remain definitions, but those of *10*01 and *13*01 

become propositions to be proved. *9*131 must be extended by the definition: 

Two classes are "of the same type" when they have predicative defining 

functions of the same type*. In addition to these, we have to prove the 

analogues of *10 1 11 12 121 122. *11 07 and *12*1*11. When these have been 

proved, the analogues of other propositions follow by merely repeating previous 

proofs. These analogues will, therefore, be quoted by the numbers of the 

original propositions whose analogues they are. 

*20 6. h : (ga) ./a . b . -(a) .~ya| 

Dan. 

h. *4 2. (*20*071).} 

: <3Q) •/« • = • (3<t>) •/{+ (<t> ■ *)| • 

[(*1001)] ~/|2 (<*,!*)}]. 
[(*20 07)] = .~|(o) .~/a; Oh. Prop 

This is the analogue of *10*01. 

*20 61. h :(a).fa.D.f/3 

Dan. 

h . *10*1 . (*20 07). D h : (o) ./a . D ./(2 (<*>!*)): D h . Prop 

This is the analogue of *10*1. 

In practice we also need 

This is *20*17. 

h:(a)./a.D./|3(^». 

We need further h . (ga). z (>/r*) = a. 

This is *20*41. 

*20 62. When //3 is true, whatever possible argument of the form z(<f>'2) 

/9 may be, then (a).fa is true. 

This is the analogue of *10*11. 

Deni. 

h . *10*11 . D . when f\z(<f>! z)\ is true, whatever possible argument (f> may 

be, then (<f>) ./{2(<£ l z)) is true, i.e. (by *20 07), (a) ./a is true. 

*20 63. h :. (a).p vfa. D :p. v . (a) .fa 

This is the analogue of *10*12. 
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I-. *4*2 . (*20 07). 3 

h :•(«>•/> v./« • = :(</»)./» v/|2 (</>! *)j : 

[*1012] = : • v . (</>) ./|? (<£! ^)j : 

[(*2007)] s :/>. v . (o) ../a :.DF. Prop 

*20 631. If “/a” is significant, then if 0 is of the same type as a, " f0" is 

significant, and vice versa. 

This is the analogue of *10121. 

Dem. 

By *20151, a is of the form 2 (<f>! z), and therefore, by *20 01, fa is a 

function ot <f>! 2. Similarly 0 is of the form z (yfr ! z), and f0 is a function of 

! 2. Hence by applying *10121 to <f>! 2 and \fr ! 2 the result follows. 

*20 632. If, for some a, there is a proposition fa, then there is a function fa, 

and vice versa. 

Dem. 

By the definition in *20*01, f\z (\fr ! *)| is a function of \fr ! z. Hence the 

proposition follows from *10*122. 

*20*633. “ Whatever possible class a may bc,f(a, 0) is true whatever possible 

class 0 may be” implies the corresponding statement with a and 0 inter¬ 

changed except in “/(a, 0).” 

This is the analogue of *11*07, and follows at once from *11*07 because 

/(a, 0) is a function of the defining functions of a and 0. 

*20 64. h (a) .fa z(a).gazO .f0 . g0 

Dem. 

H . *4*2 . (*20*07) . D 

h (a) .fa : (a) . ga s = : (<f>) ./ (2 (<*>! z)} :(<f>).g (2 (<j>! z)} z 

[*10*14] D :/{*<* t *)}'?(?(*!*)):. 3 h . Prop 

Observe that "0" is merely an abbreviation for any symbol of the form 

2 (>/r ! z). This is why nothing further is required in the above proof. 

The above proposition is the analogue of *10*14. Like that proposition, 

it requires, for the significance of the conclusion, that / and g should be 

functions which take arguments of the same type. This is not required for 

the significance of the hypothesis. Hence, though the above proposition is 

true whenever it is significant, it is not true whenever its hypothesis is 

significant. 

*20*7. h:(3 g):fa.=m.gla [*20 112] 

This is the analogue of *12*1. 

*20*701. h : (apr) :/ {2 (<f> l z), x}.=+iX.g ! )2 (<f>! z), x\ 

[The proof proceeds as in *20 112, using *12*11 instead of *12*1.] 
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*20 702. h : (aif) :/|x, z (4>! z)| . =*.z . <j ! Jo:, 2 (<£! z)) 

[Proof as in *20 701.] 

*20 703. H : ):/15 (.*>! *), 2 (*! *)} . =*.*. g! (S(* ! *). 2 (*! *)) 

Dem. 

h. *10311 . D h :./|x'.2, ^! 3J. =x.$.gl \x'-*> #'• *\ ’ 3 s 

0!xE,x!x.Vr!xsx0!x./(x!2( •=».•• 

<J> !x=,x!x. ^ ! ***# • *•&* lx1 
h.(l).*lMl‘3'3*1.3 

1*Hp( 1). D : (ax- &) • <t> '• r =x X*x • 'l' •x -* &'x • f\x * 2. 6! 2) • =*.* • 
(flX- 0). <t>! .r =x x ! x • ^ ! xs* 0 ! x • 0 ! lx ! 2, 0 * *): 

[*201 .*10-35] D :/|2(<£ ! *). 5<* ! *)) . =♦.*..? S «<*>! 2. *! 5) (2) 

M2).*1011*281 . D 

H :• (a!/):IX * *! *1 • »*.•. 0 ! |X ! 2. 0 ! 3j: D : 
(:•!'/> :/l- *</>! *). 5 <* ! *)| .=♦.*•<? t i*(*«*). n+ J *>! <3) 

h . (3) .*1211 . D h . Prop 

*20*701*702*703 give the analogues, for classes, of *12*11. 

*20 71. h :.a = /3. = : 7 ! a . D,. 7!/3 [*2019] 

This is the analogue of *1301. 

This completes the proof that all propositions hitherto given apply to 

classes as well as to individuals. Precisely similar reasoning extends this resu 

to classes of classes, classes of classes of classes, etc. 

From the above pro|>ositions it appears that, although expressions such as 

z(<f>z) have no meaning in isolation, yet those of their formal properties wit 

which wc have been hitherto concerned are the same as the corrcspon ing 

properties of symbols which have a meaning in isolation. Hence nothing in 

the apparatus hitherto introduced requires us to determine whether a g>vejj 

symbol stands for a class or not, unless the symbol occurs in a way in " 1C 

only a class can occur significantly. This is an important result, which ena es 

us to give much greater generality to our propositions than would otherwise 

be possible. 

The two following propositions (*20*8*31) are consequences of *13 3. The 

•'type" of any object x will be defined in *63 as the class of terms either 

identical with x or not identical with x. We may define the “type of t e 

arguments to <f>z’’ os the class of arguments x for which ''<px is signi 

*.e. the class £(<*>x v~£x). Then the first of the following propositions show 

that if “fa" is significant, the type of the arguments to <f>2 is the typeo a. 

the second proposition shows that, if “<f>a” and "yfra 9 are both signi can , 

the type of the arguments to <f>2 is the same as the type of the argumen 

\fr2, because each is the type of a. *20-8 will be used in *63*11, whic is* 

fundamental proposition in the theory of relative types. 
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*20 8. h : . D . .r (<f>.c v~<f>.r) =.?• (.r = «.v..r^u) 

Dem. 
K *13*3. *1011-21 . D 

h :: Hp . D <f>.v v~<£.r .=x:.r = a.v..r + «i 

[*2015] D «/>./) = .T‘(.t = (i.v./+(i)::Dh. Prop 

*20 81. h : <f>a V^<f>n . V >//“</ , D . .r (</>•'* V ~ <£>.r) = ,r (\Jr.r V ~ \^.r) 

Dem. 

h . *20 8 . D h : Hp . D . .** (<£.c v</>.t) * .2 (x = a . v . x + a) ( I) 

*" • *20-8 . D h : Hp . D = .2(.r = a . v . .r * a) (2) 

H . (1). (2) . *1012113 . Comp . D 

H : Hp . D .£•(<£*• v~ <£.«•) ==:?(;r = a. v. * + «)..2 (>/r.cv~>/r.r ) = .2 (.r== a.V.,r + a). 

[*20 24]D .i(^rv'v^c)»5^xv'v: D h . Prop 

In the third line of the above proof, the use of *10121 depends upon the 

fact that the "a” in both (1) and (2) must be such as to render the hypothesis 

significant, i.e. such as to render 

“ <t>u v~<t>u . yfra v yfra " 

significant. Hence the “a" in (1) and the "a” in (2) must be of the same 

type, by *10121, and hence by *1013 we can assert the product of (l) and 

(2), identifying the two “as.” 

Since a type is the range of significance of a function, if <f>x is a function 

which is always true, 2 (</>*) must be a type. For if a function is always true, 

the arguments for which it is true are the same as the arguments for which 

it is significant; hence 2 (<f>z) is the range of significance of <f>x, if (a) . <f>x holds. 

Thus any class a is a type if (x).xea. It follows that, whatever function </> 

may be, a! (<f>x v~<£*) is a type; and in particular, £ (x — a . v . a? + a) is a type. 

Since a is a member of this class, this class is the type to which a belongs. 

In virtue of *20*8, if <f>a is significant, the type to which a belongs is the class 

of arguments for which <f>x is significant, i.e. 5 (<f>xv~<f>x). And if there is any 

argument a for which <f>a and \fra are both significant, then <f>x and y]fx have 

the same range of significance, in virtue of *20 81. 



*21. GENERAL THEORY OF RELATIONS 

Snin milI'H «»/' *21. 

I he definitions and propitious «»f this number are exactly analogous to 

those of *20. from which they differ by being concerned with functions of two 

variables instead of one. A relation, as we shall use the word, will be under¬ 

stood in extension: it may be regarded as the class of couples y) for which 

... given function ^ (./•, y) is true. Its relation to the function >/r(2. 0) is 

just, like that of the class to its determining function. We put 

*21 01-A f !*.5 * <r- //>: •=:<:•!</» : 0 s (^. y>. ~x..,. * ^, y) :/{<#>! (u. V)} Df 
II. re ".r#7^r(.r, //)” has no meaning in isolation, but only in certain of its uses. 

In *2101 the alphabetical order of u and v corresponds to the typographical 

order of 2 and y in /;.»? ^ (.»•. y)\, so that 

/1$*♦<*.!/)[ • - : (3+) : <t> '• <•*. //> • =xtJ, - * br. y) :/{* ! ($, fi)| Df 
'I Ids is iiii|N>rtaut in relation to the substitution-convention below. 

It will be shown that 

y> - <-r* y) •s: ^ y) • =x.w • x <•*’. y). 
/.c. that two relations, as above defined, are identical when, and only when, 

they arc* satisfied by the same |»air of arguments. 

For substitution in <£!(2. 0) and <£!(0.2), we adopt the convention that 

when a function (as opposed to its values) is represented in a form involving 

•' and 0, or any other two letters of the alphabet, the value of this function 

for the arguments a and b is to be found by substituting a for 2 and b for 0, 

while the value for the arguments b and a is to be found by substituting b 

for .7 and a for 0. That is. the argument mentioned first is to be substituted 

for the letter which comes first in the alphabet, and the argument mentioned 

second for the later letter; thus the mode of substitution depends upon the 

alphabetical order of the letters which have circumflexes and the typographical 

order of the other letters. 

The above convention us to order is presupposed in the following definition, 

where a is the first argument mentioned and b the second: 

*2102. « (</, ! <2, 0)) b . = . </>! (a, b) Df 

Hence, following the convention, 

& 1 <t>! (2, 0)| a . =». 4>! (&. «) Df 

a{4>l($,re)}b. = .4>l(b,a) Df 

M<M(0.2))a. = .<*>!(«,&) Df 

This definition is not used as it stands, but is introduced for the sake of 

a (20^ (*, y» 6 . = : (g<£) : <£ ! (x, y). . >/r (x, y): <f>! (a, b) 
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winch results from *21 01 02. Wo shall use capital Latin letters to represent, 

variable expressions of the form ■?-/<#.! (.r, y). just as we uses I Creek letters for 

variable expressions of the form ?(i!-). If a capital Latin letter, say If. is 

used as an apparent variable, it is supposed that the A* which occurs in the 

form "(«)" or "(aA')" is to be replaced by •t*)"or' (a0)." while the H which 

occurs later is to be replaced by “.?£«#,!(.r,y)." In fact we put 

(R) . fit. = . (cp) .f\jy<f>! (.r, y)| Df. 

The use of single lettei-s for such expressions as .7y<f, ,/) is a practically 

indispensable convenience. 

The following is the definition of the class of relations: 

*21 03. Rel = Ii ((5,4,) . R =, .7^0 ! (x, y)\ l)f 

Similar remarks apply to it as to the definition of "ClsM (*20 03). 

In virtue of the definitions *210102 and the convention as to capital 

Datm letters, the notation “xRy" will mean has the relation R to y." This 

notation is practically convenient, and will, after the preliminaries, wholly 

replace the cumbrous notation x [2y<f>(x, y)\ y. 

The proofs of the propositions of this number are usually omitted, since 

ey are exactly analogous to those of *20. merely substituting *1211 for 

*1~T, and propositions in *11 for propositions in *10. 

T The propositions of this number, like those of *20. fall into three sections. 

I hose1 of the second section are seldom referred to. Those of the third section, 

extending to relations the formal properties hitherto assumed or proved for 

individuals and functions, are not explicitly referred to in the sequel, but arc 

constantly relevant, namely whenever a proposition which has been assumed 

or proved for individuals and functions is applied to relations. The principal 

propositions of the first section are the following. 

*2116. I"V' (*, y).=,.,.x (x, y) : = . St$+ (*. y) = $px (x, y) 

/.e. two relations are identical when, and only when, their defining functions 
are formally equivalent. 

*21-31. I- sp* (x, y) - $px (x,y). = :x y) ] y x \xpx (x, y)) y 

I.e. two relations are identical when, and only when, they hold between 

the same pairs of terms. The same fact is expressed by the following 
proposition: ” 

*2143. h R = S . 5 : xRy . . xSy 

*21-22122 show that identity of relations is reflexive, symmetrical and 
transitive. 

*21-3. m'X{&9'lr(x,y)\y . = .ylr(x,y) 

I.e. two terms have a given relation when, and only when, they satisfy its 
defining function. J 
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*21151. h . (g<£) . uyxfr (x, y) = .7y<f> ! (x, y) 

I.e. every relation can be defined by a predicative function. Hence when, 

using *21 07 or *21 071, we have a relation sis apparent variable, and are there¬ 

fore confined to predicative defining functions, there is no loss of generality. 

*2101. /{.ry\fr(.c, y) . = : (g<£) : <f>! (x, y) . =x>y. >Jr (x, y) ! (m, v)| Df 

On the convention as to order in *210102. cf. p. 200, ami thus relate «, v 

to ,7\ y so that 

/<•'*. y)| • - : (3<f>) : <t>! ( r. If) • =x.v • ^ (•*. !f) -f\4> I («\ “)) 

*2102. u [<f>! (x. y)‘ 6. = . 4>! (#/, b) Df 

*21 03. Rcl = ft . Ji = .7ytf>! (x. y)\ Df 

The following definitions merely extend to relations, with as little modifi¬ 

cation as }>ossible, the definitions already given for other symbols. 

*21 07. (70 .//{ . = .<<*»)./(.7y<f> ! (.r, y)\ Df 

*21071. (a/«)./7£.-.(ai)./PP*!(-r.y)| !->»' 

*21 072. [(i If) ($/<)} . = : (g.S'): <f>/{ . s*. R = S: fS Df 

*21 08. /{]&>!, (Ji, S)\. = : (3<t>)' S). s*.A-.*!(7f. S) :/(<*> !(7(, S)| Df 

*21 081. 7* |«/>! <7f. S)| (P, Q) Df 

The convention as to typographic and alphabetic order is here retained. 

*21 082. /|7?(*7f)|. = : (g0): . =n . <f>! If :/(<*»! 70 Df 

*21 083. I)f 

*211. b *••/{?)'!'(s, y)| . = : <3</>): 4>! (•*•. //>. sx.„ c. y) :/{<f>! (a, u)| 

[*4*2.<*21 01)] 

*2111. b + (x, y). . X <•*•. If): ^ :/!f)\ . = ./l-tyx (r- .V)l 

[*4-86-3G.*l0 2.xl .*211] 

This proposition proves that every proposition about a relation expresses 

an oxtcnsional property of the determining function. 

*21 111. H :.f\4,U&,p)\.=t.9 |^!(x.y)|:D :/|^<-!(x. y)|. s, .yWH*,y)) 

[Fact .*1111-3. *10*281 .*211] 

*21112. b :. (a y) :.f\*y<t>! <x. y)\ . =* . y ! 12y4> * <*. If)) [*121 . *21111] 

It is *121, not *12*11, which is required in this proposition, because we 

are concerned with a function (f) of one variable, namely <f>, although that 

one variable is itself a function of two variables. 

*2112. b :. (a<f>)<f>! (x. y). =x.y . + (x, y) (x. y)} . = .f\?9<t>! (*, y)l 

[*2111 .*12 11] 

This is the first use of the primitive proposition *1211, except in 

*20*701 702-703. 

*21*13. b yfr (x,y). =x.y. * (x, y) : D . xp'/r (x, y) = ££* (*» 

[*21*1 .*1211 .*13195] 
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*2114. h 2f/yfr(a\ y) = xyX (.r. y) . D : yfr (x, y). =x.,;. v (./•, y) 

[Proof as in *2014] 

*2115. hz.yjr (x. y) . =ri, . x (*, y) : = . .7$+ (.r, y) = .77/x ,/) [*21 13*14] 

This proposition states that two double functions determine the same 

relation when, and only when, they are formally equivalent, i.e. are satisfied 

by the same pairs of arguments. This is a fundamental property of relations 

as defined above (*2101). 

*21-151. h . (a</,). 7y yfr (x, y) = ! (.r, y) [*21*15 . *12* 11] 

*2116. h : (g</>) if [xpyjr (x, y)] . s ./\.7y(f> !(.r, y)\ [*2112] 

*2117. h : (<*>) ./(;?£</>! (x, y)} . D ./|.?y^(x, y)\ [* >l l<i. *101] 

*2118. h :.;?£«/> (x, y) - £S}\fr (x, y) . D :/[^<f> (x. y)\ . S ./ \.77/ + (x, y)} 

[*211115] 

*2119. h *9+ (x, y) - 2$x(x. y) . = : (/) :/! * (.r, y) . D ./! x (a:, y) 

[*2118 . *101 T21 . *21*1 . *10-35 . (*13 01). *21 112 . *10 301] 

*21191. h (x, y) - St$x (x. y) . = : (/) :/! ty+(x, y). s ./! (a-, y) 

[*2118*19] 

*21 2. h . (x, y) - (a:, y) [*21*15 . *4 2] 

*21-21. h : 7$<f> (x, y) - y) . = .^y *(*.y)-*y *(*.y) [*21i 5 - *10*32] 

*21 22. h : *0 0 (x, y) « 2$ * (x. y) . £0 * (x. y) = *0 x (x, y) . D . 

*0 <t> (*. y) = *5x (*. y) [*21 15 . * 10-301 ] 

*21 23. h : £0 <*> (x, y) - £0 * (x, y). £0 <f> (x, y) - *0 * (x, y). D . 

*5'Hx,y) = $dX{x,y) [*21*21*22] 

*21-24. h : x0>/r (x, y) - £0<f» (*, y) . £0* (x, y) — x0<£(x, y). D . 

£9 + (x,y)-=$!)X (x, y) [*21 21 *22J 

*21-3. h : x {£$^r(e,y)| y . = . y/r (x.y) [*21 102 . *10-43-35 . *12*11] 

This shows that x has to y the relation determined by \fr when, and only 

when, x and y satisfy \fr (x, y). 

Note that the primitive proposition *12-11 is again required here. 

*21-31. h £0^ (x, y) = 20 x (x, y). = : x {£0^ (x, y)j y. ex>v . x (£0* (x, y» y 

[*2115-3] 

*21-32. K^[x{^0(x,y))y] = 5p0(x,y) [*21-315] 

*2133. h R = ty <f> (x, y) . m zxRy (x.y) [*21*31*3] 

Here R is written for some expression of the form £0-»/r (x, y). The use 

of a single capital letter for a relation is convenient whenever the determining 

function is irrelevant. 

*21 4. h : R € Rel. = . (a</>) . R - 20«*>! (x, y) [*20*3 . (*2103)] 

*21-41. K&0<£(x, y)e Rel [*21*4*151] 

*21-42. K£0(xtfy) = i* [*21*315] 

*21-43. h R = 5. = : xRy. =x>v . xSy [*21*15*3] 

*20 5 51-52 have no analogues in the theory of relations. 
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*21-53. h S= R . S': s . <f>R [*10 1 . *21-2*18-2! . Comm . *10*11-21] 

*21*54. V (gS). S = R . <bS . = .<£/? [*21*18. *1011*23 . *212 . *10 24] 

*21-55. h . xy<f>U, y) = (tR) \xRy. =x.„. <f>(x, y)] [*21*33-54. *141] 

*21*56. I- .El (iR) \.tRy . =x.„ . <f> (x, y)\ [*21*55 .*1421] 

*21*57. K :. jy <f> (x. y) = uR){/R) .D:y \*y<t>(x. y)\. = . y {(iR )(/R)\ 

[*14*1 .*21-54. *13-183] 

*2158. I- : .ry<f> (x, y) = uR )\R = xy<f>(x, y)\ [*4*2. *10*11 . *21*54 . *141] 

The following propositions are the analogues of *206 If., and have a similar 

purpose. 

*21 6. H : < g R). jR . = J( R). ~~fR [ Proof as in *20 0] 

*21-61. V OR) •fit - 3 -Js [Proof as in *20 01] 

*21 62. When fR is true, whatever possible argument of the form xy4>! {x, y) 

R may be. (R) .fR is true. [Proof as in *20 62] 

*21-63. I- :.(/?)•/> v/7? . D : p. v . (/?) . fR [ Proof as in *20 63] 

*21631. If "fR is significant, then if N is of the same type ns R, "fS" is 

significant, and vice versa. [Proof as in *20 631] 

*21632. If. for some R, there is a proposition//?, then there is a function 

fR, and vice versa. [Proof as in *20 632] 

*21633. "Whatever possible relation R may be. f(R. S) is true whatever 

possible relation 6* may be" implies "whatever possible relation S may be. 

f(R, S) is true whatever possible relation R may be." 

[Proof as in *20 633] 

*21 64. h :. ( R). fR z(R) ,yR : D ,fS. gS [Proof as in *20*64] 

*21*7. h : 0\y): fR .=*.*/! R [Proof as in *20 7] 

*21701. h :(g g):f(R.x). =R x .y ! (R, x) (Proof ns in *20*701] 

*21 702. h : (g«/): fix, R). sRx .y \ (R, x) [Proof as in *20*702] 

*21703. H :(a'7):/(/?, S). a*.,. ffUR.S) [Proof as in *20 703] 

*21704. h : (g#) :f(R. a). =//>a . y ! (R, a) [Proof as in *20703] 

*21705. h : (g y) if (a. R) ,=aN.yl (a, R) [Proof as in *20 703] 

*21 71. h :. R = S. = : y ! R . D, . y ! .S' [Proof as in *2071 ] 

From the above propositions it appears that relations, like classes, have 

all the formal properties which the}' would have if they were symbols having 

a meaning in isolation. Hence unless a symbol occurs in a way in which only 

a relation can occur significantly, we do not need to decide whether it stands 

for a relation or not. This result, like the corresponding result for classes 

mentioned at the end of *20, is important as giving greater generality to our 

propositions than they would otherwise possess. The results obtained in *20 

and *21 for classes and relations whose members or terms are neither classes 

nor relations can be extended, by mere repetition of the proofs, to classes of 

classes, classes of relations, relations of classes, relations of relations, and so on. 



*22. CALCULUS OF CLASSES 

Summary of* 22. 

In this number we reach what was historically the starting-point of 

symbolic logic. The Greek letters used (except <f>. \Jr, y, 0) an* alwavs to 

stand for expressions of the form ■?(*!■>). or, where the Greek letters are 

not apparent variables. .?<«/,, ). The small Latin letters may either be sueh as 

have a meaning in isolation, or may represent classes or relations; this is 

possible in virtue of the notes at the ends of *20 and *21. Wo put: 

*22 01. a C0 . = : .r € a . Dt .arc>9 Df 

This defines “ the class a is contained in the class 0." or “all as are 0's” 

*2202. a*0-S>(xea.xe0) Df 

This defines the logical product or common part of two classes a and 0. 

*2203. ayj0 = 2(X€ a.v.ae/9) Df 

This defines the logical sum of two classes; it is the class consisting of all 

the members of one together with all the members of the other. 

*22 04. -a-a(*~€«) Df 

This defines the negation of a class. It is read “not-a.” It does not 

contain every object * concerning which “area” is not true, but only those 

objects concerning which “area" is false; t.e. it excludes those objects for 

which "area” is meaningless. Thus it consists of all objects, of the type next 

below a, which are not members of a; but it docs not contain objects of any 
other type but this. 

*2205. a-/3 = an-0 Df 

This definition gives an abbreviation which is often convenient. 

The postulates required for the algebra of logic have been enumerated by 

Huntington*. In our notation, they are as follows. 

We assume a class K, with two rules of combination, namely u and ^ ; 

and we then require the following ten postulates : 

la. a vj b is in the class whenever a and 6 are in the class. 

16. a r» b is in the class whenever a and 6 are in the class. 

II a. There is an element A such that a \j A = a for every clement a. 

II 6. There is an element V such that a rs V = a for every element a. 

Ill a. a v 6 = 6 w a whenever a, b, a v b and 6 v/ a are in the class. 

Ill 6. a r* b = b n a whenever a,b,anb and 6 n a are in the class. 

• Tram. Amer. Math. Soe. Vol. 5, July 1904, p. 292. 
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I\ a. a v (b r\ c) = (a b)r\(a v c) whenever a, b, c, a v b, a v c, b r\ c, a v(bnc), 

ami (a c) are in the class. 

IV b. a n (b \j c) — (o r\ b) \j {a r\ c) whenever n, b, c, a r* b, a r\ c,b \jc, an (hue), 

and (</ r\ b)\j (.1 r\ c) are in the class. 

V. If the elements A and V in postulates II a and II 6 exist and are 

unique, then lor every element a there is an element — a such that 

11 \j — (i — \ and a r> — a = A. 

VI. There are at least two elements, u and */, in the class, such that -r + y. 

The form of the above postulates is such that they are mutually inde¬ 

pendent, i.e. any nine of them are satisfied by interpretations of the symbols 

which do not satisfy the remaining one. 

For our pur|M)ses, “ A' " must be replaced by ,,C,ls." A and V will be the 

null-class and the universal class, which are defined in *24. Then the above 

ten postulates are proved below, as follows: 

I a, in *22 37, namely .a v ft e CIs " 

I b, in *22*36, namely **h . n r* ft e CIs" 

II a, in *24 24. namely "K . « w A — a ” 

II b, in *24 26, namely "I-.or* V - a" 

III a, in *22*57, namely "Kov^^va" 

III b, in *22*51, namely "h . a n ft = ft r% a " 

IV a, in *22*69, namely 0 H . (u u ft) n (a w 7)= a v (ft0 7)" 

IN’ b, in *22*63, namely *‘h . (0 n/i)w(any| = an(^u7)'' 

V, in *24*21*22, namely " h . a n - a - A" and “Kau-fl-V" 

VI, in *24*1. namely “h.A + V 

Hence, assuming Huntington's analysis of the postulates for the formal 

algebra of logic, the propositions proved in what follows suffice to establish 

that this algebra holds for classes. The corresponding propositions of *23 

and *25 prove that it holds for relations, substituting Rel, o, /S, A, V for 

(Jls, \j, r\. A, V. 

The principal propositions of the present number are the following: 

(1) Those embodying the formal rules: 

*22 51. b-.anft = ftr>a 

*22 57. \-.uvft = ft'ja 

These embody the commutative law. 

*22*52. . (a r\ ft) r> y = a c (ft y) 

*22 7. h .(a V ft) yjy = av(ftvy) 

These embody the associative law. 

*22*5. Kana = o 

*22*56. h . a u a = a 

These embody the law of tautology. 
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*22 68. * (a r\ {3) u (a r\ y) = Q r\ v y) 

*22 69. f-.(<.«^)n(I,U7) = ou(l8n7) 

resuTtefmm'ttt 1'',° dU*rib"1tiw .ta"- U seen that t-ho second 

Zhilin *"* b>' e'PrV'Vhere *• »*"’ ... -d 

*22 8. K-(-<,) = « 

This is the principle of double negation. 

*22^81. h:aC/9. = . — £C-a 

This is the principle of transposition. 

(2) Other useful propositions: 

*2244. h:aCtf./9C7.:>.QC7 

*22*441. haC^.xea.D.jf^ 

1 hese embody the two forms of the syllogism in Barbara. 
*22 62. f- :aC£. = mQKJ @ = @ 

*22621. h:aC/3. = .ar*/9=sa 

an equation™ pr°p0sitions enable us 10 ‘™»aform any inclusion (oC/3) into 

*22 91. h.aw^ = au(^_Q) 

from «»"“ °r *" iS identicnl with ““ ‘he P«t of 0 which is excluded 

*2201. 

*2202. 

*2203. 

*2204. 

*2206. 

*221. 

*222. 

*223. 

*2231. 

*2232. 

*2233. 

*2234. 

*2236. 

*22351. 

Dem. 

C£.Dx.xe>9 Df 

*£(*€<*.*6/3) Df 

v^/3 =»aOrca. v.x€0) Df 

-a =5(x~fa) Df 

- 0 =an-/3 Df 

•••*C0,mzxea.Dx.xe0 

•ar'fic=£(xea.X€/3) 

• — a = ^ e a) 

• a — /3 = £(xea. x^e 0) 

•X€ar>Q. = .x€a.xe@ 

m-X€aKj0. = iX€a.v.xe/3 
i x e — a . = . a?<^e a 

• —a=h a 

[*4-2.(*2201)] 

[*20-2. (*22 02)] 
[*20 *2. (*22 03)] 

[*20-2. (*22 04)] 

[*20-2 . (*22 05) . *22-2 

[*20-3. *22-2] 

[*20 3. *22*3] 

[*20 3 .*22-31] 

*20-32] 

K *2235.*519. DH:~{*€_a. = .*€ci) : 

[*1011] Dh:(x):^{x€-a. = .areaJ : 

[*10 251] :> h j(x) z X e — a . = .Xea] : 
[*20-43.Transp] D H :~(- a = a) : D h . Prop 
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This proposition is used in proving that the null-class is not identical 

with the class containing everything (*241), which is used to show that at 

least two classes exist. Our axioms do not suffice to prove that more than 

one individual exists, but they prove the existence of at least two classes and 

at least two relations. 

*22 36. h.a a/3c CIs [*20 41] 

*22 37. CIs [*2041 ] 

*22 38 b. -at CIs [*20 41] 

*22 39. b . 2 (</>.') n Uf,:) = 2 <0j . yfrz) 

Deni. 

h . *22*33 . D I-: xtz (Qt) r% z (yfrz). = . xt z (<f>z). .r * z (\Jsz). 

[*20*3] = . <£.r. yjr.r (1) 

H . (I). *20 33 . D h . Prop 

*22 391. y . z i<f>z) z lyfrz) = z i<t>; v yfrz) [Similar proof] 

*22 392. b . — z{<t>z) ■ 2 (^<t>z) [Similar proof] 
*22 4. b :.aC0.&Ca. = 

Dem. 

b . *22*1 . D b :: a C & . = : .re a . D, . .#•« ft f) C a . i : ./* $ . Dx . xe a :. 

[*4 38] D b :: a C # . # C a . = z. x c a . 0X. x e @ z x e fi . Dx ,xea 

[*10*22] DI-. Prop 

*22 41. b:aCfS»f3Ca. = .a = fS [*224. *20 43] 

*22 42. b.aC* [Id. *1011] 

*22 43. b:ar\f3Ca [*3*26 . *10*11] 

*2244. b:aC{3.t3Cy.0.aCy [*10.3] 

This is one form of the syllogism in Barbara. Another form is the following: 

*22 441. haC^.Xfa.D.xe^ [*10*1 . Imp] 

*22 45. b:aC/3.aCy. = .*Cfir\y 

I)em. 

h . *221 . D b a C & . a C y . = : X e a . 0X . x e 0 z x e a . Dx . x e y : 

[*10*29] = zx€a.Dr.x€/3.xcyz 

[*22*33.* 10*413] Prop 

*22 46. l-:.r6a.aC^.D.j6/3 [*22*441 . Perm] 

*22 47. b:aCy.D.arsf3Cy [22*43*44] 

*22 48 b:aCfi.D.ar\yCf3ny [*10*31] 

*22*481. bza = &.D.any = finy 

Dem. 

h . *22*41 .D:.Hp.D:aC£.£Ca: 

[*22*48] D:ar\yC0r\y.0nyCar\yz 

[*22*41] D : a r\ y = 0 n y D b . Prop 
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<l> 

*22 49. ^:aC/3.yC8.D.QnyCiS^8 (*lo:io) 
*22 5. h . q n a = a 

Ban. 

. **22 33 . D h z. .r e a r\ a . = : .<•«? a. .#• * a : 

[«"»*] s:.r«, 

H . (1). *10*11 . *20 43 . D h . p, op 

The above is the law of tautology for ,ho logical multi,dieution of classes. 

*22 51. h.an0-#na [*22:t8. *4 :!. *1011 . .2048] 

*22-52. K(«nfj)n, = ,n(^7| [*22-33. *4-32. *10 11. *20-48] 

lnwsl hR f°gical multiPlic,,tion of C|»SSM obeys the commutative and associative 
.aw, References to *22 3MM5 and to .20 48 will i„ future often be omitted. 
*22 53. an@ny=z(an&)r\y Df 

This definition serves merely for the avoidance of brackets. 

*2254. h:.«=/9.D:aC'r. = ./3C7 [.2018] 

*22 65. h:.o = /3.D:7Ca. = .7C/9 [.2018] 

*22-551. h:a = /3.D.ou7 = ^u7 [.10-411] 

*22156. h . a u a = a [*4-25 . .1011] 

The above is the law of tautology for the logical addition of classes. 

*22 57. h.aw/3-^ua [.Ml . *1011] 

*2258. KaCa^/S.tfCau# [.13..2-2] 

*22 59. h:eiC7./9C7. = .av/SC7 
Bern. 

I':*®1. • 3 h :: HP • = * e a . D* .* e7 : a e 0 . D,. * e s. ^^11'- v 
. 0-22] S *««. D .«,7 3 

[*22-84.»10-413] =:.(x):It«v«.3.It7.:3K;' ^cc. J[-0; 

Ihe analogue of *478, x.e. 

is false. We have only ° C * ‘ ^ 7 = H . a C 0 u 7 . 

. “Cfl.v.aC7:D.aC,9u7. *V'*W ' 
A similar remark applies to the analogue of .4-79. Cf. *22-64-65 ' 

*226. h.o:ea^.5:aC7^C7.Dy.xf7 
Bern. 

K.22-59.3l-,.«C7./lC7.D:..a„^.3.«.7!. 

[Comm] Dh.j;6auj3.D:aC7.flC70 

[.22-58]’ 3h"“Cl'^C^:,.-I'7::):«c«v^.5Cav^.3.xel,ufl: 

k • (1) . (2) .Dh. Prop (2) 
R&W I 

14 
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*22 61. H:oC/3.D.oC/3u7 [*2244 58] 

*22 62. H:aC/3. = .avy/3 = £ 

Dew. 

I-. *4 72 . DJ*::A«a.D.ar€<8: = :.x«a.v.j'€/9: = .ar€/9:. 

[*22*34] = x e a u /3 . = . a: e fi (1) 

I-. (1) . *1027 l.DH:: oC5. = :.a,tawi3.=J.1re/3:. 

[*2042] =:.au^ = /3::Dh. Prop 

*22 621. h:aCi?. = .an/J-fl [*4*71] 

The prool proceeds as in *22 62. The proposition *22 621 is one of the 

most useful propositions in the present number. 

*22 63. t'za\j{ar>fi) = a [*444] 

I he process of obtaining *22*63 from *4 44 is of the same kind as the 

process employed in the proofs that have been written out in this number. 

Hence only *4 44 is referred to. We shall similarly restrict references for 

later propositions in this number. The process is always roughly as follows: 

/), ij. r are replaced by xea. xtfi, xty, then *1011 is applied, and such 

further propositions of *10 as may be required, together with *22*33 34*35. 

*22 631. h.ar»(aw/9)=ro [*22 58*021] 

*22*632. = [*22*42*021 ] 

*22 633. l-:QC^.D.flV7 = (on^)u7 [*22*551*621] 

*22 64. H:.aC7.v./9C7:D.an/9C7 

Dew. 

h. *22*47*51.0\-:aCy.0.ar\/3Cy:/3Cy.5.ar\/3Cy (1) 

K(1). *4*77. DK Prop 

The converse of this proposition does not hold, because the converse of 

*10*41 does not hold. 

*22 65. H:.aC£.v.aC7.O.aC/9v7 [*22*61*57 . *4*77] 

Here again the converse is untrue. 

*22*66. f*:aC/3.D.ou7C^v7 [*2*38] 

*22 68. K (a n ^3) w (o n 7) = o « (/3 w 7) 

Dew. 

h . *22*34 .Dh::j*f[(aft^)u(ar\7)| 

[*22*33] 

[*4*4] 

[*22*34] 

[*22*33] 

I-. (1) . *10*11 . *20*43 .DK Prop 

= z.xea.xeft.v.xea.xeyz. 

= z. x e a z x c /3. v . x e y z. 

= z.xe a ,xe0 v y 

= z.xea r\ (/3 v y) (1) 
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21 I 

*22 69. • (a \J fi) n (a \J y) = a \J n y) [.Similar proof, bv *4 41 | 

The above propositions *22 ««-69 are the two form* of the .listrilm.ive 

low Note that e.ther results from the other by interchaining the sem- 
addition and multiplication. ® n 

*227. l-.ifl^)u7 = au(^7) [*4:53] 

*22 71. outfu7 = (0u^U7 l_>f 

*22 72. haC7.^C8.D.Qu/iC7 ^5 (*3 4*J 

*22 73. h:a = 7.^ = 2.3.ou/^ = 7u5 [*10 411] 

*22 74. han^C7.an7C^. = .Qn/j = on7 

Dem. 

h . *22 43 . *4 73 . Dh :an^C7. = .an/?Ca.an/JC7. 

t*22 45J =.an^CoA7 

7. /3 

A5* 
DH:an7C/3.a.an7Car»/9 

(1) 

(2) 

r*99d.i t2> ’ *4'88 •3h!“"^CT-«"7c^.a.a<'^Ciiny.«nyCon^. 
J = . f> ^ /Q _ ___ -V L I»_ 

*22 8. 

*2281. 

*2281] 

*2282. 

*2283. 

*22831 

*2284. 

*22 85. 

*2286. 

*2287. 

*22 

*2288. 

*22 9. 

*2291. 

Dem. 

h . *5*63 

[*413] 

haC^.E.-^C-a [*41] 

•• H:aC -/?.« ,/SC-a [*41 . *22*8] 

H:ar»/3C7. = .a—7C -£ [*4 14] 

1- : a « & . = . - a - - £ [*411] 

• h:a«-£.s [*412] 

h.-(fl«/3) = -av-/3 04*51] 

h.«r»^=n-(_av-/3) [*22*84 831] 

[*4 57] 
H . - ct « _ £ « _ (a w £> 

[*22*86*8311 
04*85*86*87 are De Morgan's formulae. 

H . (ar) . a;« (a w — o) • [.211] 

1 18 a form of the law of excluded middle. 

r . (a:) . a:~e(a — a) [•3 24] 

1 1S a ,orm «* the law of contradiction. 

h.(au£)-/3 = a_/9 [*5-61] 

h.aw/3 = aw(^_a) 

r ™ ^ z-X€a-y/= :*€<*.v .xe/3 .x~€a. 

, ■* =i&ea\j(S — a) 
h • (1) • *1011 . *20 43 . D h . Prop 

(1) 

14—2 
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*22 92. K:aC/3.D./9 = aw(£-a) [*22-9102] 

*2293. l-.Q-i3 = a-(fln^) 

Dtm. 

h . *4"73 . Tr.msp . D H :. x* a. D : .r^c /3. = .~(xeo.xf/3). 

[*22 33] = . x~€ (a r\ £) 
[*5-32] D b • • •r c a . X'W >3 . = . X€ a . r» >9) 

[*22*35-33] Dh:jffl-j9. = .j£a-(aAj9): 

[*1011. *20 43] DKa-/l = a-(fln^).Dh. Prop 

*22-94. 1- s (a) ./a . = . (a)./(- a) 

De/n. 

K*101 . DH:(a).ya.D./(-a): 

[*1011-21] Dh:(o)./a.D.(a)./(-fl) (1) 

h . *101 . D h : <«)./(- a) . D ./{- (- a)) . 

[*228.*2018] D./a: 

[*1011-21] Dh(a)./(-a).D.(a)./a (2) 

K(l).(2). D h . Prop 

'1'hi.s proposition is used in connection with mathematical induction, in 

*90 102, which is required for the proof of *90132, which is one of the 

fundamental propositions in the theory of mathematical induction. 

*22 95. b : (go)./a . 5 . (ga) ./(-a) 

Dent. 

b .*22-94. D b : (a) .^fa. s . (a) ,~f(- a) (1) 

h . (1) . Trnnsp . *20 6 . D b . Prop 



ft G8 . - : xRy. Dx w . avS’y Df 
ft nS =» 5y (xRy . ^5y) Df 
ft vS =* .7# (xRy . v . a:Sy) Df 
• ft* 2$ {~(x72y)J Df 

72 -=-5. = ft Df 

*23. CALCULUS OF RELATIONS 

Summary of *23. 

The definitions and propositions of this number arc to be exact analogues 

of .host ol *22 Properties of relations which have no analogues for classes 

number ,s 'th " li" ° P,W’S b“ <""'tod h, the present 
nurnbei as they are precisely analogous to those of analogous propositions in 

’ . th,s number, as always in future, capital Latin letters stand for 

expressions of the form ***!(.. y). or, where they are not being used al 

arothTmT S' ^ of tins number aie the analogues of those of *22. 

*2301. 

*2302 

*23 03. 

*2304. 

*23 05. 

Simi 

*231. 

*232. 

*233. 

*2331. 

*2332. 

*2333. 

*23 34. 

*23 35. 

*23351. 

*23 36. 

*2337. 

*2338. 

*2339. 

*23 391. 

*23392. 

*234. 

*2341. 

*23 42. 

*2343. 

*23 44. 

*23 441. 

lar 

h 

K 

h. 
h . 

h. 

h : 

h: 

h: 

h. 

h. 

h. 
K 

K. 

K 

h. 
h: 
h: 

h. 
h. 

h: 

h: 

remarks apply to these definitions as to those of *22. 

• RGS . = : xRy . v . xSy 

R*S-mxRy.xSy) 

R \y S *= xj) {xRy . v . xSy) 

-R-m~(xRy)\ 

R-z-S^Sj) |xRy . (xS'y)J 

x (R A S) y. a . xfty . ar&y 

-x(RvS)y. = :xRy. y . xSy 
x^-Ry. =-(xRy) 

-ft*72 

R r\ S € Rel 

Rw Se Rel 

— 72 e Rel 

* (*. y> A 2£* (x, y) _2p (* (x, y, . * (ar> y)) 

*9+ (x, y) w 25^ (x, y> - 2$ {* (x, y). v . + (x, y)| 

(x, y) = 25 {~0 (x, y)( 

./ees.seji.-.xRy.s .,.xs« 

RCS.SCR.= .h = S 
RGR 

R*SGR 

RGS.SGT.D.RC-T 
RGS. xRy . D . ar/Sy 
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*23*45. b : R G S. R G T. D . R G 8 A T 

*23-46. H : .r/ty ./«*(• .S'. D . ar.% 

*23 47. h : y? G 7*. D . y» « N G 7* 

*2348. h : /yG.S'. D . /y A 7G.S'n 7* 

*23-481. h : 7? = ,V. D . /? A T = S r\ T 

*23-49. I- : 7* G G .S'. D . 7* A 7y G Q * .S* 

*23 5 I-. 77*77-/y 

*23 51. h. /^a.S'-S'A 77 

*23 52 h . < 77 * .S’) * 7’ = /?<S(.S'a y> 

*23 53. 77*.S’* 7-</**£)* T I)f 

*2354. I- :. 77 = .S’. D : RQT.s.SCT 

*23-55. h 77 - .S'. D : 7’G 77 . = . TG .S’ 

*23551. l-:/7-S.D.77c/7=Sc/7 

*23 56. h. /y c; yy = /y 

*23 57. j-. /y^.V-.S'vy yy 

*23 58. K. RGRvS.SGRvS 

*23-59. K : 77 G 7’. S G 7\ = . 77 o ,S* G 7 

*23 6. l-:.x(/yo.S,)»/. = :/yG T.SQT.^T.xTy 
*23 61. h//G5.D./iGSo7 

*23 62. h : 77 G S. = . 77 o .S’ =* .S’ 

*23621. i-:77g.$'. = .77*5=77 

*23 63. Kyyo(7y/s.s’)=yy 

*23 631. h.yyA(yyc/.v)-yy 

*23632. l-:7y = .S,.D.yy= 77*5 

*23633. H:77G5.d.77ci7=(/7*5)c/7 

*23-64. h yy G 7*. v . 5 G 7*: D . « * 5G T 

*23 65. h:.7?G5.v. RGT-.D.RGRvT 

*23 66. h: 77G5.D.77vy TGSv T 

*23 68. h.(77 *5)o(77* T)=Rn(Sv T) 

*23-69. h . (77 c/ 5) * (77 c; 7) = 77 c/(5 * 7) 

*23 7. \-. (R v S) \j T = R v (S v T) 

*23 71. RkjSsj T=(RvS)vT Df 

*23-72. h: PQR. QGS.D.RvQGRvS 

*23 73. h:/, = 77.Q = 5.D..Pc/<? = 77c/5 

*23-74. \-:P*QGR.Pr>R<iQ. = .P*Q = PnR 
*23 8. h .—y?) = yy 

*23-81. h:77G5. = .—5G—77 

*23811. h: J7G-i-5. = .5G^/7 

*23 82. h : R *5G T. = . R-^TQ-^S 

*23 83. h:yy = s. = .-^yy=-5 
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*23 831. : R = ^-S.= .S = -^R 

*23 84. h .^(RnS) = -^Rv^.S 
*23 85. . R r\ S = -^(-^ Rw ^-S) 
*2386. I- .^(-^R*^-S) = Rv$ 
*23 87. b .-R*^-S = -^(Rv S) 
*23 88. h . (ar, y) . x ( R \y -i. R) ,j 

*23 89. b . (x, y) .~\x(R-^.R)y| 

*23 9. V .(Rv S)^S=R^S 
*23 91. . R w S = R w (S R) 

*23 92. \-:RGS.D.S = Rv{S^-R) 

*23 93. h.R^-S=R^(R*S) 
*23 94. I- : (R) ./R . ~ . (R). R) 

*23 95. h(zR)./R.m.(xR).f(^R) 



*24. THE UNIVERSAL CLASS, THE NULL-CLASS, AND THE 

EXISTENCE OF CLASSES 

Su in mu ry of *24. 

The universal class, denoted by V, is the class of all objects of the type 

which, in the given context, is being denoted by small Latin letters, i.e. of 

the lowest type concerned. Thus V, like “CIs,” is ambiguous as to type. Its 

definition is as follows: 

*24 01. V - x (j = r) Df 

Any other property |iosscssed by everything would do as well as = .r,” 

but this is the only such property which we have hitherto studied. 

The null-class, denoted by A. is the class which has no members. Like 

V, it is ambiguous as to type. We use the same symbol, A, for null-classes 

of various types; but these null-classes ditfer. The type of A is determined 

by that of the terms .i concerning which "./•« A " is false: whatever x may be, 

•' .ct A" will not represent a true proposition, but unless./• is of the appropriate 

type, “ xt A" will be meaningless, not false. Thus A is of the type next above 

that of an x concerning which ".rt A” is significant and false. The definition 

of A is 

*24 02. A = — V Df 

When a class a is not null, so that it has one or more members, it is said 

to exist. (This sense of ‘ existence" must not be confused with that defined 

in *14 0*2.) We write "g !a” for " a exists." The definition is 

*24 03. g la . = . (g.r)..rca Df 

In the present number, we shall deal first with the properties of A and V, 

then with those of existence. In comparing the algebra of symbolic logic with 

ordinary algebra, A takes the place of 0. while V combines the properties of 

1 and of x . 

Among the more important properties of A and V which are proved in 

this number are the following: 

*241. h.A + V 

I.e. “ nothing is not everything." This is useful as giving us the existence 

of at least two classes. If the monistic philosophers were right in maintaining 

that only one individual exists, there would be only two classes, A and V, 

V being (in that case) the class whose only member is the one individual. Our 

primitive propositions do not require the existence of more than one individual. 
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*24102103 show that any function which is always true determines the 

° !,SS' i,n<l any ru,,ctio" which “ always false determines the null. 

*24 21-22 give forms of the laws of contra.liction ami excluded miiMIc. namely 

notlung ,s both o, and not-a " (a n — a = A) and - everything is either a „Y 
not-o (qvj —a = V). 

*24 23-24 26-27 give the properties of A and V with respect to addition and 

multiplication, namely : multiplication by V and addition of A make no change 

(*24 07S2Vr "n V ad:liti0n ?f V S-'os V.aml multiplication by A gives A 

1 W‘ LbC 0‘>SerVed thnt the properties of A and V result from 
each other by interchanging addition and multiplication. 

*243. h:aC5.H.a-^A 

I.e. a is contained in /9 ” is equivalent to “nothing is a but not ft" 

*24 311. hoC-^.s.an^A 

I.e. “ no a is a /3 ” is equivalent to “ nothing is both a and (3 " 

*24 411. h:/9Ca.D. «-£«<«-£) 

*24 43. ha-^C7. = .oC^u7 

As a rule, propositions concerning V are much less used than the corre¬ 
lative propositions concerning A. 

th, rrrt.ieS°f thC cxistence of cesses result from those of A, owing to 
the fact that a ! a ,s the contradictory of a = A, as is proved in *24-54. Thus 
we have, in virtue of *24 3, 

*24 55. h :~(aC/3). = . a !a-/9 

This t '.KnV" r8 are &S ’’ U ‘J<|U'Valonl 10 " there are which are not 0\." 

univcl m mr PrTS'U"n °f f0rmal lo«ie- that contra,lictory of the 
inivcisal affirmative is the particular negative. 

We have 

*24 56. h:.a!(au/3).= :a!a.v>g!/3 

*24 561. h : a ! (a a /?) . D . H » a . g . ^ 

if a nrJLa,8"m.eXutSYthrn °ne °f the Smnman<ls exists.and vice versa; and 
if a product exists, both the factors exist (but not vice versa). 

The proofs of propositions in the present number offer no difficulty. 

*24 01. V=5?(-r = ;r) Df 

*24 02. A = — V Df 

*24 03. g!a. = .(ax).x€<x Df 

*241. H . A + V [*22-351 . (*2402)] 

[*22-831 .(*24 02)] 
*24 101. I- . V = — A 
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*24 102. I- : (x). 4>x. = . 3 {4>z)=\ 

Dem. 

h . *13*15 . *5*501 . D H <f>x. = : <f>x. = . x = x 

[*10*11*271 ] D h (a*). <f>x . = : (jr): <f>x. = . x = x: 

[*20* 15] = : 3 (4>z) = 3 (.r =./ ): 

[(*24*01)] = : 3(02)= V D h . Prop 

Thus any function which is always true determines the universal class, 

and vice versa. 

*24*103. h : (x). ~0./-. = . 3 (0j ) = A 

Dem. 

h . *24*102 . D h (.r) .^</>a*. = : 3= V 

[*22*302] = :-3(<*>j) = V 

[*22*831] = :3(<M = - V 

[(*24 02)] e A D h . Prop 

*24 104. h . (x). /f V 

Dem. 

H . *20*3 .DhucV.i.rs/ (1) 

I- .(1). *13-15. *10*11*271.31*. Prop 

*24*105. h . (**) . x~t A 

Dem. 

h . *22*35 .DhixeA.i. V : 

[*4 12] Dhs/'vfA.s.xcV (1) 

H. (1). *10*11*271 . *24* 104 . Z> h . Prop 

*2411. !-.(«). «CV 

Dem. 

h. *24*104. *10 1 .Dh.artV. 

[Simp] 31*:^«a.D.xi V : 

[*10*11.*22*1] DhsoCV: 

[*10*11] D h : (a) . a C V : D h . Prop 

*2412. h . (a). A C a 

Dem. 

K *24*105. *10*1 . Dh.X'vfA. 

[*2*21] 3l-:«cA.D.*ca (1) 

h.(l).*1011 .*22*1 . D h. Prop 

*2413. hta-A.s.aCA 

Dem. 

h . *24*12 . *4 73.3h:aCA. = .aCA.ACa. 

[*22*41] = . a = A : D H . Prop 

*24*14. h:(x).xea. = .a=V 

Dem. 

h . *24*102 . D I*: (x). x e a . = . £ (x € a) = V . 

[*20*32] = . a = V : D h . Prop * 
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*24 141. (■: VCa.s. V = a 

Dem. 

. *2+11 . *4*73 .Dh: VCa.s.aCY. V C a . 

[*22-41] = . a = V : D (■. Prop 

*2415. b : (.r). .r~ € a . = . a = A 

J)em. 

h . *24*103 . D b : (x) . a . s .(.r c a) «• A . 

A : D h . Prop 

219 

[*20*32] = . a = 

*2417. b:a = Y. = . — a = A [*22*83 . (*24*02)] 

*2421. Kan-a = A [*24-103 . *22*89] 

*24 22. h.au-a«V [*22-88. *24-102] 

*24 23. b . a A = A [*2412. *22*621] 

*24 24. b . a u A = a [*24-12. *22*62] »--- -— —j 

The above two propositions (*24-23*24) exhibit the algebraical analogy of 
A to zero. * b* 

*24 26. h.anV-o [*22621 .*2411] 

This exhibits the analogy of V to 1. 

*24 27. KauV-V [*2262 . *2411 ] 

This exhibits the analogy of V to oo. 

*24-3. l-:aC£.3.a-/? = A 

Dem. 

b . *4*53*6 . D 

h x e a . D . x e 0 : = e a . e /3) : 

[*22*35] 

[*22*33] s:~(xca-/9) (1) 

h . (1) . *10*11*271 . D 

h : a C0 . = . — #). 

[*24*15] s.a — /9 = A:Db. Prop 

The above proposition is very frequently used. 

*24 31. h:aC/3. = .-av/3 = V 

Dem. 

b . *4*6 . Db:.xea.D.xe/9:=: a . v . xe B 

[»22-35] = :{x)-.xe-a.v.xe/3: 
[.22-34J s:(i).ie(-iju/3): 
[•2414,] =:-ou£=V:.Dh. Prop 

This proposition is the correlative of *243, but, unlike that proposition, 

LZZr, ‘hf Sequel- Every proposition concerning A has a corre- 

' r ' 0 u '"ng V;?Ut We 8hal‘ °ften DOt S*ve these correlatives, since they 
are seldom required for subsequent proofs. y 
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*24-311. (-:aC-^. = .0^=A 

Dem. 

^ . *22*35 .Dh:.jr«o.D,x€-/J:s:xfa.D. c £ : 

[*4*5162] 5s-v(/(a.x«/3): 

[*22-33] =Hrea^) 

K . (I). *10*11 *271 .DhaC-^ = .|.r)./MflA/J. 

|*24*1>) ■.an^«A:Dh. Prop 

*24 312. h:-aC^.a.aw/J-V 

H . *22*35 .Dh:.-oC/i. = : j-«w a . Dz . .r c /i : 

t*4'1'-*] = :<x) sa-tfl.v.xe^: 

[*22*34] = :(./*)..re a v£: 

[*-+'H szayj/3-Vs.Dh.Piop 

*24 313. b:an/3-.\. = .a-a-0 1*24-311 . *22021] 

*24 32. l-:.ov/S = A. = .a-A./9-A 
Deni. 

H . *24* 13.Dh:.outf=A.= :aw^CA: 

[*22 -.0] = : o C A . /S C A : 

[*24-13] e : a = A . /S — A D K . Prop 

*24 33. ha=V.D.Qw/J=\' 

Dent. 

H . *22*551 .DhHp.D.aw/9-Vw^ 

[*24*27.*22*57] = V : D h . Prop 

*24*34. h:a = A.D.flA/3=A [*22*481 . *24*23] 

*24 35. ha-V.D.an^-/3 [*22481 . *24 26] 

*24 36. ha = A.D.ou^ = j9 [*22 551 . *24 24] 

*24*37. :• a n ft = A . = : x c a .•/ e fi. D; v . x ^ y 

Deni. 

(1) 

I-. *24*15 ,DH:.an£=A. = : (x) . x~e (a n £): 

[*22*33] = : (x) .~(xe a . xe£): 

[*13*101] = :(xty):x = y. D .~(xe a . y e£): 

[Transp] = : (x, y) : xe a . y e B . D . x y D . Prop 

*24*38. H:.an£ = A.D:a4:£«v.a = A.£=A 

Deni. 

H . *22*481 . D H : a a £ — A • a «£. D . a a a«* A . 

[*22*5] D . a = A . 

[*20*23] D . a = A . £ = A (1) 

h.(l). Exp .Dh.an£*=A. D:a = £.3.a = A.£=A: 

[*4*6] D:a + |0.v.a = A./9 = A:.DK Prop 
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*24 39. h:.aod = A. = :j.,#. 3, ,3 [*>4 311 . *22 :»->] 

*24 4. h:«ni}=A. = .l(IU(j)_1,=((}i3i(8u(,)_/J = a 

Dem. 

H . *24*811 .Dh:an^=.\.= (/ jC-o 

[*22!>] = .<au,3)-a = ,3 ,|) 

*"' (1) a.’J ‘ 3p:/3«a = A.».(/9va>-/3 = a: 

[*22-51»7] 3h:an/3 = A . = . <o w £> _ S = o 

. (1) . (2). 3 H. Prop 

*24401. l-:/3Ca.3.(/3u7)-a = 7-a 

Dem. 

H.*220S. 3H., 

K.24-3. 3h:Hp.3.e-«-.V 

J- • (1) • (2). 3 K : Hp. 3. (/3 w 7) — a — A u (7 — a) 

[*24 24] - 7 - a : 3 4 . Prop 

*24402. l-:or./3-A.fCa.,C/9.3.fft,_A 
Dem. 

K*22-49.3h:Hp.D.fn„Ca«/9. 

[*22-35] 3 . f n jj C A . 

[*2413] 3.fn,-A:3H. Prop 

*24 41. l-.a = (ar»/3)w(a-^) 

Dem. 

h . *2268 .DK(oft^)y(a-i3) = flft(i9u_^) 

[*24-22] = 

„„„ [*24'2«] =o.3h. Prop 
*24-411. h:£Ca.3.a = /9u(a — /3) 

Dem. 

y . *22-633 ^ . 3 h : 0 C a . 3 . S « (a - 0) =. (a r, 0) v, (a - 0) 

[*24'4,] =o: 3K Prop 
*24412. l-:^Ca.7C/3.3.(a_i8)u(/8_7) = a_7 

Dem. 

[*24^3-23]"3 h :Hp • 3 • = (« - 7) - (« - /9 - 7) v, (/9-7) 

r*22-fi«l = (“ - £ - 7) w (/3 - 7) :ss, 
• J ... =a — 7:3I-. Prop 

Th's proposition is used in *234181. in the theory of eontinuous functions. 

*2442. l-:»n£C7.«-/3C7. = .«C7 
Dem. 

[*24^4119DH:aniSCT"a"’^C'y’S-(an^V/(a“^C'>r- 
L 1J =-aC7.0h. Prop 
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*24 43. h : a — (3Cy. = .aC£yjy 

Dem. 

H . *50 . Dh:/ta. j# . D . xe y: s z.orca.Ozrt&.v.xc y 

[#22 35 83] D K :: j- € a — /3 . D . ./• e 7 : = .r € a . D : .r € >3 . v . .r e 7 

[*22*34] =:./<a,D,/((^u7) (1) 

H .(I). *10-11*271 . DH . Prop 

*24 431. Mow7)n(o'u-7( = (Oft^)u(a-7)u(^n 7) 

This and the following proposition are lemmas for *24*44. 

Deni. 

H . *22*03.3 h . (a w 7) /M/3 w - 7) = ;(a u 7) r» /9( w J(a u 7) r\ - 7I 

[#22*68] =(an n 8)\j(a-y)v{y-v) 

[*24*21] = (a r\ /9) \j (7 r\ &) \j (a — 7) \j A 

[*24 24] - (cr r» £) (7 r\ /3) v (a - 7) 

[*22*51 *57] =(ao^)u(a-7)u(/^A7).Df*. Prop 

*24 432. h .(a-y)\J 10 r\y) = (ar\ 0)\j (* -y)v (0 r\y) 

JJem. 

h . *24*22*35 . D h . a = (a n /9) n (7 v - 7) 

[*22*08] = (a n/9 n 7) w (a r»/3-7) 

[*22*51] = (a r\ 0 r\ y) sj (a r\ — y r\ 0). 

[*22*551] Df-.(oo^)w(«-7) = («Jft^A7)w(an-7 0/9)u(a-7) 

[*22*03] — (a r\ 0 r* 7) (a — 7) 

[*22*57 ] «=(a-7)u(an/3n7>. 

[*22*551] D h . (a /9) v (a — 7) v (/3 7) = (a— 7) u (a n /9 n 7) v (£ n 7) 

[*22*03] = (a — 7) v (£ n 7). D I-. Prop 

*24 44. h . (a v y) r\ {0 v — y) = {a n - y) v {0 r> y) [*24*431 432] 

*24*45. h|an7)u(/j-7) = A. = .^C7.7C-a 

Dem. 

h . *24*32 . D h : (a r» 7) \j (0 — 7) = A . = . a n 7 = A . — 7 = A . 

[*24*3*311] =.7C-a.^C7:Df* • Prop 

*24*46. h : (a n 7) u (^ - 7) = A . D . a n /? = A 

Dem. 
h . *24*45 . *22 44 .Dl-: Hp.D.^C-a. 

[*22 811] D.aC-0. 

[*24 311] D.an/J-A: D H - Prop 
9 

The following propositions, down to *24*495 inclusive, ore lemmas inserted 

for use in much later propositions, most of them being only used a few times. 
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<n 

D *• ' £ = f . V - V • 3. £ v> v - f ^>?' 

Dh:.fu^-F uV.D:(fu^)n«-(f uV)a«: 
(1) 

THE EXISTENCE OF CLASSES .).)•» wJO 

*24 47. !-:««£= A.av/3 = 7. = .aC7./3 = 7_a 
Dem. 

H . *24*31 l.Dh:on/9 = A. = .^C-a 

H . *22*41 . Dhou/3=7.5.ou^c7.«yCau/i 

[*22’59.*2*43] - . a C 7.0 C 7.7 - a C * (•>> 

r#.>o-451 -aC7./?C7^C-o.7-aC^ 

[*22-411 =.aC7./9C7-a.'y-aC£. 
L 1 E.oC7^ = 7-a:Dhii.r(ip 

*24 48. h f C or. £'C a . i; C/9. vf C£. a «£- A . D : 

Bern. = 

»■. *22-73. 

K *22-481 . 

[*22-08] 

. *22-021 . 

[*3-47] 

I-. *22-48 . 

[*22-55] 

[*24-13] 

Similarly 

h.(3).(4) . 

[*24-24] 

^.(3).(5). 

[*24 241 

H.(2).(0).(*1 

Similarly 

“OOVe ProPoslt|on, besides being used in the next two, is used in the 

the h ° CO“P eS <*54 *')' ,n the lheory of greater and less 0X17-682), and in 

0170^8) °n g °f °laSSeS by the Principlc °f first di^renees 

*24481. b:.«n/3 = A . a ~ 7 = A . D : a v, ,3 - a u 7 . s £ = y 
Dem. 

I- . *94. AQ g» ~ <*• «• «■ A y ^ 

hs.oCa.aCo.^C — a.7C — a.o —a = A.D: 

h . *22-42 . *24-21 . D a u /3 = a u 7. = . a = o . 0 = 7 (1) 

P:.aCa.aCa.^C-a.7C-«.a-a = A.s.^C-a.7C-a. 

3 :(£Aa)vy(7;^a)«=({:'na) W»/'rtcr) (2) 

=>»-:fCa.fCa.D.fna = f.f'rta,f' 

3H:*?C/?.an/9=-A.:).VnaCA. 

(3) 

D . 7; r\ a = A 

•■:>?'C/9.0n^!3A.D.,'na = A 

^ I- Hp .D:(ffta)u(,ft0) = fwA 

(4) 

(«) 

3 H Hp . D t ((' r\ a) \j (rj'rs a) «= £' v A 
<«> 

s. Hp . D ; f ui| » D . f » j:' 
(7) 

(8) 
*-:.Hp.D:fu, = f un'.D.„ = „' 

3 I-. Prop (y> 
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[*24 311] = .an0 = A.an7=A (2) 

H . *20 2 . *473 .D^za = a.0==y. = .0 = y (3) 

I- . (I). (2) . (3). D h . Prop 

Tin* above proposition i> used in the theory of selections (*8374), in the 

theory of greater and less (*l 17*582), and in the theory of transKnite induction 

(*257). 

*24 482. \-:.%Ca.riC{3.ar\t3 = A.D:t;'Ji) = ayjfj. = .}; = a.i)=t3 

[*24 48 £ . *22-42] 

The above pro|»ositioii is used in the theory of convergence (*232 34). 

*24 49. a r\ 0 = A . D : a C 0 v y . = . a C y 

Deni. 
h . *22021 .Dh :aC(3vy. = .a = ar\((3\jy) 

[*22118) =(an^)y(on 7) (1) 

h.*24 24. Dhsan/9 -A .Dt(#aj8)u(«a7)«an7 (2) 

h . (1) . (2). Dh:. Hp.D:aC/Ju7. = .asaA7. 

[*22 021 ] = . a C 7 : D h . Prop 

*24491. h:/9r»7"A.aC£w»7. 

D.a-^»an y . a — y = a r\ 0 . a *= (a — 0) v {a — y) 

Dan. 

H. *22*621 . 

[*22-481] 

(*244) 

Similarly 

l-.(l).(2). 

[*2208] 

[*22021] 

D H : Hp.D.a-«a(/9v7). 

D.a-y = an(0uy) — y 

= a r\ 0 (1) 

HsHp.D.a — /9»oa7 • (2) 

D h : Hp. D . (a — 0) v (a — 7) — (a n 7) v (a n /9) 

= a r\ (7 u /?) 

— a (3) 

h.(l).(2).(3).DK Prop 

The above proposition is used in the theory of selections (*83 03 05) and 

in the theory of segments of a series (*211-84). 

*24 492. h : 0Ca.a —0-y.D.a —y = 0 

Dem. 
h . *22481 . D h : Hp . D . a —7 = a — (a —£) 

[*22 8-80] = a n (- a u 0) 

[*22-8*9] =an0 

[*22-621] = £:DKProp 

The above proposition is used fairly frequently, especially in the theory of 

series. It is first used in *93 273, in the theory of “generations.” 
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*24 493. H : £ n 7 = A . D . a = (a - £) w (« - 7) 

Dem. 

h . *22*84 . *24*17 .Dh: Hp .D.-£W_7==V. 

[*24*26] D.a = ar\(-/3u-7) 

[*22*68] -ta-/8)u(a-7):3l-.Pm1, 

*24*494. t-:fCa.,C/3.«n^ = A.D.(?v,„)-«=.,/.(fu>>)_;8_{ 

Dem. 

I;**8*8- 3 H : Hp . D . f — a = A (1) 

t*.*24*311. D I- : Hp . D . /9 C — a . 

[*22*44] D.ijC-a. 

[*22*621] D. (*, 

K.22C8. 3K(fu„.,.({-,)l/(,..) ,3) 

H * (1). (2). (8) . *24*24 . D h : Hp . D . (£ v. v) - * = ( M 

fimilar,y l-iHp.3.(fu9)-^.f (5) 

H • W • (5) . D h. Prop 

This proposition is used in the theory of selections (*83 63 and *88*43). 

*24 495. I- : a a 7 = A . I) . (a u 7) - (£ v, 7) = a _ £ 

Dem. 

I- .*22*87-68. D 

h.(av7)-(/9u7) = (a-,9-7)u(7-/3-7) 

[*24*21] ««-*-7 (]) 

K. *24*311 .*22 621 . D h : Hp . D . a - 7 = c (2) 

I-. (1) . (2). D h . Prop 

(*20T^3*8l2O*84)Pr°POSitiOU " "Sed ^ thG the°ry °f l>oints 

of Taindr u Ms "Umber we ahM be conceine<l with the existence 

fact tW to y , PrOI>ert,e8 of the exigence of classes follow from the 

to the n 11 I “ ^ CX,StS ,S C<|uivalc"t 10 “yi“8 that the class is not equal 
to the null-class. This is proved in *24 .54. 1 

*24*5. H : a ! a . = . (g*) . * e a [*4*2 . (*24 03)] 

*24 51. :~g ! a . s . a = A 

Dem. 

h . *24*5 .Dh<vg!a. = {(3x).xeo|. 

[*10*252] S.(*).x~e«. 

[*2415] = . a = A : D V . Prop 

*24*62. I-. a ! V [*24*51*1 . Transp] 
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thing, which is equivalent to this proposition, is implicit in the proposition 

*101. that what is true always is true in any instance. This would not hold 

it there were no instances «.f anything; hence it implies the existence of 

something. It will be observed that the above proposition (#2452) depends 

on *241. which d.pondson *22 351. which depends on *10*251, which depends 

on *10-24. which depends on *101 or on *91. The assumption that there is 

something is involved in the use of the real variable, which would otherwise 

bo meaningless. This is made explicit in *91, and in the proof of *9 2, which 

is the same proposition as *10-1. 

*24 53. b • ~ g ! A [*24-51 .*202) 

*24 54. b s g ! a . s . a + A [*24’51 .Transp] 

*2455. b :^<a C fi). s . g la - a [*24 3 . Transp . *24*54] 

*24 56. h :.g !(au/3).a:j|!o •''•51 '-0 [*10-42. *22-34) 

*24561. 1*: g ! (a a .£). D . g ! a, [*10-5. *22-33] 

*2457. b a r\ 0 - A . D : g ! a ■D.a+tf 

Dan. 
b. *22481 . Db:o a £ - A . a = ff . D . a n a ■■ A . 
1*22-5] D . a = A . 
[*24-51] 0 .~g ! a 
b . (1). ICxp. Transp . D > b . Prop 

*24571. b:g!a.a®^.D.g!( ar\0) 

Dent. 
b . *24-57 . Comm . D b :• g ! a . D : 
[Transp] D: a = /3.D.an/9 + A. 
[*24-54] D . g ! (a n £) 
b . (1) . Imp . D b . Prop 

*2458. b:.aC^.D:g!a.D. a !/3 [*10 28] 

*24 6. b!.aC/3D:a + /9.».g!/9 — a 

Dan. 

b . *22-41 . Transp. Db:. Hp. D:a*£.D.~(£C«). 

[*24-55] D.g!^-a 

b. *24-21 . D b : a = 0 . D . /9 — a = A 

b . (2). Transp . *24 54 .Db:g!/9 — a . D . a + 

b.(1) . (3) . 3b. Prop 

*24 61. b:~g!/3.D.au£ = a [*24-51 24] 

I- :~g ! £. D - a r\ 0 = A [*2451-23] 

(1) 

(1) 

(1) 
(2) 

(3) 

*24 62. 
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*24*63. l-:.A~c/f. = :ae^oa.g!a 

bo P™P"sition' *he conditions of significance require that * should 

hvnothlsi S‘ condition . 3. . a !«" is one required as 

I vnoth m ,,ir°p0S,t,0ns- 1,1 virtue of the above proposition, this 
hypothesis may be replaced by “A~€k.” 1 

Dem. 

h .*13191 . DI-:.A~e*. = :j = A.3„.a~«l[: 

[Trnnsp] = : a e * . Da . a + A : 

[*24-54] *:«e*.D,.gla:.3K Prop 

This proposition is frequently used in later parts of the work. We often 

5^ehto st exirnt ciasscs’a,ui ti,e —* — l:?™ which to state that all the members of a class of classes exist is " 

15—2 



*25. THE UNIVERSAL RELATION, THE NULL RELATION, AND 

THE EXISTENCE OF RELATIONS 

Summary of *25. 

This number contains the analogues, for relations, of the definitions and 

propositions of *24. Proofs will not be given, as they proceed precisely as 

in *24. 

The universal relation, denoted by V, is the relation which holds between 

any two terms whatever of the appropriate types, whatever these may be in 

the given context. The null relation. A. is the relation which does not hold 

between any pair of terms whatever, its type being fixed by the types of the 

terms concerning which the denial that it holds is significant. A relation It 

is said to exist when there is at least one pair of terms between which it holds; 

“It exists" is written “<[ ! It." 

The propositions of this number are much less often referred to than those 

of #24, but for the sake of uniformity we have given the analogues of all 

propositions in *24, with the same numeration (except for the integral part). 

All the remarks made in #24 apply, mutatis mutandis, in the present 

number. 

*2501. V I)f 

*2502. A =^.\- l)f 

*25 03. <i ! Ji . = . f'q.r, y). xliy Df 

*251. b A + v 

*25101. b V—s. A 

*25 102. b U\!/) -<t>(x, y). = .J S <t> (*r.. 

*25103. b (^, •/)• = • <f> (. 

*25104. b (x,y).xYy 

*25105. h —(*Ay) 

*2511. b (It). HCX 

*2612. b (It). A G Ji 

*2513. b It = A. =. R <• A 

*2514. b (x, y). xRy . = . It = v 

*25141. b V G It. = . V = R 

*2615. b •
 •

 

*
5

 I i11 R = A 

*2517. b :Ii = Y . = .^R = A 

*2521. b .R*^R=A 
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*25 22. K Pc/-^P = V 

*25 23. h . R o A = A 

*25 24. I-. R \y A = R 

*25 26. h . R A V = p 

*25 27. M2oYa V 

*253. h:iiG5. = ./?^<S=A 

*25 31. l-:PGS.3.^Pc/S«V 

*25311. hRQ^S.~=.RnS = A 

*25 312. H:-i.PG£.s..ftuS=V 

*25 313. h :R nS = A. = . R^-S = It 

*2532. h:PuS_A.3.P«A.S«A 

*25 33. f-:P= V.D.Pc/S- V 

*25 34. t-:R = A.D.R*S=A 

*25 35. h:7i=»V.^.7i/S<S, = jS' 

*25 36. h : P - A . D . P c; S =» 5 

*25-37. 

*2538. 

*2539. 

*25-4. 

*25401. 

*26402. 

*2541. 

*25411. 

*25412. 

*2542. 

*2543. 

*25431. 

*25-432. 

*26-44. 

*2645. 

*2646. 

*2547. 

*2548. 

H:.«^S=.A.D:A + S.v.ie = A.S = A 
h.iiAS.A.s: . 3X y —(*,sy) 

hPnQ = A.3.(Po(J)j.iJ=Q,a_^l;j(jjiQ_p 

I-: Q C R. D . (Q o R)^.p =. ^ 

H:PAQ-A./iCP.SC(3.3./eAl8-_A 
K .R = (« A S) o 

I’iQCi'.SCQ.a. (.P—Q)<v(Q-^S) = P^-8 

l-rRAQGR.P^QCR.s.RCR 

t-iR-OGR.s.PGQoR 
K(f»8)A(Q„iS) = (f.Ag)o(f.s>o(^fl| 

■(^fl)»(«Afl| = (PAg)o(Pi/j)o(?.fl) 

K(RoR)A(0va^R) = (pA^iJ)l;((QA/J 

!-:(8AB)o(Qiii) = A. = ,QGfl.flGiP 

l-:(PAfl)0(Qifi) = A_3iPAQ = A 
l-:RAQ = A.RK,Q-fl. = .pG7J.Q = s^p 

l-:.Re/*.R'CP.SGg.S-G(3.i>A(3 = A.D: 

*26-481. t- 

*26 482. h 

*2649. h 

Rw S= R' \y S' 

:.P«Q = A.P,sp = A.D:Pc/Q = Pc/P.= 
:-i2GP.SGQ.PnQ = A.D:iic;S=?wQ1 

:.PoQ = A.D:PGQc/P. = .PcP 

= .R = R'.S = S' 

Q= R 

=. R = P. S = Q 
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*25 491. htQnR = \.PGQwR.2. 
P-Q = PnR.P — R = Pr\Q. P = (P±Q) ci (P-P) 

*25492. I :QQP.P^Q = R.D.P^R = Q 

*25 493. I-: Qn R = A . D . P = (P-^Q)v [P — R) 

*25 494. h : 7? G P. .S’ G Q. P A Q = A . D . (P c; tf)P - 5. (P v S) Q = R 

*25 495. I-: P n R = A . D . (P c; P)^(Q o 77) = P-Q 

*25 5. h : a ! 77 . s . <'.| r, »/). o:P^ 

*25-51. h:^a!P. = .P-A 

*25 52. h • g ! V 

*25 53. H.^aSA 

*25 54. h : a ! P. a . P + A 

*25 55. R-S 

*25 56. h a ! (P kj »9). s : a ! R . v . a ! .9 

*25 561. h : <\ ! (P A .9). D . a ! P • a ! *s' 

*25 57. h P A .9= A . !> : 3 ! P. D . P * .9 

*25 571. I-: a ! P. P - P. D . a UR A 8) 

*25 58. h P G .9. D : a ! P . D . a ! 5 

*25 6. h:.PGS.D:P + S.s.g! .9-^ P 

*25 61. I- :~a ! 8. D . P o .9 = 77 

*25 62. h'v<|!,S’.D.PA6, = A 

*25 63. I* :• A~c * • ■ : P e «• D* • 3 ! P 



SECTION D 

LOGIC OF RELATIONS 

am- SCCti°n.-We Sl,al1 bc COUCCrne(l *“ch of the general 
p.opert.es of relation, as have no analogues in the theory of classes The 

rest TtUT WU SeCtiOD Wil1 be USed constantly throughout the 
rest of the work and the ideas expressed in the definitions will be found to 
be of fundamental importance. 



*30. DESCRIPTIVE FUNCTIONS 

Summary of *30. 

The functions hitherto considered, with the exception of a few particular 

functions such as a have been propositional, i.e. have had propositions for 

their values. But the ordinary functions of mathematics, such as .ra, sin#, 

lng.r, are not propositional. Functions of this kind always mean “the term 

having such and such a relation to For this reason they may be called 

descriptive functions, because they describe a certain term by means of its 

relation to their argument. Thus irj’2" describes the number 1; yet 

propositions in which sin -r 2 occurs are not the same as they would be 

it 1 were substituted for .siii7r,2. This appears e.y. from the proposition 

‘ sin 7r 2=1." which conveys valuable information, whereas “1 = 1” is trivial. 

Descriptive functions, like descriptions in general, have no meaning by them¬ 

selves, but only as constituents of propositions0. 

The general definition of a descriptive function is: 

*30 01. R*ym(ix)(*Ry) Df 

That is, “7f*y" is to mean “the term x which has the relatiou R to y." 

If there are several terms or none having the relation R to y, all propositions 

about ll‘y, i.e. all propositions of the form “£(/?‘y),M will be false. The 

apostrophe in “ R*y " may be read “of." Thus if R is the relutiou of father 

to son, “ R*y " means " the father of y." If R is the relation of son to father, 

“ R\/" means “the son of y”; in this case, all propositions of the form 

" <7> (/?‘y) ” will be false unless y has one son and no more. 

All the functions that occur in ordinary mathematics are instances of the 

above definition ; all are obtained in the above manner from some relation. 

Thus in our notation “ R‘y takes the place of what would commonly be 

"fu' tatter notation being reserved for propositional functions. We 

should write “sin ‘y" in place of “siny” using “sin" to express the relatiou 

of x to y when # = sin y. 

A definition such as R*y = (tx)(xRy), where the meaning given to the 

term defined is a description, must be understood to mean that the term 

defined (in this case R‘y) and the description assigned as its meaning (in this 

case (lx) (xRy)) are to be interchangeable in use: the definition is, in a sense, 

more purely symbolic than other definitions, since the description assigned as 

the meaning has itself no meaning except in use. It would perhaps be more 

formally correct to write 

f(R‘y) • = •/IO*)(*fly)J Df. 

• Cf. *14, above. 
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. e7',‘itHiS <l0f,1'it'?,‘ would not bo co**>l>l*-*to. because it omits 

“ete fLm ^ ^ Thu. the 

[Rt'A - f (R*y) . = . [(M*)(-r7?^)]./l(i.r)(.r/fy)} l)f. 

thiS f°r,n °f Prided it is under. 

"0?UrB,V ; i"’ " M\ that “*V may bo written for 
' **• ,,n ,nd,Cntio,,s of sc°p° as well as elsewhere. The 

of the defin.tion occurs always in accordance with the proposition: 

.... h : Wfl •/< R,'J> • s • [(<*) (•' %)] ./(,x) (.rliy), 
which is *301, below. 

It is to be observed that *30 01 does not necessarily involve 

= (la) (i%). 

For this, by the definition, is equivalent to 

, , , («)(x%) = (,x)(.r%), 

i'ii*11'2,8' ™]y ho“« EKtrlW, t>. when there is one term, 

rVeKnti°nS nr l° SCOpe CXpluincd in *M ate to be transferred to 
fhe ° enCC any COntlar>, indication, the scope of R‘, is l„ be 

in question occur ' * °Se<' d°tS °r °ther bracketS’ "hicl‘ «« /*•* 

We put 

*30 02. R-S'!/ = Jt<(S-y) Df 

«* b'“k»“ '* » - *» - 

In f., [LR!f yl ■/(R‘s'y) • “ • lR‘(S‘y>] -/IX‘(S‘y)l Df. 

forks''meaning • °ften define a "ew expression as having a descriptive phrase 

above “is an" 8 a CaSC' the vefiniti°n iS al"'a>S b« interpreted as 
the proplsrt o„ whfehrOPOK10ni*\ Wh“* th° ncw expression occurs is to be 

»pri£;:£!zi*8u'"t,tuting the °,d f°" the 

werf S’i" lhCtab°VC' !f 10 be interpreted by first treating S‘y as if it 

R\S‘v) and bvCthPp T ’ rd appl-v'ng *30 01 an«i *14 01 or *14 02 to 
-« y), and by then apply,ng *30 01 and *14 01 or *14 02 to S‘ij. 

cons^uenci0roiftyth0efctohrre,Pr0,Titi0nS °f preSeDt number “re immediate 
*14-113 ‘he correspond 1 ng propos.t.ons in *14. Thus *14-31—34 and 

whe"l^“mthy t0„n°I?-16- "hich show that, either always or 

to thetuytnaTues of suCc°hPenro " °f ^ and ^ »» difference 
*3(1 in t °f8“eh propositions as we are concerned with. We have 
*3018. ^:.EiR‘y.(z).4,z;o.4,(R-„) 
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so that what holds of everything holds of R*y, provided R‘y exists. This 

results immediately from *14 IS. and shows that, provided Rly exists, the fact 

that " R*y is an incomplete symbol <loes not prevent its being substituted 

as a value ol z whenever we have (j). <f>z, or an assertion of the propositional 

function <f>:. 

One of the most used propositions of this number is: 

*30 3. b x= R*y. = : zRy . =,. z *=x 

which results immediately from *14 202. The following analogous proposition 

results from the above by means of *14122: 

*30 31. V x = R‘y. = : xRy: zRy. D.. z =* x 

I.e. "./ = R*y" involves, in addition to " xRy," the statement that what¬ 

ever has the relation R to y is identical with x. 

A proposition constantly referred to is: 

*30 37. I- s E! IVy .y = z.D. IVy = R‘z 

In the hypothesis, E! R*y might be replace«l by E! R*z, but one or other 

"f them i» essential. For, by *14 21. " Rly = R'z " implies E ! R‘y and E ! R‘z 

(these are equivalent when y —r),and therefore cannot be true when R*y and 

JVz do not exist. 

The use of *30 37 is chiefly in cases where y or z or both are replaced by 

descriptive functions. Suppose, for example, that z is replaced by S'to. By 

*30 1.3, we may substitute S*w for r if 8*iv exists. By *1421, both sides of 

the implication in *30*37 will become false if S‘w docs not exist, and there¬ 

fore the implication will still hold. Hence whether »S'‘w exists or not, we may 

substitute it for z and obtain 

b : E ! R*y. y = S‘u>. D . R'y = R'S'w. 

In like manner, if we replace y by T*v% we obtain 

b : E! R* Vv. Vv = S*w. D . R*Tlv — R‘S‘w. 

A very important proposition is: 

*30 4. b E ! R‘y. D : a = R*y . = . aRy 

This proposition states that, provided R*y exists, to say that a is the term 

which has the relation R to y is equivalent to saying that a has the relation 

R to y. Thus for example "a is the occupier of the house y ” is equivalent 

to “« occupies the house y," "a is the writer of Waverley ” is equivalent to 

“ a wrote Waverley,” " a is the father of y ” is equivalent to “ a begot y." But 

we cannot argue from "John Smith inhabits London” to "John Smith is the 

inhabitant of London.” 

We shall introduce in this and subsequent sections many constant relations 

for which E ! R‘y is always true. When R is such that E ! R‘y is always true, 

we have, in virtue of *30*4, 
a = R‘y. = . aRy 
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f"i e\ery possible value of y. The following proposition is useful in eases where 

both R and S are such that R'y and S'y always exist: 

*30 41. 1-(y). R'y = S'y. = : (y) . E ! R'y s R = 8 

.. ,TI'"S Ze kn°'V that R‘y aml S‘y a,e always identical, we know not only 
that R and S are identical, but also that R'y (and therefore S'y) always exists. 

*30 01. R'y = (,x)(xRy) Df 

*30 02. R'S'y = R'(S'y) Df 

'hterpreting R‘{S‘y), S'y is to be treated as an ordinary symbol until 

U y' k“S . el|nilnated by *30 01 an.l *14 01 or *14 02, and then the 
above definitions are to be applied to S‘y. 

*30 1. h : [R'y] ./(R'y) . = . [(,.*) (xRy)] ,/(1x) (xRy) [*4*2 . (*30 01)] 

*3011. h>[R‘!/].f(R‘y).mz(ab):xRymmx.x-b:fb [*30 1 .*141] 

Ihc following propositions are immediate applications of *1431 ff, made 
m accordance with *301. 

*30 12. 1-:: E! R’y. D:. [fl‘y]. p v x (R‘y> .=:p.v. [_R*y]. x 

[*14-31] J 

h :: E ! R'y. D :. [R'yj .~x(R‘y). = j[7?‘y]. x(«‘y)) [*14 32] 

•3 ” [***I • » 3 * • ■ -p • ^ • [«‘y] • x (.R'y) 

*30 141. h::EiR‘y.D:. [R‘y] . x(R<y) Op. = : [tf-y] . x (R'y). ;> . p 

[*14‘331] 

*30142. I-:: E! R'y . D :.[Jfy] .pmx(R‘y) . = : p . = . [ft‘y] . x(R‘y) 

[*14 332] 

*3015. h :-p : [R‘y]. x (R‘y) : s : [R*ij] .p . x (R'y) [*14 .34] 

The following two propositions are immediate consequences of *14113112. 

*30 16. h : [R'y] ./(R'y, S‘z) . = . [S‘z] ./(R'y, S‘z) [*14113] 

./(R'y,S‘z).m: 

(a6, c) : xRy .=x.x = b: xSz .=x.x = c :/(bt c) [*14112] 

I-E ! R'y z (z) . <f>z : D . <f> (R'y) [*1418] 

h :. R*y = b.D:yfr (R'y) . = . yjrb [*1415] 

f- s. E ! R'y. — : (a6) : xRy & [*4*2 . *1411 . (*30*01 )J 

F . ,PJ?V‘ng *30 2' wLe have to use the definition *30 01, not *301, because 

18 D,°‘° thC form /(**) ($*)- This appears if we attempt to apply 
the definition *14 01 to E! (,*) <**), which leads to an expression containing 

the meaningless constituent E ! 6. But by the definition *30 01, every typo 

graphical occurrence of the symbol "R'y" means what results when this 

symbol is replaced by (,*) (xRy)," hence " E ! R‘y " means “ E ! (,*) (xRy)." 

*3013. 

*3014. 

*3017. 

*3018. 

*3019. 

*302. 
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*30-21. H :: E ! R‘y. = (3x). */fy: .rrty . zRy . ,. * = * 

[*14 203. (*3001)] 

*30 22. b: E ! R*y . = . R‘y = (ix)(xRy) [*14 23 . (*30 01)] 

Note that we do not necessarily have 

R‘y = (tx)(xRy), 

which is only true when E! R‘y. 

*30 3. I- :,x= R‘y. = : .=..* = .r [*14 202] 

*30-31. h xwm R*y . = ; xRy : zRy. D,. z = a: [*14*122 . *30 3] 

*3032. h : E ! ify. ■ . </<‘y) Ry [*14 22] 

*30 33. b :: E ! R*y. D :. ^ (/f‘y) : = : (gar). xRy . ^x: = : xRy. Dx . y\rx 

[*14 26] 

*3034. K%x/fy.*x.*Sy:D:E!rt‘y.5.E!S‘y [*14271] 

*30-341. b */<y. ==,. xSy: D s E! R'y. s . R'y- S‘y 

Dcm. 

K *14-21 . 31-srt‘y-S‘y.D.El/f‘y (1) 

I-. *14-27 . Comm . D h Hp • D : E! R'y. D . R'y = S‘y (2) 

H.(l).(2). Db. Prop 

*3035. I-:. R - S. D : E ! R'y. = . E ! S'y [*30 34 . *21 43] 

*30 36. I-: E ! R'y, R = S,D . R'y = S‘y [*14 27 . Imp . *21*43] 

*3037. H:E \ R'y.y-1. R'y R'z 

Dcm. 

h . *14*28 . Dh:E l R'y .0 . R'y-R'y (1) 

b. *1312. R'y = R*y. = . R*y = R*z (2) 

b . (1). (2) . Ass . D b . Prop 

This proposition is very frequently used. 

*30 4. I-:. E ! R*y . D : a = R'y. = . uRy [*14 241] 

This is a very important proposition, of which the use is constant. 

*30 41. b :. (y) . 7?‘y = S*y. = : (y). E ! 7?‘y: 7? = .9 

Dew. 

b. *14-21 .*1011-27 • 3 5 (y) • ^‘y = S‘y. D . (y) . E ! 72‘y (1) 

K *1413 142. ^ h :. (y). R'y = S‘y ,D:(x, y)zx = R‘y. = . x 

•a 

£ ii 

f(l).*30"4] D : (x, y) : xRy. = . xSy: 

[*21-43] D:R = S (2) 

b. *30-36. D h : E ! R'y . R-S.D . R‘y = S‘yz 

[*10*11*27*35] Dh:.(y).E!/^y:# = S:D.(y)./fy = S‘y (3) 

h.(l).(2).(3). D h . Prop 
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*30A2. h (,). E ! . 3 : (,) .7?‘* = S'*. = = S j 

*30 B. h : E ! . D . E ! Q‘_- 

Dem. 

rH :• 3 h E! • * = (at) : *P(Q‘,). 3X. * = 6 : 

, 3.(a*).6P(«‘,)...6.6: 

[*13Io] 3 : (at) • bP (Q-t) : 

,n „ [*14-21] D : E ! ;.3h. Prop 

*30 50!. h : * (P‘Q‘t). s . (a6. c).c = Q‘,.b = P.c. 

On the meaning of » *),•■ see note to the definition *30 02. 

22 • 3 h !!^ (P,«"> • »’•<**> • W* «*>: «P w.). a. •. - 5: *6 , 

[* 22 2°2] s *•<«». O • — Q‘* . 6 - P‘c. *6 .O H . Prop 

Xbs lti:*T-a’(*0)-b-P'C-C-Q,‘ [*30-501 . *13*195] 
*30 52. t-. EI P-Q-. . h . (a6, c). 6 — P‘c. c — Q«, [*30 51 . *14 204] 



*31. CONVERSES OF RELATIONS 

Summary of *31. 

If R is a relation, the relation which y has to x when xRy is called the 

converse of R. Thus greater is the converse of less, before of after, husband of 

wife. The converse of identity is identity, and the converse of diversity is 

diversity. The converse of R is written R (read UR-converse”). When 

R — R, R is called a symmetrical relation, otherwise it is called not-symmetrical. 

When R is incompatible with R, R is called asymmetrical. Thus "cousin" is 

symmetrical, "brother” is not-sym metrical (because when x is the brother of 

y, y may be either the brother or the sister of x), and "husband” is asym¬ 

metrical. 

The relation of R to R is called "Cnv." It will be shown that every 

relation has one, and only one, converse; hence, applying the notation of *30, 

that one is Cnv‘/t. Thus R = Cnv'P. We have thus two notations for the 

converse of R\ the second is more convenient for the converse of a relation 

not denoted by a single letter. 

The more important propositions of the present number arc the following: 

*3113. b . E! Cnv‘P 

I.e. any relation P has a converse. Hence the relation "Cnv” verifies the 

hypothesis (y). E ! R*y, i.e. we have (P). E ! Cn\ *P. 

*3132. b:P«Q.s.P-Q 

I.e. two relations arc identical when, and only when, their converses arc 

identical. 

*31 33. b . Cnv‘Cnv‘P = P 

I.e. any relation is the converse of its converse. 

Very many of the subsequent uses of the notion of the converse of a 

relation require only the propositions which embody the definitions of P and 

Cnv, namely 

*3111. b zxPy. = .yPx 

and 

*31131. b : * (Cnv'P) y. = . yPx 
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*31-01. Cnv = Qp [xQy . =i fi. ^px| Df 

*3102. P = .?i?(yP,.) j)f 

*311. H Q Cnv P. = : . yp^. [*213 . (#3101)1 

*31101. H: QCnv P. RCnvP.2.Q=R 

Deni. 

f.r^Tli 3 h ••• Hp • *<% ■ • 'Jp* •• yP.r: 
L*H371] ^■■■rQv rRy: 

[*21-43] 0:Q = JI:. D I-. Prop 

*3111. 1- : aPy . = . yP.c [*21-3. (*3102)] 

*31111, h.PCnvP [*31111] 

*3112. (-./’ = Cnv'P 

Bern. 

p • *®1'101 ■ 3 H : Q Cnv P. P Cnv P. 3. Q ™ p. 

[*31-111] D 1- : QCnvP. 3 . Q = p 

h •(!)• *10-11.*31-111 .D 

I- : P Cnv P : Q Cnv P.Dq.Q — P; 

[*30 31] DKP-Cnv'P 

*3M3. I-. E ! Cnv'P [*14 21. .3112] 

*31-131. * (Cnv'P) y . = ,yPx [*3111-12. *21-43] 

*3 132. h:QCnvP.3.Q-Cnv'P.3.0.p [.30 4 . .31 1312] 

*3114. h . Cnv‘(P A Q) = Cnv'P n Cnv'Q 

Dem. 

r.™31 ‘3 ^* |Cnv‘(P A s • y . 
1*31-1313 = -yPx.yQx. 

.2 331 *(Cn VP) y.x (Cnv'Q) y 

t nf] s • * (Cnv'P A Cnv'Ql y 

*3115. Cnv‘(P ci Q) — Cnv'P a Cnv'Q [Similar proof] 

*31-16. I-. Cnv'= (Cnv'P) 

Dem. 

|-.*31-131.3t-.«(Cnv‘- P) y. = . yx. px. 

[*23-35] s.~(yPm). 

[*23-35] ] H —(«(Cnv'P)yJ . 
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*31-17. by = P‘x . = : jPj . =.. * = y [*303 . *3111] 

*31 18 b E ! P‘.r. = : <gy) z.rPz.=t.z = y [*302 . *31 11] 

*3121. KCnv‘A = A 

Deni. 
b .*31*131 . D b :x(Cnv*A) y. = . y\xz 

[*25-105] D H .~jr(Cnv‘A)y 

Ml). *1L’ll .*2515. Dh. Prop 

*31-22. I-. Cnv'V = V [Similar proof] 

*3123. I-:P= V.2.P-V 

Dan. 

*3124. 

*3132. 

Dan. 

H.*25 14.Dh:P- V . 5 . (X, y) . xPl/ . 

[*31-11.* 11-33] s - (^. y) • yP-r • 
[*11*2] ■ • <//. *). yP* • 
[*23*14] = . P = V : D 1-. Prop 

- A . b . P = A [Similar proof] 

-Q.a.P-Q 

1-. *2143 . D H :. P -> Q . s : a Py. . .rQy : 

[*4*86*21.*31*11] = : yPx. a,., . yQ.r : 

[*11-2] 
V 

= : yPx. . yQx z 

[*21-43] = z P = Q z. "D b . Prop 

*3133. h.Cnv‘Cnv‘P-P 

Dem. 
1- .*31*131 . D H sx(Cnv'Cnv'P)y. = . y (Cnv‘P)x. 

[*31*131] =-xPy 

Ml).*11-11 .*21*43. Dh. Prop 

*3134. bzP=Q. = .Q = P 

Dem. 

h. *31*32. D h:P = g. = .P«Cnv'$ 
[*3112*32] = Cnv'Cnv'Q 

[*31*33] = Q : D h . Prop 

*314. h : P G Q. = . P G Q [*3111. *11*33] 

*3141. b:PGQ. = .PGQ [*31*4*33*12] 

*31 5. b z a ! P. = . a ! P [*31*24. Transp . *25*54] 

(1) 

(1> 
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*31-51. h 

Dem. 

*31*52. H 

:(P) ./P . = . (P) .fP 

(-.*101. 3 I-: (P) ,/P. D .fp ■ 

[*1011-21] 3 I-: (P) ,/p. D . (P) ,/p 
K *101 .*31-12.3 

>•«(P) ■fP ■ 3 ./(Cuv'P) . 
[*31-3312] 3./P: 

[*1011-21] D h : (P) ./p . D . (P) ./P 

H.(l).(2).3K.Prop 

: -/7" • s • (3iJ) •//» [*31-51. Trnnsp] 

R&w i 

16 



*32. REFERENTS AND RELATA OF A GIVEN TERM WITH 

RESPECT TO A GIVEN RELATION 

Sit m ma ry of *32. 

Given any relation /?. the class of terms which have the relation R to a 

given term »/ are called the referents of y. and the class of terms to which a 

given term x has the relation R arc called the relata of .r. We shall denote by 

R the relation of the class of referents of y to y, and by R the relation of the 

class of relata «»f x to x. It is convenient also to have a notation for the rela¬ 

tions of R and R to R. We shall denote the relation of R to R by “sg,” where 

••sg” stands for “sagittn.” Similarly we shall denote by “gs" the relation of R 

to R, to suggest an arrow running from right to left instead of from left to right. 

1< and R are chiefly useful for the sake of the descriptive functions to which 

they give rise; thus R‘y = x(sRy) and R‘x = j)(xRy). Thus e.g. if R is the 

relation of parent to son. R'y = the parents of y, R‘x = the sons of x. If R is 

the relation of less to greater among numbers of any kind, R‘y = numbers less 

than y, and R*x = numbers greater than x. When R*y exists, R*y is the class 

whose only member is R*y. But when there are many terms having the 

relation R to y, R‘y, which is the class of those terms, supplies a notation 

which cannot be supplied by R*y. And similarly if there are many terms to 

which x has the relation R, R*x supplies the notation for these terms. Thus 

for example let R be the relation “sin,” i.e. the relation which x has toy when 

x = siny. Then *‘sin‘ar" represents all values of y such that x = siny, i.e. all 

values of sii^'x or a resin x. Unlike the usual symbol, it is not ambiguous, 

since instead of representing some one of these values, it represents the class 

of them. 

The definitions of li, R, sg, gs are as follows: 

*32 01. It = aj) \a = 2 (xRy)\ Df 

*32 02. /e’=/§^!/3 = P(x/?y)) Df 

*32 03. sg = AR (A = R) Df 

*32 04. gs = A R (A = R) Df 

In virtue of the above definitions, we shall have sg*R = R, g$‘R = R. This 

gives an alternative notation which is convenient in dealing with a relation 

not represented by a single letter. 
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It should be observed that if 7? is a homogeneous relation (,>. one in 

wh,ch referents and relata are of the same type), then 1i and Tl are not 

homogeneous, but relate a class toobjectsof the type of its members. 

In virtue of the definitions of 7J and *R, we shall have 

*3213. y.~R‘,j = $(xRy) 

*32131. I- 

Thus by *14-21, we always have Zl~R‘y and E <R‘x. Thus whatever 

relation R may be, we have (y).ElR'y and (x).E'.R‘.v. We do not in 

general have (y). a ! Ry or (*) . a <*R<X. Thus taking R to be the relation 

Of parent and child, Ry = the parents of y and R>x~ the children of*. 

Thus R‘x = A, i.e ~a ! R‘x, when * is childless, and ~R‘y = A, x.e. ~a !R<y, 

when y is Adam or Eve. The two sort^of existence, E l~R‘y and a \ 

can both be significantly predicated of li‘y, because ■R‘y" is a descriptive 

function whose valuers a class; and the same applies to R‘x. It will be seen 

hold in^general ^ 3^ ! 1>ut t*le converse implication docs not 

We have 

*3216. b :~R *=~S. = .4R'=4sm s.Rr=S 

Aso by *3218181, 

b : a: 6 R‘y . = . xRy . = . y c Ri^ 

be rcdnrc!??he U,3e. °f ^ °r ^‘X’ CVCry statcment of the form "xRy" can 

the dra in , “ Sr °nl .asserlln« membership of a class. Since, however, 

functions a hT Tk'" g‘V6n by “ descriPtivc faction, and descriptive 

O reduc,nrthe fhn T? °f r°lati°nS- WO do not thus a method I reducing the theory of relations to the theory of classes. 

*32 01. R=Sf/{a=$ (*«y)J Df 

*32 02. *R = fa{!3 = Q(xRy)) Df 

*32 03. sg = AR(A=R) Df 

*32 04. gs = a£(A = A) Df 

*321. h ! ay . 3 . a = £(*%) [*213 . (*32 01)] 

*32101. I-: fiRx •=.£=$ (xRy) [*213 . (*32 02)] 

*3211. h .^(xRyy^fry [*321. *30 3] 

16—2 
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*32111. h.f/(xRy)=R‘x [*32101 . *303] 

*3212. I-.E lit*;/ [*3211. *1421] 

*32121. KE!tf‘x [*32111 .*14-21] 

“E! R*y" must not be confounded with " g ! Rty." The former means 

that there is such a class as R*y, which, as we have just seen, is always true; 

the latter means that R'y is not null, which is only true if y is a term to 

which some other term has the relation R. Note that, by *14 21, both 3 ! R‘y 

and ~3 ! R‘y imply E ! R‘y. The contradictory of 3 ! R‘y is not ~g ! R‘y, 

but ~j[/*‘y] • H ! R*y\. This last would not imply E! R‘y, but for the fact 

that. E! R*y is always true. 

*32 13. h . 7?y - x (xRy) [*32T 1. *20 59] 

*32131. \-.R‘x=f)(xRy) [*32111 .*2059] 

*32 132. h : alty . = . a = R‘y . = . a = x(xi?y) [*32 1*13 . *20 57] 

*32133. 110Rx. = .0-R‘x. = .0 =1)(xRy) [*32101131.*2057] 

The use of *20*57 will in general be tacit. It happens constantly that we 

have propositions such as *32*13, in which a descriptive expression is shown 

to be identical with a class. In such cases, whenever the properties of the 

class are asserted of the descriptive expression, *20*57 is relevant. 

*3214. b:li=~S. = .R = S 

Dem. 

K *21*43. 

[*321] = 

[*112] 
[*2025] = 

[*20*15] = 

[*11*2] 

[*21-43] = 

*32 15. h : 7F=*S. = .R = S 

- w w 

. aRy . =*iV. aSy :. 

. a = £ (xRy). =«.v . a = $ (xSy):. 

. (y):. a = 5(xRy). =. . a = 5 (xSy) 

. (y): £ (xRy) = 5 (xSy) :. 

.(y):-(z):xRy. = .xSy:. 

. (x, y): xRy. = . xSy:. 

.7? = 5::Dh.Prop 

*32*15. : R = S . = . R = S [Similar proof] 

*32*16. h :~R=~S.= .<R = S.= .R = S [*32*1415] 

*32 18. I-: x e R‘y. = . xRy [*32*13. *20 33] 

*32 181. h : y e iF‘x. = . xRy • [*32*131. *20 33] 

*32*182. h : xeR‘y. = . y €%x [*3218181] 
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The transformation from “xRy" to "xeR‘y" is one commonly effected in 

language. E.g. suppose " xRy » is - a- loves y," then - a eR'y" is " a is a lover 

*32 19. I-: R C S. 3 . ~R‘y C~S-y .*R‘xCS‘x 

Dem. 

h . *3218 . D f- Hp. D : 

O22'1] 3:~R‘yC&y 

1-. *32181.31-:. Hp. 3 : y e*R‘x. 3„ . y e*S‘x : 

C*22'1] 3 : R‘.r CS'x 

h . (1). (2) . 3 H . Prop 

h:4sgii. = .^ = « [*21-3 . (*32-03)] 

A=R [*21-3. (*3204)] 

[*32-2. *30 3] 

[*32 201 . *30-3] 

032-21 .*14-21] 

032-211 .*14-21] 

0-32-21 .*21-2-57] 

032211 .*21-2-57] 

*322. 

*32 201. I-: A gs R . = . 

*32 21. h.7t~sg‘R 

*32 211. H.*=.gs<7J 

*32-22. 1-. E ! sg‘R 

*32 221. h.Elgs'B 

*32 23. h.sg‘iJ = « 

*32 231. I-. gs‘/i = 

*32 24. h.sg‘/e = gs‘it 

Dem. 

t- • *32-23 . (*32 01). 3 1-. sg-R = &9 (« = £(xRy)j . 

[*21-33] 3K'« <sg‘R) y. = .a = $ (xRy). 
03111. *2015] 

O32101] 

032-211] 

h • 0) • *1111. *21-43.31-. Prop 

*32 241. KgsOUsg‘.ft [Similar proof] 

*32 26. h:^sgi7. = .^ = sg«ii [*30 4. *3222] 

*32 261. I-: A gs R. = . A = gs‘R 030 4 . *32 221] 

*32-3. 1-. (sg-(fl ft S)}‘y =t~R‘y n~S‘y 

Note that we do not have 

Bg‘(R *S)= sg*R A sg‘S. 

a = 5 (yRx). 

aRx. 

a (gs‘R) x 

(1) 

(2) 

(1) 
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Vein. 

*• • *32*23 13 . D h . {sg‘(72 n S))‘y = .< [x(R n S)y) 

= x(xRy .xSy) 

= xlxRy) r> £ (xSy) 

- IVy r\ S‘y . D h . Prop 

[*23-33] 

[*22*39] 

[*3213] 

*32 31. I- . (gs‘(RnS)\*j:= *R'x n S'* 

*32 32. b . (sg‘(7* u S)\*y = R*y u 

*32 33. h . |gs‘< R sj S)\‘x = tF‘.c u 

*32 34. h • !sg*( — R)\*y m ~~ ~IVy 

*32 35. b . jgs‘( R)[ ‘.c = - Wx 

The proofs of the above propositions are similar to that of *32 3. 

*32 4. b E! R't. m : g ! JVi z x, y c /?*. DAV. x - y [*30 21 . *3218] 

*32 41. H E! £‘y . D : 7?y = S*y . = . R‘y «= S‘y 

Dem. 

b . *486 . Dh: xSy. =x . x ■ 6: D 

. =x. .rSy : = : .r7?y ,=z.x = b (1) 

h . (1). *5*32. D h j-5y .=x.x = b: xRy. =x. *Sy s = : 

xSy .=x.x = b: xRy .=x.x = b (2) 
b. (2). *10 11-281 .*3218181 .D 

f-(a*>) : xSy .sx,x — b: R*y = £‘y: = 

[*30 3.* 14-13] = 

[*14101] = 

b . (3). *30-2 . D b E ! S‘y. 7?y = S*y. = . 7*‘y - S‘yD H . Prop 

*32 42. b 7*‘y = S‘y. D : E ! Rfy. = . E! S‘y [*30 34. *32 18] 

(nb):xSy.=z.x = b:xRy.z=x.x = bi 

(3b): xSy .3x. x - 6: 7?‘y = 6 : 

7<‘y = S‘y (3) 



*33. DOMAINS, CONVERSE DOMAINS. AND FIELDS 

OF RELATIONS 

Summary of* 33. 

If R is any relation, the domain of R, which we denote by D‘R is the 

tmat a‘7 7'"7 hT° thf relati°n R l° ,0mctl,inS " “‘her; the converse 

ZZZ ». ’ ‘ ‘he/I,nfS °f terms to which something or other has the 
elation R, and the field, C*R, is the sum of the domain and the converse 

irZ'.) ( 6 ‘hat thC fie'd U °nly 8i«nific““t when It is a homogeneous 

The above notations D‘/?. (J-R. C‘R are derivative from the notations 

field rnsl0r( ? rel"t,,0ns- to a rel“tion. of 'ts domain, converse domain, and 
neld respectively. We are to have 

D‘J*-$((ay).*%) 

Q‘It = f) j(g;r) . xRyJ 

v , „ * {(3y) : *% . v.y/J.c); 
hence we define D, (I, C as follows: 

*33 01. D « a}{ [a =. 2 {(gy). xRyj] Df 

*33 02. <1 - [£■ p {(gar) . *Ky|] Df 

*33 03. C = yR [y « 5 {(gy) . xRy # v # j Df 

The letter C is chosen as the initial of the word M campus ” We reouire 

the" fiefdeoSnitThn' Ttely °f ‘hYClati°n °f * tC R whe" - is “ member of 
he held of R. Hm relation, which we will call F, is defined as follows: 

*33 04. F=$R ((gy) : a:Ry . v . yRx] Df 

We Shal1 find that <>-?. D will be the relation of a relation to its domain, 

Z th? C'aSSnZ( r!'Y°nS having “ f°r their domain' Similar remarks 

wdt/series. d & The ^ °f * relat,on ,s 8Pec'ally important in connection 

The propositions of this number are constantly used throughout the 

remainder of the work. The ideas of the domain, converse domaZand fieW 

kindZconakte' 'iT S°me'!hat different uses for Nations of different 

function X f ^ T^'°n ^ ^ rise a descriptive 
anvthZ hf - Y r. reqU‘re that R‘V 8hould exist whenever there is 

than^one term"! Yi?41011, * *° * that there should nevcr be more 

tatuea of ‘foTwhV1hgp relati°n * *° a giVeD tCrm ^ In “>is ^e 
.• “ a*R J7 fl y ei;StS Wdl constitute ‘he ■■ converse domain » of R, 
I.e. a R. and the values which R‘y assumes for various values of y will 
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constitute the “domain” of J{, i.e. D‘7?. Thus the converse domain is the 

class of possible arguments for the descriptive function R‘y, and the domain 

is the class ot all values of the function. Thus, for example, if R is the relation 

ot the square of an integer// to //, then R*y = the square of y, provided y is an 

integer. In this case, <P7f is the class of iutegers, and D‘R is the class of 

perfect squares. Or again, suppose R is the relation of wife to husband; then 

R‘y= the wife of //, < I‘if = married men, T)‘R - married women. In such 

cases, theyield usually has little importance; and if the values of the function 

R‘y are not of the same type as its arguments, i.e. if the relation R is not 

homogeneous, the field is meaningless. Thus, for example, if R is a homo¬ 

geneous relation. R and R are not homogeneous.and therefore "Clli" and "ClR" 

are meaningless. 

Let us next Mip|>«>se that R is the sort of relation that generates a series, 

say the relation of less to greater among integers. Then D‘/? —all integers 

that are less than some other integer — all integers, — all integers that 

are greater than some other integer = all integers except 0. In this case, 

C‘R = all integers that are either greater or less than some other integer 

= all integers. Generally, if R generates a series. Y)*R = all members of the 

series except the last (if any), U‘/J - all members of the series except the first 

(if any), and C*R — all members of the series. In this case, “xFR" expresses 

the fact that .r is a member of the series. Thus when R generates a series, 

C‘R becomes important, and the relation F is likely to be useful. 

We shall have occasion to deal with many relations having some of the 

properties of series, and with many propositions which, though only important 

in connection with serial relations, hold much more generally. In such cases, 

the field of a relation is likely to be important. Thus in the section on 

Induction (Part II, Section E), where we are preparing the way for the con¬ 

struction of serial relations by means of a certain kind of non-serial relation, 

and throughout relation-arithmetic (Part IV), the fields of relations will occur 

constantly. Hut in the earlier parts of the work, it is chiefly domains and 

converse domains that occur. 

Among the more important properties of domains, converse domains and 

fields, which are proved in the present number, are the following. 

We have always E ! D'R, E ! (l‘R, E! C‘R (*33 12121 122). (The last of 

these, however, is only significant when R is homogeneous.) 

*3313. h : a- e D‘R . = . (gy) . xRy 

*33131. h : y c G‘7? . = . (gx). xRy 

*33 132. h xeC'R . = : (gy): xRy. v . yRx 

*33 14. h :xRy. D .arc D‘R .yed'R 

*3316. H . C‘R = D<R u d'R 
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*33 2-2122. The converse domain of a relation is the domain of its converse, 

the domain of a relation is the converse domain of its converse, and the field 

of a relation is the field of its converse. 

*3324. H:a!D‘i?. = .a!a‘ii. = .a!C‘iJ. = .a!iZ 

*33 4. KD‘7? = .?|a!«‘,rl 

with corresponding propositions (*33-4142) for <1‘R and OR. 

*3343. \-iR.\R‘y .ytWR. R‘,jeT>‘R 

*33-431. h : (y) . E ! R‘y . D . <£) . 0 C d‘R 

*33-5. KC-J? 

*33 51. h:*( C‘R . m . xFR 

The proofs of propositions concerning a and C are usually similar to those 
for D, and are therefore often omitted. 

*33 01. D - a.£ [a £ {(gy). xlfy)] Df 

*33 02. d - fik \fi - $ ((gx). xRy)] Df 

*33 03. C « yft [y = £ {(gy) : XRy . v . yitr)] Df 

*33 04. F~*ft Kgy) : xRy. v.yRx] Df 

*331. h s aDR .3.0 «= £ ((gy). XRVJ [*213 . (*33 01)] 

*33101. h:/3d.R. = ./3 = £ {(g*) . *%) 

*33102. h : yCR . = . y = £ ((gy) : xRy . V . yRX) 

*33103. h XFR . s : (gy) : xRy . v . yRx 

*3311. h . D*R => £ {(gy) . xRy] [*331 . *30 3 . *20 59] 

*33111. h. a<R = $ ((gar).xRy] 

*33112. h . C*R = 5 ((gy) : XRy . v . yifcr} 

*3312. KE!D‘/e [*3311 . *1421] 

*33121. h.E!d‘.ft 

*33122. h.E! C‘R 

*33123. h s oD« . = . a = D*R [*30*4 . *3312] 

*33124. h :0(IR. = .0 = (I‘R [*304 . *33121] 

*33126. h :yCR. = .y = C‘R [*30 4 . *32123] 

*3313. h : * e D‘.ft . = . (gy) . xRy [*3311 . *20*3*57] 

*33131. h : y e d‘R . = . (gx) . xRy 

*33132. h x c C‘R , = : (gy) : xRy. v . yRx 

*3314. h : xRy . D .xeD‘i* .y ed‘i2 

Bern. 

V . *10*24 . D h Hp . D : (gy) . xRy : (gx) . xRy : 

[*3313131] D : x e D‘ii . y « d‘2£ D 1-. Prop 
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*3315. I- ,R‘yCD*R 

Dem. 

K . *3218 .Dhif R*y. D, . xRy . 

[*10 24] ^x.(3y).x%. 

J*33-13] Ox.xe 1)*R :Dh. Prop 

*33151. h./K*C(Rft 

*33 152. b .~R,xyj4R‘x C C*R 

*3316. b.C'R-D'RsjQ'R 

Dem. 

b . *33*132. *10 42. D 

h s.xtC'R . 3 s <a«/). . v . (gy) . yfl.c ; 

[*33'13‘131] = :xf D'R .v.xtCL'R: 

[*22 34] (1) 

H. (1). *1011. *20-43. DK Prop 

*33161. y.D‘RCC'lt.Q‘RCC‘H [*33 16.*2258] 

*3317. V :.r/fy. D .x.j/eC'R [*3314161] 

*3318. y-.V,R = (\‘R.1.\>,R = ClR 

Dem. 

b . *22-56. D b : D‘R = (I‘R. D . D‘7? - DfR v d‘R 

=C‘R:Db. Prop 

*33 181. h : d‘/? C D*R . = . - C*R 

Dem. 

b . *2262 .Db: d*R C D‘7?. = . D‘R = D‘R v CI‘72 

[*3316] = C‘R : D b. Prop 

*33 182. b : D'R CG‘R. = . G‘R = C*R [Similar proof] 

If /i is the sort of relation which generates a series, so that "xRy" may 

be read "x precedes ythen G*R C D‘R is the condition that the series may 

have no last term, since it states that ever}' term which follows some term 

precedes some other term, and is therefore not the last of the series. 

*33 2. KCKA-D'A 

Dem. 

b .*3111 .*1011 .Db zxRy.=x.yRj>: 

[*10 281] D I-: (gx). xRy . = . (gx). yRx : 

[*3313131] D b: y € Oi‘R. s. y « D‘J* 

h . (1) . *1011 . *20 43 . D b . Prop 

*33 21. I-. D'R = d'R [Similar proof] 

(1) 
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*3322. 

Dem. 

*3324. 

Dem. 

V . C'R = C'R 

H . *3316 2-21 . D h . C‘R = Cl'R u D*R 

[*3316] = C'R . D h . Prop 

h : a ! D‘R . s . 3 ! . = . 3 ! C'R . = . 3 ! R 

K *33-13. D H s. 3 ! D'R . = 

[*25*5.(*11-03)] = 

h • *33*131. D h 3 ! Q'R. = 

[*11*2] 

[*2.V5] ~ 

*" • *33*132 . D H :: 3 ! C'R . s 

[*11-7] = 

[*255] = 

^ • (1) • (2) • (3). D h . Prop 

*33 241. h : D'R = A . = . (I'T* =» A . s .C'R 

[*33 24 . Transp . *24 51 . *25 51] 

f-. D‘(i2 A S) C D‘R r\ D'S 

(S '*) : <3^) • xRy : 

•k'-R 

(ay)--(a x).xRy: 

(ar» y) • xRy •• 
a! r 

• (a*) - (ay) •• *Ry • v. yRx 

• (a*. y) • xRy •• 
• &IR 

A . = . R = A 

*3325. 

Dem 

* :(ay)-*(# AS)y : 

= : (ay) • *-Ry • *Sy: 

D : (ay) • xRtj : (ay) . a:Sy : 

D : a: € D‘/2 . a: c D'S : 

D :a:c D*R D'S 

*33251. 

*33252. 

*3326. 

Dem. 

*33261. 

*33262. 

>».*38*18.31-:.««D \R*S) 

[*21*33.*10*281] 

[*105] 

[*3313] 

[*21-33] 

H. (1). *1011. Dh. Prop 

Ka‘(Kn5)Ca‘fina‘S [Similar proof] 

H . C‘(i2 AS) C C”7e o C‘S [Similar proof] 

h.D<(/ZctS)-D<K uD‘S 

H - *3313 . D h x c D\R c; S) . = : (ay) ,x(RvS)y: 

[*23 34.*10'281] = ; (ay) : a:i?y . v . xSy : 

[*10*42] = ; (gy). xRy . v . (gy) a lS 

[*3313] = saifD'fl.v.ifD'S: 

[*22*34] = : a: c D'R *j D'S 

h • (1) • *1011 . *20 43 .Dh. Prop 

Ka‘(i*uS) = a‘/2v(l‘S [Similar proof] 

1-. C'(R oS)= C'R yj C'S [*33 26 261 16] 
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*33-263. h : R G S. 3. D‘7? C D'S 

Dem. 

*■ • *231.0 t-Hp. D : ,r%. D,-y. xty: 

[*10-28-27] 3:(*>: <3i/) . xKy. . (3y) . xty: 

[*3313] D : (x): x e D'Tf . D . x e D'S: 

[*231] D : l)‘J{ C D'SD h . Prop 

*33 264. I- : if C S. D. d‘H C U'S [Similar proof] 

*33 265. H : It G.'S. D. C"JtCC'S [•33-263 20416. *22 72] 

*33 27. KC‘7f=D‘(fiort) 

Dem. 

H . *33*16*2 . D KC.A-D'AvD'if 

[*33*26] j?).DKProp 

*33271. h.PA_a<(/Z KjJi) [Similar proof] 

*33272. KD‘(/ic/rt). a*(/e c/ if) = C‘(/? o 7?) = C‘R [*33-27-271 16] 

*33 28. KD't-d'V-C'V-V 
Dem. 

K*10 25.*25 104. D h :.(x):(gy).xVy:.(x): (3y).yV^:. 
[*3313131] D h s. (or) . x e D'V s (.r) . x e a*v:. 
[*2414] D h : D‘V = V . Q'V s» V (1) 
[*3316] D h . C*V - VuV 

[*22*56] -V (2) 
H.(1).(2).DH . Prop 

*3329. 1-. D‘A = Q‘A = C'A = A [*33-241. *21-2] 

*333. h.aCD^.i : x e a . Z>x . g ! if‘a- 

Dem. 

K *32181. Db:.x, f a. Dx. g ! R*x : = :xea.Dx. (gy). xify : 
[*33 13] = : x e a. Dx . x > f D*R :. D H. Prop 

*3331. h./?ca^.= :ye/9. Dy. g ! R*y [Proof as in *33 3] 

The three following propositions are used in the theory of selections (*80, 

#83 and *85). The second of them is also used in the theory of greater and 

less (*117) and in the theory of transitive relations (*201). 

*33 32. h : D*R n D‘S = A . D . R n S - A 

The converse of this proposition is not true. 

Dem. 

D f-: x (R r» S) y .0 . xRy. xSy. 

D.*«D'AaD‘£. 
1-. *23-33. 

[*33*14.*2233] 
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[*10'24J 3 . a ! D‘if r\ D‘8 
t-. (1). Transp. D I-: D‘J? n D‘S = A.O.~{x{Rf\ S) «,) 

H. (2). *11-11-3. D hr IV R „ D ‘S = A . D . y) . ~ |.E (R*S)y). 

l*25'loJ D.flr,,S=A:DP.Prop 

*33 33. P : Q'R n Cl'S = A . D . R A S = A [Proof as in *33-32] 

*33 34. V iC'Rn C‘S = A.3.flAS= A 

Dem. 

H . *33161 .*22-49 . D I-. D‘7? n D‘S CC'Rn C‘S. 

[*2413] D I-: C‘R n C'S = A . 3 . D‘R „ D'S = A . 

[*33'32} 3.iiAS — A:3h. Prop 

*33 35. H:.D*iJC«.= :a-Ry.3I,#.ire« 

Dem. 

K*33l3.DP:.D'.RC«.B:(ay).**y.D,.*ea! 

[*10-23] = .xfty . 3A1(.**a:. D P . prop 

*33 351. P d'rt C a . = : xRy . D,.„. y e a [proof as in *33 35] 

*33 352. P C'ii Ci.s: xRy .Ox„.x,yta 

Dem. 
^ . *33 16 . *22*59 . D 

h C‘7* C a . = : D*R C a . (We C a : 

[*33 35 351] = : xRy . Dx, „ . * e a : xRy . D,.*. y e a : 

[*11-391] = : ar/ty . Dr>.*, y«a:.DK Prop 

The two following propositions (*33-4-41) are very frequently used. 

*334. P.D‘fi = 2[a!flVx) 

Dem. 
I-. *3313 . D 1-: are D‘R . = . (gy) . xRy . 

[*32181] = . (gy). y c ST'ar. 

[*24'5] = . g ! 5f‘ar 

h . (1) . *1011 . *20 33 . D h . Prop 

*33 41. h . G'iJ = P (g ! R‘y) [Similar proof] 

*33 42. h . C*R = £ fg ! (R*x v*R‘x)} 

Dem. 

203 

0) 
(2) 

(1) 

1-. *33-4-41-16.D P . C‘R = £ (a ! R‘x) „ 2 (a . %x] 

[*22-391] = a (a ! R“x • v . a ! S‘*J 

[*24-56.*2015] = * {g * (S'* « S'*)) .DP. Prop 
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*3343. hzEiR'y.O.yedW.R'yeD'R 

Dem. 

V . *30*32 . D f-: E ! Rly. D . (R‘>/) Ry. 

[*3314] ^.yed'R.R'yt D‘R :Dh. Prop 

*33 431. h : (y). E ! . D . (£). £ C Cl'R 

Dem. 

H . *33*43 . D h :. Hp. D : y e d‘R . 

[Simp] D: i/€/3.D.ye(3‘.K (1) 

K (1). *10*11*21 .Dh: Hp. D . /9 C Q‘72 (2) 

K(2).*10 11*21.3 h . Prop 

*33 432. h :(//). E ! R*y. D . (I‘/J = V 

Dem. 
h . *33*43 . *10*11 27 . D h : Hp. D .(y).yc d‘R. 

[*2414] D.d‘R = VrDKProp 

*33 44. h : E ! R*.c. D .xeD'R. tf'* « Cl4/? 

Dem. 
w 

h . *33 43 ^ . D h : Hp. D . * cd'tf . 7*‘.r e D‘7? . 

[*33*2*21] D ,xcD*R . R‘xed*R : D K Prop 

*33 45. h y € (Pif u d*8. . R'y - S‘y: D . 7* = 5 

Note that by our conventions ns to denoting expressions, the scope of 

both R‘y and S*y in the above is " R*y ■■ S‘y” and R*y is to be first 

eliminated. 

Dem. 

h . *30*11 . D b :: R*y = S‘y. = :. (gb): xity. =,. x = b : b = 5‘y :. 

[*3011 ] = :. (g b):. x/ty .=x.x = b:. (gc): xSy .=x.x = c:b = c:' 

[*13*195] = :. (g b) : xRy .=x.x = b: xSy. =,. x = b :. 

[*10*322] D:.xRy.=x.xSy (1) 

H.(l).Dhss Hp. Dz.y€d‘Rvd‘S.D:xRy. = .xSy:. 

[*5*32] D :. y e d‘R w G‘S. ar/ty. = . y c G*i? u G‘5. xSy:. 

[*33*14.*4*7l] 0:.xRy. = .xSy (2) 

I- . (2). *11*11*3 . D f-:. Hp .D:(x,y): xRy .= . : 

[*21*43] D :/£ = &:. Dh . Prop 

*33 46. h:.arCD^vD‘5.Dx. J*‘a; = 5‘a:: I> . i* = 5 [Proof as in *33*45] 

*33 47. Vi.yeQSR v d‘S .5y. R‘y = S‘y iD. R~S 

Dem. 

h . *33*41 . Transp . D h : y~e d*R w 0*5. D. R*y = A . S*y = A (1) 
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*33-48. 

*335. 

Dem. 

h • ■ *13172 . *483 . D h : Hp . D . („) . R‘y =~S‘y. 

t*30'41J 3.^=5*. 

t*3214J 3.;i=S:DKPro|, 

H a: e'D'R u D'S. 3* . %x =S‘x : 3 . fl = S [Proof ns in *3347] 

t-.C=~F 

(1) 

l-.*321.Dh:.<jffi. = .a = a(a;jpij) 

[*33103] = ® ((ay) : xRy . v . yRxJ . 
[*33102] s.aCR 

h . <1) . *11-11 . *21 '43.3h. Prop 

*33 51. I- !*« C‘R . s . xFR [*33132 103] 

cenfjftrlT1fUl °.rdinarl arifmetic- "ll0le we »ro concerned with a scries 

of thTs stts a tk T ’ “ " XFP " eXPreSS0S the fact «>.t a is a member 
Part TV K ! °,Ve *T ProP°sltions (*33-5 51) will be much used in 

of ordinal 

*33 6. h ; R € E>‘a . = . a « jy# 

Dem. 

I-. *32181. 3b:.ReD‘«. = .aD.R. 

[*33123] = . or - D'R : D I-. prop 



*34. THE RELATIVE PRODUCT OF TWO RELATIONS 

Summary of# 34. 

The relative product of two relations R and S is the relation which holds 

between x and z when there is an intermediate terra y such that x has the 

relation li to y and y has the relation S to *. Thus e.g. the relative product 

of brother and father is paternal uncle; the relative product of father and 

father is paternal grandfather; and so on. The relative product of R and S 

is denoted by “ 7*1 the definition is: 

*34 01. 7* | £ - Zz j(gy). xRy. ySz] Df 

This definition is only significant when Q‘7? and D‘S belong to the same 

type. 

The relative product of R and R is called the square of R; we put 

*34 02. 7*** = PjP Df 

*34 03. R’-R'\R Df 

The most useful propositions in the present number are the following: 

*34 2. h.Cnv‘(72j6*)-N|72 

I.e. the converse of a relative product is obtained by turning each factor 

into its converse and reversing the order of the factors. 

*34 21. h . (/>, Q) j 72 = 7^|(Q| 70 

I.e. the relative product obeys the associative law. 

*3425. KP|((2c/P) = (P|Q)c/(P|P) 

*3426. K(7JuQ)|P = (P|P)u(Q|P) 

I.e. the relative product obeys the distributive law with respect to the 

logical addition of relations. (For logical multiplication instead of logical 

addition, we only get inclusion instead of identity; cf. *34-23-24.) 

*3434. \-zRGP.S(iQ.O.R\SGP\Q 

*34 36. h . D‘(P | Q) C D‘P. d‘(P j Q)Cd‘Q 

*34 41. I-: E! P'Q'z. D . P‘Q‘r = (P | Q)‘z 

*3401. R\S=tt\(ny)-xRy-ySz) Df 

*3402. R1 = R\R Df 

*34 03. 7*» = PS|P Df 

*341. V z x (R | S)z. =. (gy). xRy. ySz [*21*3 . (*34 01)] 



SECTION D] THE RELATIVE PRODUCT OF TWO RELATIONS 

*34 11. h Z x ( R | S) 2 . = . g ! (R*j; n ~s*2) 

Dem. 

K#;U’l .*3218181. D 

l-:.r(«| S)z. = .(%>/). ye%ur.yt's‘z. 

[*22 33] = . (3^). ,j e *Rix n Jf j _ 

[*2+ 5] = . a ! (R‘.r r, ~S‘z) : 3 I- . prop 

*3412. h • (a [*2133 . *3411] 

*34-2. t-.Cnv‘(R|S)_S|^ 

Dem. 

K *31 131.3 H : * (Cnv‘(fi |fi)J * . = . , (R | S) x. 

*341 s-(a >j)-iR'j.i/Sx. 

[*31'11] s.(ay).y^.x5y. 

[*341J s.*(S|ie)x (1 
l-.(l).*1111.*21-43. 3K Prop ' 

*34 202. h./e|S = <Cov«/e)|S 
Dem. 

H . *31 131.3 I- ix(Cnv‘£)y . ySz . = . y/fcr . yS, . 

[*31H] s ■ xliy . ySz (1) 

t’/on’*!? 11 Ml •*34’1 • 3 >-:« l(Cnv‘/e) | S) ,. s.x(JR|S,)« (2) 
h- (2). *11-11. *21 48.3 h. Prop 

*34 203. h . R13 - R | (Cnv‘3) [Similar proof] 

*34-21. f-.(P|Q)|fl./>|((2|iJ) 

Dem. 

IX”-*10'281 •3 h (a*) = (ay) • *?». yQz, ,/e, 
•(ay)” xPy: (a*) . yQz. zRi 
(ay)-*Py-y(Q\R)w (l 

[*11-6] 

[*341 .*10-281] 

■ (1) . *1111 . *341 . *21-43.31-. Prop 

*34-22. P|Q|fl-(P|Q)|K Df 

This definition serves merely for the avoidance of brackets. 

*34-23. l-.P|(QA/e)G(P|Q) A(P|jj) 
Dem. 

** * *341 . D 

rj^JJ1 (Q * y ■ s = (a*) • mP, ■ z (Q * R) y: 

r*10-6?] = = (3 D.xPz.zQy.zRy. 
L D : (3^) • *Ps - zQy : (gz). xPz. zRy 

R ScW I 

257 

17 
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[*341] D:x(P Q)y.x(P R)y: 

[*23-33] Q)*(P,R)\y (1) 

h . (1). *11-11.31-. Prop 

The converse of the above is not true. 

*34 24. K (/'*<?, R C,P R) r\(Q R) [Similar proof] 

*34 25. V.P (QvR)m(p Q)v(P R) 

Dem. 

h .*23 84.*10-281 . D 

h (gz). xPz . i (Q u R)y. = ; (gz): xPz :zQy.v. zRy : 

[*4'4.*1()'2M J = : <g.-): xpz . zQ,j . v . xPz . zRy : 

[*10-42] = : (g,). xPi . zQ,j : v : (gr). xPz. zRy : 

[*3+ l ] s : *<P, Q) y. v '.x(P \R)y: 

[*23'34] mixlP[Q»P\R)y (1) 

K(l).*1111 .*341.31-. Prop 

*3426. I-.(P<j(J) /f-(y>,/f)o(0 R) [Similar proof] 

The above two forms of the distributive law, and the associative law 

(*34 21), are the only one* of the usual formal laws that hold for $he relative 

product. The commutative law, in particular, does not hold in general. 

*34 27. h: R=R.0.R P-K\P 

Dem. 

h • *21 -43 . D h Hp . D : (x. y): xRy. = . xRy : 

[*11401 ] D : (x, y): xRy. yPz. =,. xR'y. yPz: 

[*10 281] D : (.r): (gy). xRy. yPz. =,. (gy). xR'y. yPz: 

[*2115] D : R\ P = R' | PD h . Prop 

*34 28. bzR-K.O.P R = P\K [Similar proof] 

*3429. \-:R=R'.0.P R\Q = P\R' Q 

Dem. 

h . *34 27 . D h : Hp. D . R | Q = R' | Q. 

[*34 28] D.PiR\Q = PR,\Q:D\-. Prop 

In proving the equality of two relations, say R and S, we usually establish 

first an asserted proposition of the form 

xRy. = . xSy 

or Hp . D : xRy . = . xSy. 

We then proceed by *1111 (together with *113 in the second case) to 

(x, y) : xRy. = . xSy or Hp . D : (x, y): xRy. = . xSy, 

whence the result follows by *2143. We shall in future omit these steps, 

and write " D h . Prop ” after we have established 

xRy. = . xSy or Hp. D : xRy . = . xSy. 

A similar ellipsis will be made in proving the equality of classes. 
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*34 3. t-:a!(^jQ)- = -a!(a‘/3r.D‘0) 

Dem. 

I-. *25*5 . D 

»■:: 3 HP\Q).ms. (g.r.,,). (]> Q) y 

(3^..V):(3 
[*34*1] 

[*11*27] 

[*11*24] 

[*11*27] 

[*11*54] 

[*33*13*131] 

[*22-33] 

[*24*5] 

(3 #‘» 'J> •) • • zQy 

O*' •**. y). A . 

• (3*)(3-i*. y). xPs . .Qy 

• (3*> :• (3*r) • *P* : <3y> • *Qy 

:-(3*):-*«a‘P.X£D‘Q:. 

i.(3«):.i«a‘Prt D«y 

• 3 ! (a*P n D'(J) ::Dh. Prop 

*34 301. I-: (I‘P oD‘Q = A.S.P,Q=A [*343 . Trans,,] 

*34302. h: C‘P n C<Q = A . 3 . P \ Q - \ . Q />_ A 

Dem. 

h . *3316 . D I-: Hp. D . CL‘P n D‘Q = A . CI'Qr, D‘P = A . 

[*34-301] D.P|Q = A.y P. A OK Prop 

*34 31. I-: a ! (.P | Q). D . g ! /'. 3 • y 

Dem. 

h . *34*3 . D K : Hp . D . g ! (d'P n 1)‘Q) . 

[*24*561] ^ • 3 ! d'P. g ! D‘Q . 

[*33*24] Prop 

*34-32. H:.P = A.v.Q = A:D.P|y,A [*34-31. Trnnsp . .26-51] 

*34 33. h :xe lVR.s .x(R\ R)x 

Dem. 

y . *33 13.3hi( D‘R. = . (3y). xRy. 

f*4'24} s.(ay).a-fly.*Py. 

[*31*11] s . (ay) . xR,j . yRx. 

[*3411 s .x(R | R)x: D H . Prop 

*3434. y--RCP.SCQ.O.R\SCP\Q 

Dem. 

y . *231 . D y Hp . D : xRy . 3,.„ . xPy , ySt. D„., . yQz , 

U3-471*10 1 41] 3 : xRy • 3 . xPy: ySx. D . yQ*, 
[*3 47] ^txRy.ySz.D.xPy.yQz m 

^ • (1) • *10*11*21*28 . D ) 

M4.n ^:.HP-D!(ay).*ny.yjaro.(ay).*Py.yQ#2 
[*34 1] 3 : X (R | 5) , . D . * (P | Q) , (2) 

• (2) • *11*11-3 .Dh. Prop ( ’ 

259 

17—2 
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*34 35. h : 3 ! /{. d‘i? C D4/*. D . g ! /J P 
Deni. 

I-.*33-24. Dt-tHp.D.gia'* 
4 . *22021 .31- : Up. 3 .(l‘R= (l‘Ii n D‘P 

K <1). (2). 3 I-: Hp. 3 . g ! (I 'll r> D ‘P. 

D. g ! 7f P: 31-. Prop 

*34 351 I- : 3 ! K. IV It C Q‘l>. 3 . 3 ■ P, It [Proof as in *34 35] 

*34 36. I-. 1)‘(P (D C D 'P. <J‘(P Q)C(VQ 

Item. 
y . *33 13 .Dh:.x,LV(p Q).0: (gr). x(P Q): 

l*34"'] 3:<g z, y). xPy. yQz: 

[*11 -3] 3 : (gy. z). xPy. yQz: 
l* 11 •■>.-..* 10-.»] 3 : (g ,j). j-Py: 

[*3313] D:««D‘P 
•Similarly l-:.i<CI‘(/’ Q).0:ze(l‘P 
H . (1). (2). *10-11.31-. Prop 

Tim following proposition is n lemma for *!)5'31. 

*34-361. I-: a ! It. D’H C (VP .(1‘ltC D’Q. 3. g ! P | R | Q 
Dem. 

I-. *34-35. D I-: lip. 3. g • /? Q 
I-. *34 36 . D I-: Hp. 3 . L)‘(/{ j Q) C (VP 

y .(1).(2).*34-351.3 h. Prop 

*34 37. y.fiP Q)CD‘Pv(VQ [*34-36.*33161 .*2272] 

*34-38. h.CH(P Q)CC,PuC,Q [*3437 . *33161 . *22 72] 

*34 4. y-.b = P-c .c = (fz. 3.6- (P | Qyt 

Dem. 
I-. *30-31. D h s Hp. 3. bPe. cQz. 

[•341] 3.fc(/J|Q>* 

I-. *30.31 .Oh:. Hp.0:yQz.0,.y = e: 

[F"ctl 3: *1‘<J • yQ~ ■ 0,.y ■ xPy .y-c. 
[*1313] 0ry. xpc 

I-. *30-31.0 h :. Hp. 3 : xPc. 0,. * = b 

-(2). (3).D h Hp. D zxPy . yQz. DXtV.x = bz 

[*10*23] D : (gy). xPy . yQz ,Dx,x = bz 

[*:**1] 3:*(P\Q)z.0x.x=b 
K(1).(4).*30*31 .DK Prop 

*34 41. h : E ! P*Q‘z. D . P‘Q‘Z = (p | Qyz 

Dem. 
K *30*52. D f-: Hp.D.(g6, c). 6-P‘c .c = Q‘z. 

[*30-51 .*34 4] 3 . (afe). b = P‘Q‘z. b = (P | Q)‘z. 
[*14145] 3 . P‘Q‘z = (P | Q)‘z ■ 3 |-. Prop 

(1) 
(2) 

(1) 
<2) 

(1) 

(2) 

(1) 

(2) 
(3) 

(4) 
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E ! 5|Q?res1nco7S iS ,0"ger ,n'e if W0 cha"g*-‘ ^ hypothwis into 
th , ' Q\*- Sm*e (P 1 Q) * exlst "hen does not. Suppose, e.o.. 

;athef Tht £*? °f thiW t0 fi‘thCT- P tho relanon of daughter to 

the child of V ! ?ra dr"ghter °f *• b,,t = ,hc 'laughter of 
while the si ^ hrSt/X,8tS whenever * h«* only one granddaughter. 
While the second requires further that r should have only one child. 

For the same reason we do not have 

L11. 6 = <-PIO)‘^3-(3c).6 = />'c.c = 0‘r. 

otherwise. P Qnte °n°'raan->’ relation8 (cf.*71), but not in general 

*34 42. !-:(«). R‘z = P'Q>Z ,^.R = P q 

Dem. 

*345. 

*3451. 

Dem. 

j-. *14-21 . 31-:. Hp. 3 : (*). E! R‘t: (*). E! P‘Q‘Z 

h • (1) • *34'41 ■ 3 h s. Hp . D : (*) . R‘z = ,p | nyz . 

[*3042.( 1)] D : R - P \ QD 1-. Prop 

I-: xR'y . = . (g*). xRz . zRy [*34. t . (*34 02)] 

I-: xR'y. = . (as, w) . xRz . zRw . xuRy 

y . *341 . (*34-03). D 

h xR‘y . = : (gw) . xRHu . wRy : 

[*34-5] = : (gw) : (gs) . xRz . zRw : wRy: 

[*11-55] = : (310, z) . xRz. zRw . wRy ■ 

[*112] = • (as, W) . xRz. zRw. wRy:. D h . prop 

I-. R’^R\If [*34-21] 

l-ialfl’.s.gl D‘R n a‘R [*34-3] 

.34 631. h : D‘R n(I'fi = A. = ,J(' = A [,3453 . Trausp] 

*34 64. I-: xRx. D . xR?x 

*3462. 

*34 63. 

Dem. 

*3466. 

*34 66. 

*346. 

h . *4 24 . 3 I-: xRx. D . xRx . xRx. 

[*10-24] 3 ■ (ay) ■ *Ry. yRx. 
[*34-5] 3 . xR,x. h Prop 

V R‘Q S. = : xRy . yRz. DIy, . xSz [*345 . *10 23] 

H . D‘R’ C D‘R. <I‘R> C a-R . C‘R> C C‘R [,34-36-38] 

I-.(.RnSy<ZR>r,S’ 
Dem. 

H . *34*5 - D b a: (R A S)*y . = 

[*23*33.*10-281] = 

[*4*3.*10*281] = 

(a*) - * (R A S) z . * (R * S) y 

(3*) . xRz . xSz . zRy . zSy : 

(3*). xRz. zRy. xSz. zSy : 

(1) 
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[*1 O'5] D : (gj). xRz . zRy z (gz) . xSz . zSy : 

[*34*5] D : rR*y. xS-y : 

[#2333] 0:.r(frnS'-)y (1) 

H.(1).*1M1 .Dh.Prop 

*34 62 .{RvS)--R-'v It SwS RvSs 

Deni. 

b . #34-26 .D\-.{RuS)■ =R (Rsj S) \jS (R v S) 

[*34-25] - R* sj R, S c; Sj R sv . D h . Prop 

The above proposition is a lemma for *100-51, as is also *3473, which 

employs the above proposition. 

*34-63. h . Cnv*(R1) - (Cnv-/?)* 

Dem. 

h .*31*131 . D 

b a- |Cnv*(/f»)| y. = : y/ttr: 

[*34*5] = :(gc).y/fj . zRxz 

[*31131 .*10-281] = : <g*). xRz. zRy : 

[*31-131.*34*5] = :x(Cnv-/0*y : D b . Prop 

*34 7. b . Cnv‘(S1$) = .S’ 5 

Dem. 

I-. *34-2 . D b . Cnv'(&1S) «= (Cn v'S) 15 

[*34-202] =S|5. Db. Prop 

Thus S\S is always a symmetrical relation, i.e. one which is equal to its 

converse. 

*34 701. b.Cnv'(S|S) = S|S [*342-203] 

*34 702. \-.C‘(S\S) = n*S 

Dem. 

b . *34-37 . D b. C‘(S tS) C D‘S w d'S 

[*33-21] CD'S (1) 

I-. *3313 .Dhxf D‘S. D . (g y). . 

[*31-11] 3. (g y).xSy.ySx. 

[*341] D.x(S\S)x. 

[*3317] D.xeC\S\S) (2) 

I-. (1). (2). *1011 . D b . Prop 

*34-703. b . C‘(S | S) = d'S [Similar proof] 
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(1) 

(2) 

(3) 
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*3473. b : C*P rs C'Q = A . D . (P u Q? = p* c Q-* 

Vein. 

. *34-302 . D h : Hp . D. P J C = A . Q | p = /\ . 

[*25 24] D . i>-' o = />-1, P | Q o Q PcQ! 

[*34'62] w = (-P ^ Q)=: D I-. Pro,, 

*348. = R.0.R = 1V=R R 
Vein. 

V . *34 28 . D h : P-P. D . p* = p r 

h . *34-33 . *3314 . D b : xRy. D . *<P pU. 

h • (1) • (2) . D I-7e = P . Z> : *Py . D . 

[*47!' *23'1 • 3 •*’•*-*• * c R. D: . D . ^, 

[*10 24.*34-5] 3:^0.«Ar. *%• 

K (4). *1171-3. 3t-:Hp.3.flC** ' * 
H.*3-27. 3t-:Hp.D.J?*e« an 
1-. (5). (6) . *23 41 . D I-: Hp. D . R = IV 
h.<l>.(7). D I-. Prop (7) 

The hypothesis^ of the above proposition is the hypothesis that R is 

ofTose iC“l' \R “ “1“ ud transitive G «)• These are the formal properties 

some respet be rC*“r<led " “P"*"* equity in 

*3481. i-:R = R.IVCR. = .R=R.ji, = J{ [*348.*471] 

The following propositions are lemmas for *34 85, which is used in *72 64. 

*3482. i--~R-R.R’<lR.3:X(D‘R.s.xRx 
Dem. 

*" • *3433 . Dhx< D*P . = .x(P | P)x 

K.*34-8. 3b:.Hp.D:a:(.R|£)ic. = .xflx 

*".(!). (2) . D I-. Prop 

*3483. I-:R=R.R‘QR.xRy.O.%x^R‘y 
Dem. 

h . *31-11 . D H Hp . D : yRx: 

P**] 3 : xRz . D . yRx . xRz . 
[*3455.Hp] D.yRz 
b . *3-2. D b Hp. D : yRz. d . xRy . yp^ # 

[*34*55. Hp] D.arPs 

I- - (1) * (2). D b :. Hp . D : xRz . = ,yp* : 

[*10-11*21 .*20*15.*32*111] D : P‘* = P‘y D f-. Prop 

(1) 

(2) 

(1) 

(2) 
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*34 84. \-:R=R . R’CR.yclVR. *R‘x = *R‘,j . xR,j 

jVein. 

H. *34*82. 3h:H| >.3.y% (1) 

h . *321 >si . *20 31.31-:. Hp. 3 : xRz . =,. yRt: 

O'01) 3: . = . yRy (2) 

H ■ < I). (2 >. 3 (-.Prop 

*34 841. I-: R = R . R G It. .r ( D‘/f . /f«x ^*R‘y. 3 . xity 

Dent. 

h • *:U 84 7^ • 3 I- S Hp. 3. vRx. 

[*3111.1 Ip) D . xRy: D H. Prop 

*34 85 huR-R. 77- G 7?. D : jr/ty. = . x € D‘7? ,%x- 

[*34*83841 .*33*14] 



*35. RELATIONS WITH LIMITED DOMAINS AND 

CONVERSE DOMAINS 

Summary of *35. 

In this section, we have to consider the relation derived from a given 

relation R by limiting either its domain or its converse domain to members 

of some assigned class. A relation R with its domain limited to members of 

a is written "o'] .ft”; with its converse domain limited to members ofit 

is written “ftf*#”; with both limitations, it is written " a *] R f 0" Thus 

e.y. "brother” and "sister” express the same relation (that of a common 

parentage), with the domain limited in the first case to males, in the second 

to females. "The relation of white employers to coloured employees” is a 

relation limited both as to its domain and as to its converse domain. We put 

*35 01. R^mxea.xRy) Df 

with similar definitions for ftf*a and a“\ R[ 

A particularly important case is the case in which the same limitation is 

imposed on the domain and on the converse domain, i.e. where we have a 

relation of the form "o'] R [ a.” In this case, the limitation to members of a 
may be more briefly stated as being imposed on the field. For this case, it is 

convenient to adopt as an alternative notation. This case will be 
considered in *36. 

It is convenient to consider in the present connection the relation between 

x and y which is constituted by x being a member of a and y being a member 

of/9. This relation will be denoted by "at/3.” Thus we put 

*3504. a| /3 = 2p0rca.y€£) Df 

The chief importance of relations with limited fields arises in the theory of 

senes. Given a series generated by a relation R, let a be a class consisting 

of part of this series. Then a is the field of the relation al ftf*a or HI a, and 

it is this relation which is the generating relation of the series of members of 

« in the same order which they have as parts of the original series. Thus parts 

of a series, considered not merely as classes but as series, are dealt with by 

means of serial relations with limited fields. 

ReJations with limited domains are not nearly so much used as relations 

with limited converse domains. Relations with limited converse domains play 

a great part in arithmetic, especially in establishing the formal laws. What 

is wanted in such cases is a one-one relation correlating two classes or two 

series, that is, we^want a relation such that not only does R‘y exist whenever 

V C(f but al18° R‘a exisfcs whenever xeD‘R. The kind of relation which is 
most frequently found to effect such a correlation is some such relation as D 
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«»i (i or C, or some other constant relation for which we always have E! R‘y, 

"itl* ',s converse domain so limited that, subject to the limitation, only one 

vahm of y gives any given value of R'y. Thus for example let X be a class of 

relations no two of which have the same domain; then D[*X will give a one- 

one correlation of these relations with their domains: if R, Se\, we shall have 

TVR=D‘S.D.R = S. 

We shall also have WR = (I)[\)‘R and D‘S = (D[\)‘S. Moreover the con- 

‘,omajn ot x *s ;u,d the domain of Df*X is the class of domains of 

members of X. I bus J>f*X gives a one-one correlation of X with the domains 

of members of X. It is chiefly in such ways that relations with limited converse 

domains are useful. 

I’oi purposes of reference, a great many propositions are given in the 

present number, but the propositions that will be used frequently are com¬ 

paratively few. Among these are the following: 

*35 21. Ka1/er^ = (a1/0r^ = a1(/?r/9) 

*3531. h.</fra)r£-/fr<«A£) 

*35354. H.(/f[*a) .S-It a*\S 

I.e. in a relative product it makes no difference whether we limit the 

converse domain of the first factor, or the domain of the second. 

*35 412. V.R\(&vff)=H\&KjR\ff 

*35452 hWRCft.D.Rfft-R 

*35 48. I-: (VP Q a . D . R) = P It 

*35 52. h . Cnv*(/t f* £) = ft1 R 

*35 61. KI)‘(a1/?) = anD‘/? 

*35 64. t-.(V(Rtft) = ft„(I<R 

*35 65. h: £ C Q*R. D. (V(R f ft) = ft 

I he hypothesis ft C (I*R is fulfilled in the great majority of cases in which 

we have occasion to use R f ft. 

*3566. \-:a‘RCft. = .R[ft=R 

*35 7. h :<f>\(R r /9)‘y(. a. .y e ft. <f> {R‘y) 

Ihis proposition is used very frequently, owing to the fact that limitation 

of the converse domain is chiefly applied to such relations as give rise to 

descriptive functions (e.g. D, a, C). 

*35-71. h.yeft.^.R'y^S'jr.l.Rtft-Stft 
This proposition is useful for a reason similar to that which makes *35'7 

useful. 

*35-82. Kat£ = a1Vr/9 

Owing to this proposition, the properties of a f ft can be deduced from the 

already proved properties of a*|i? f ft, by putting R=V. 
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The relation “a f 0" is what may be called an “analysable" relation, i.e. it 

holds between * and y when .re a and ye 0, i.e. when .r has a property inde¬ 

pendent ol y, and y has a property independent of .r. 

*3585. h:a!/3.D.D‘(a1-/3) = a 

*35-86. H:a!a.3.a*(at/3) = /3 

If either a or 0 is null, so is a f /J (*35-88). 

*3501. a *] R = 5$ (x e a . xRy) Df 

*3502. R T 0 = (xRy .ye 0) Df 

*3503. a 1 I* T @ = $5 (* e a:. a:72y . y e 0) Df 

*3504. 0 = j}$(x e a. ye 0) Df 

*3505. Df 

I he last definition serves merely for the avoidance of brackets. 

*351. H:*(a1./i)y.s.*«a.a:.Ky [*213. (*3501)] 

*35101. \-:x(Rf0)y. = .xR1/.y(ff 

*36102. >-:x(<i-\Rrff)y.^.xta.xRy ,yt/8 

*36103. h:*(at^)y.3.xea.y(/3 

*3511. h.«1«f/3-(a1^)A(iJf-j8) 
Dem. 

y. *35102. Dh:*(«1fi^)y.a.X( a. xRy.y(0. 

[*4 24] =.xea.xRy.xRy.yef3. 

[*35-1-101] — • * (a 1 R) y. x(R f /9) y. 

[*23'33J s . * ((a 1 R) A (R f /3)J y : D b . Prop 

*3612. h . (a ] R) A ($ f" ,8) = a 1 (R f\S)f 0 

Dem. 

h . *23-33 . D h : a {(a ] R) A {S |- 0)) y. = . x (a 1 R) y . x (S |" 0) y . 

[*35-1-101] 3 .xea.xRy .xSy .y e 0 . 

[*2333] = .x ea. x(R A S)y . y e 0. 

[*35'102] 3 . * |° 1 (R A S) r /9| y : Z> I-. Prop 

*3513. h.(a1JJ)A(/31S)_(art/9)1(fl,sS) 

Dem. 

J-.*23-33.Dh:«((a1«)A(/3-] S» y . = .x{a 1 R)y . x{0-\ S)y . 

[*35*1] = .xea.xRy . x e 0 . xSy . 

[*2233.*23-33] =.»<(«''ffl.*(SAS),. 

[*36‘1J = . * ((a «>3) 1 {R A S)} y: O h . Prop 

*36-14. h.(/if a) A(S[•£) = («nS)f(an0) [Similar proof to *3513] 
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*35-15. = 

Dew. 

H . *3511 . D 

K(_a1/frA(a"|.s'f-/3') = (o1 .ft) A(.K|-/9) A(a'1 S) A(S[-/9') 

[*3513-H] = |(a n o') ] (/f A S)| a |( ft a S) f (ft a ft')j 

[*:i V11J = !<a A „') 1 (ft A .S') r 03 A /?■)!. D H . Prop 

*3516. K(a1«)A.S--a1(«AS) = ifAa1S [Similar proof to *3513] 

*3517. I-. (ft r ft) A ft- (ft A ft)|-ft = ft A Sf ft [Similar proof to *3513] 

*3518. K(o] ftf- ft) Aft = a1<ft A,S)f ft=ft A a]ftfft 

.oK.oi l [Similar proof to *3515] 
*3521. K«1/fr-8-(«1fl,r/J-o1<«r/9> 1 

Dew. 

y. *35 102.31- :x(a1ft|-ft)j,.3.x«a.xfty.y*ft. 

[*3311 s.x«,-\R)y.yt0. 
[*;J5101] H.x|<a1ft)|-ft]y (1) 

K *35102. Dl-:x<a1ftf-ft),,. s.xta.xRy.yrft. 

[*35101] s.x«B.x(ftf-ft)y. 

t*351l =.x|a1(«r^))y (2) 
I" • (1) • (2). D h . Prop 

*35 22. K(a1/f> .$ = a1<K|S> 

Dew. 

H.*341 .DH:.x|(a-|ft) S| >J. = : (gr). x(a] ft)r. zSy: 

[*351] = :(g*) • a. rftz. zSy: 

[*10-35] =:xca:(g s).xRi.zSy. 

l*341J s:x(a.x(R\S)y: 

C*351) s : x (a 1 (ft 15)) y:. D h . Prop 

*35-23. I- ..9;(rtf ft) = (S| ft)[ft [Similar proof to *35 22] 

*3524. a1«,S=(a1/?)|S Df 

*35 25. ft|ftfft = (S|ft)rft Df 

*36-26. h . (a 1 /?) | (S’ r >9) = «1 («i ,S) [ >9 = [«1 («I -S)] r >9 = «1 I -SD r /3) 
- ((«1«)| S] T/S = «1 [«|(-ST 

= («1J£|S)[-/9-.a1<yi|Sr/9) Dew. 

K*341.Dh 
[*351101] 

[*10*35] 

[*34*1] 

[*35*102] 

^!(a1«)|(^r^)ly. = :(ar).x(a1/?)^.r(5r/9)y: 
= : (3*) •xea. xRz. zSy. y e 0 : 

=zxea.yc0: (g*). xRz. zSyz 

= : x e a. x (R \ S) y. y e 0 : 

>:*{«1(A|S)rijy (1) 
I-. (1). *35-21-22-23. (*35’24-25) .DK Prop 



SECTION P] 

*3527. 

*3531. 

Dem. 

LIMITED DOMAINS AND CONVERSE DOMAINS 

a1«|Sr^ = (a1«|S)f-iS Df 

K<.Rr<*)r£=flr(a«/9) 

2i)9 

rh • *35101 • 3 *- ■■ * u* r <») r -si v . = (R r .>* s. 

[*22-3311 
rL s..r%. years 8. 

*35 32 -.*|*r(-A»J,0(-.PWp 

*35 33 ' r V, iHnmR tI>r"0f l” tl>nt nr.35 3, , 
*35 33. H . 1 * r *) r 7 - |« 1 * r (* « *>1 l Proof nimihr to that, of .35 3. ] 

a-](/i -] /f f 7) - {(ar,/9)1 flf 7| [Proof similar to that of .35 311 
*3535. h .o') R = (a„ D*R)^\R J 

Deni. 

h.*351.3 h :®(a1«)y . = .xea.xR,,. 

* J!! l*™-*"*"** [Pmo/as in .35-35] 

^"1'Bf-0-(««D‘.R)1/if-(0rta‘.R) [Proof ns in .35*35] 
*35-354. h.(i?(‘a)!S = ie;«-|S J 

Dem. 

*341. *35101. D 

J- • * ((« r «) 15) * . s . (gy) . xRy .yea.ySz. 

f*85’1 J s • <ay) • • y (* 1 *. 

hf1r<*«*'>-*r*«*r*' [*35-101 ..2*L] 
*36 413. h . (a w a ) 1* f- (0 u #) _ (a R f „ (a 1 R f 

„ ^<«'1-« f £>o<« 1/i|-40 [.35 102..22-34] 

11L J * «1 <*•*>-<■ 1 *>•<■ 1«) [.35-1 . .23 .34] 
*35 42!. H.(fi0S)W = (RWo(SW [*35 101 . .2334] 

*36-422. I-. a 1 (Ji o S) fff - (a R m 0 (a S m [t35.W2 . „23.34 

*35 43. h.-aC/3.D.a-]iiG/3-Ift 
Dem. 

LS51' =>|-*-c/»• 3 : «(«1 J*)jt....... . 
[.2-1 3- 

*35-431 u.o,- -N a. ^ *«(^1/i)y D H . Plop 
*35 430 ■'8 'y':>--R,‘5Cflr-y [Proof similar to that of .3543] 
*36432.H:aCy.^CS.3.«1flr)9GTlijrs 

[Proof similar to that of *35 43] 
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*35-44. h.alPGP 

Dem. 
H . *35'1 . D b : .r(a ] R)y. D .xea . .r7?y. 

[*:{->7] D.-rfly.OKProp 

^35 441. b . R[0QR [Proof similar to that of *35 44] 

*35 442. h . a ] Rf* <Z 77 [Proof similar to that of *35 44] 

*35 451. b : IV It C a.D.*\/t = It 

Dem. 
h . *4 7 l.3h:.Hp.D:xf D‘Ji. = .xt D‘i?. xea: 

D : .»•« l)‘/f . xliy. = . xe D‘li . xRy. x e a (1) 

h . *3314 .*471. 0 I-: .rl<y . = ..>•« JJ‘«. x/ty (2) 

H.(l).(2).3h:. Up. 3:x%.s.x%.x«a. 

f*3v|] s . x(a 1 7f)y :. D I-. Prop 

*35452. H :(l‘7i Ci3.‘2.Hf/3 = K [Similar proof] 

*35 453. (■: D‘/fCa.D.a1/fr/3=/fr/9 [Similar proof] 

*35 454. H:(I‘/fC/3.D.o1/f[/3-a1/f [Similar proof] 

*35 46 I-: /f G S. D . o 1 /f C o 1 

hem. 

h . *23'1 . D h Hp. D: xRy. D . xSy: 

[ ^ act] 0 : x € a . xRy .D.xea. xSy: 

[*35*1] D :jp(*1 R)y. D .ar(a]5)y :. D b . Prop 

*35 461. b : R (ZS, 5 , R[0 Q $S [ 0 [Similar proof] 

*35462. h:/;GS.D.*17?r^C«1Sr/9 [Similar proof] 

*35 471. F:a*Pna-A.D.P («17?)-A 

Dem. 

h . *34*1 . D I- j x \P j (a 1 R)l z . D . (gy). xPy. y (a ] 7?) r. 

[*351] D . (gy). xPy .yea . y 7?£ . 

[*33*14 . *10*5] D . (gy) . y 6 CP/* .yea. 

[*22*33. *24*5] D.gia'Poa (1) 

K(l).Transp.*24*51. D 

b : (I*/* r» a = A . D . ~ x \P | (a ”] 7?)) z: 

[*11*11*3] D(-:a‘Pna = A.D.(i, z).~x[P\{a'\ R)) z. 

[*25*15] D. P j (a 172) - A : D h. Prop 

*35-472. h : D‘P n a = A . D . (7? f* a) \ P = A 

*35 473. h : <3‘7J ^a=A.D.P|(a17?[‘/9) = A 

*35-474. h:D‘Pn/9 = A.D.(a‘17?|‘^)!P = A 



SECTION D] LIMITED DOMAINS AND CONVERSE DOMAINS 

*3548. h : (I‘P Za ."5 . P\(a'\R)-= P R 
Bern. 

K*221. Dh:.Hp.D:.vea‘i>.D„.J,ea: - 

7lJ 

[*10311] D:^.yea-P.y€a.=v..rPy.yea<P (1) 

• (1). (2) . D f-Hp . D : xPy .y e a . =v. xptJ ; 

fSJJJ'] 3: ■ * « « • y** • •*l‘y. ytf*: 

„ ^ = - (/* I a •, /<) , . s . (P, R) s D K Prop 

*35 481. h : D«* C 0 . D . (/>|"/3) | R = />| « [Similar proof] 

*35 51. h.Cnv‘(a1ii)_ ft[a 

Bern. 

I”-*3!:181 ■0h:x ICnv'fa 1«)) y. = . y («1 7f) a-. 

^ S . y 6 a . yRx. 

--*Jty.»... 

[*85101J w -^MyOKProp 

h • Cnv‘(*|*).£1 P ^ [Proof similar to that of *3ool] 

h . Cnv'(a1 Pf /?) = £ ] j{^ a [Proof similar to that of *35*51] 

h . D‘(a1 P) = a ,> JXtt 
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*36 52. 

*3663. 

*3561. 

Bern. 

r'f,' 8-Dh:-X( D‘(“1 -«)• = : (ay) . *(« 1 R)y: 

*i„ J, -:(ay). — .««y: 
SS *:*««:(ay).<c*y: 

[*22-33] s : xe(an D'R) D H . Prop 
*36 62. h : a C D‘/J . D . D‘(a ] R) — a [.35 61 . .22 621] 
*36 63. I- : D‘P Ca. = .a]fl = fl 

Bern. 
H . *35 61 -3l-:a1P = i?.3.ar, ]>/* = £)^ # 
[*22-621] D.D'PCa 
^ • (1) • *35-451 . D I-. Prop 

*36 64. h . a«(* m = 5 (J‘R [Proof ^ in »35.61] 

*36 641. h : a „ D‘fl = A . D . a R _ A [.35-61. .33 241] 

*36-642. h :an <1‘R =» A. 3. .R f-a — A [.35-64 ..33 241] 

.36 643. H:«nD‘2e = A.3.a1(fitt,S) = a1S [.35-641-42] 

(1) 



MATHEMATICAL LOGIC [PART I 

*35644 h:anG‘/i = A.D.(/?c;.S,)|*a = .Sr« [*35G42*421] 

(3y).*(/f S)'J: 

<3y. *) • • 
(3-• y>. r7?z. z£y: 

<H*)s .**7fz:(gy).zSy: 

(gz)..r7fz. c c D*S: 

(gz)..r(/frD*&)z: 

x t D‘( R [ IV.S'):. D I*. Prop 

*35 65. h :/3C(I‘/f. D.(I‘<77 [*£) = £ [*35*64.*22621] 

*35*66. htl'RCfi.s.Ktd-R [Proof as in *35*63] 

*35*671. H . D‘( J< S) = D‘( 77 [ L)‘.N’) 

Deni. 

t*.*33'13.DI*:.xcD'</t .S'), s :<gy).*(/7 S)y: 

[*341] =:(gy. t).*R:.xSyt 

(*11 *23] = : (gj. y). .r7?z . z£y : 

[*10-35] = : (gz): xRz : (gy). zSy : 

[*33*13] = : (gz). .r77z . z € D*S: 

[*35* 101] = : (gz). .r (77 |* D‘S) z: 

[*3313] = : .rcD'(J?rD‘£)s. 3 H . Prop 

*35*672. I- .({*(/( S>-CI‘(<I‘7?1tf> [Similar proof) 

*35 68. h:an/3*A.D.(a1/? |W - A 

Dem. 

I-. *35*61 64*21 . D I-. D‘<a] 77 [*£) C a. <1‘<*1 77 [0)C0. 

[*22 40.*24*13] Dh:an/i= A.D.D‘<«1 R [0) * (I‘(a1 7?^) = A. 

(*34*531 ] D . (a] 77 |*£)’ - A : I> h . Prop 

*35 7. bi$\(R[&)*y1. = . y * . <j> (77*//) 

This proposition is very often used in the Inter parts of the work. 

Dan. 

V . *14 21 . D I-: <*> J<7?>*y|. D. E ! <7?[*£)«//. 

[*33*43] Z>.y<a‘<77[*£). 

[*35 64] D.y«/9 0> 

h . (1). *471 . Dh : <f> |(77 |*£)‘yj . = . y € £ . <*> |( 7? r£)‘y) (2) 

h .*4*73 .*35*101 . D h :.y*/9. D :x(7^I*/9)y . =x.xl7y: 

[*14*272] * D:<M<*r0)V)-s-*(*‘y> <3) 
I- .(3). *5*32 . D h :ye£. <£ ((/?f£)‘yj . = .ye &. <f>(R‘y) (*) 
h . (2). (4). D h . Prop 

*35*71. h :. y <• /9. Dy . 77*y = £>*y . R[@ = S[/3 
Dem. 

h . *4*7 . D h :. Hp.D : ye 0. Dv . ye 0. 77‘y = S*y: 

[*35*7] O:y*0.D„.(R [*£)‘y - (S|*£>‘y: 
[*35 04] D : ,je CI‘(« p/3) « (I«(Sf/9). D„. (R \&)‘y = (S[fiYV! 

[*33-45] 0 : R = S |-/9D h . Prop 

*35 75. KA-]R = «rA = A"] «|\8 = a1 fl[A = A 
Dem. 

h.*35*61. DKD‘(Al/i) = A. 

[*33-241] D h. A] iJ = A 0> 



SECTION D] 

*3576. h 

Dem, 

LIMITED DOMAINS AND CONVERSE DOMAINS 

h. *35-64. 3 t-. U‘(ft|-A) = A . 

[*33-241] DI-./J[-A = A 

h • »3 > 441-21 . D I-. A1ft10 C A1 ft . 

[(1).*25-13] D H . A1 W f/3 = A 

K *35 44*21. 3Ka1«|-AC«r.V. 
[(2).*2513] 3 t-. a ] ft p A = A 
•" ■<!)• (2) . (3).(4). D h . Prop 

V-] ft = ft |- V = V] ft J-V = ft 
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(2) 

(3) 

(4) 

S . X € V . .rliy 

.alty 
(1) 

. . y c V . 
. xRy (2) 
• x e V . a:/£y . y e V . 

.xRy (3) 

h-*35l. DK :x(V]/?.)y. 

[*24 104.*473] 

H . *35*101 . Dh:.r (RfV)y. 

[*24-104.*4-73] 

*35102. DK:x(V1 RfV)y. 

[*24104.*4'73] 

^ • (1) • (2) • (3) .Dh. Prop 

exceTphtV35 «f8128 nU’nbCr- d0'Vn *° *35'93 CXC'Usive-is C°—1 wit» «TA 

*35 81. h:*(«lV)y.«.*,a [*351 . *25104) 

*35-812. l-:<r(Vf-/9)J,. = .ye/3 [*35101 .*25 104] 

*35-82. = Vf/3 

Deni. 

H.*85-103.3 (•:*(, T,8)y. 

[*25104] s .t( a.xVt/ .ye/3. 

= .*(«] Vf >9)y s D h . Prop 
*35822. Ka-|ft[-/3=ft,s(a-]-/9) 

Dem. 

1- . *35*102 . D : a:(a ] ft f- 0)y. s . x t a . xRy . y e 0 . 

^ = • *#y .xea.yt 0. 

OB „1*23 33] 3 . * (ft A (a -f ft)] y : D (-. Prop 
*35 83. : D‘R C a . <3‘i* C £. = . i* G a f £ 

Dem. 

H . *33 14 . D a;i*y .D:if D‘/f . y c d'/J : 

L*2^6]r. D:D‘ftCa.U‘ftC ft . D . xe a . y f ft (1) 

U510?mm‘3l'!‘D^Ca-a^C^-3!*iiy-:,-Xe“^^- 
J D.x(af/?)y (2) 

H.*35 103. 

[*33-35-351] 

h-00.(3). 
R&W I 

D H . Prop 

'*.v 
3 : C a . Q‘i? C 0 (3) 

18 
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*35 831. K -Ma f/$) = < -of/3)iy(a f -j8)ia(-a f-/3) 

Dem. 

*" • . D h ::} -Ma f £>j y. = :.-(/(a| fi)y\ 

[*35103] = :. - (x e a. y e £):. 

[*4 51] =:.i'v(a.v.y've3:. 

f *4 42] = * a : »/ . v . y ~ €/9 :. v :. .r e a . v . c a : y ~ e 3 :. 

[*4 4] = v .X'^ca.y<^>efS.v.xea.y~€p.v.x~ea.y~€&:' 

1*4 25-31-37] 

= :..r^<a . y <fi .v ,xea . y ~ e/9 . v . ea . y ~ e/9 

[*22*35] = e-o.yeft.v.xea. ye — @.v.xe-a.ye — fi:. 

[*35*103] = :..**(- o | /9>y. v .x(cr f - /9)y. v . x'- a \ - /9) y:. 

[*23*34] = - a | tf)u(a f - £)o(- a t - £)| y :: D H . Prop 

*35 832. h .-M* 1 t 3)c/(a T -/9)u(-a |-/9)c;-/f 

[*35*822*831 . Tn.nsp. *23 84] 

*35 834 h . (a t /3) A (7 | 5) = (a a 7) | (/9 n 3) 

Dem. 

h. *35-103.3 

** :•/* |(a T >3) A(7 T $)| y. = . j-ea.yefi..rey.ye& . 

[*22 33.*35* 103] s . j* |(a « 7) f (/9 a S)| y : D b . Prop 

*35 84. h . Cnv‘(a Ttf) = /9f a [*35103 . *31 131] 

*3685. h :g !/9. D . LV(« | 5) = a 

Dem. 

K *35*103. *10*281 . D 

H :.(y//)..r(a f £)y. = : (gy) .xea . ye/9 : 

[*10*35] = :xea:(gy).ye/9: 

[*24*5] = :xea.g!/9 (0 

K (1). *33 13. *10*35 . D 1-. Prop 

*35 86. : g ! a . 3 . (I‘(a f /9) = /9 [Similar proof] 

*35 87 1-: g ! (a f /9). = . g ! a . g ! /9 

Dem. 

h .*35*103. D h :.g !(a f/9). = : (gxty).xea.yef3z 

[*1154] = :(gx).xea:(gy).ye/9: 

[*24*5] .= : g ! a. g !/9 :. D I-. Prop 

*35-88. K:.af/9 = A. = :a«A.v./9*A 

[*35*87 . Transp . *24*51 . *25*51] 

*36*881. V : (Pi* C a . D . R\ (a f /9) - D*R t /9 

Dem. 

h . *34 1 .*35103. D 

h :x|.ft|(at£))y. = .(g*).:rik.*ca.y€£ (]) 
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(1) 

K*3314. Dh:.a^Ca.D:.^.D.:fa: 

r*10 351(2) • 3 h :: HP ■ 3 =• - i«It >: // • H : (5r,) .: 

[.3313] 
Log., oil a-.reD'Ji.gtfj: 

*35 882. H:D‘/JC^.3.(at/3) « = aTa‘fl [Similar proof] 

*3B2Ll’!a!',‘:>‘(aT/9)l(>3T'y)"(“r7)!~a!/90-(a^> C-8t7)-A 

h. *341 ■ 3 I-* ((a f £); </9 f 7) j *. 

r.35-10,1 -‘(SMr).-(.T«jr.jrWTr)*: 

; J s:<5Iy)-p,a• ye■ ye• **•/i 
[*4 24] s:(ay)-^«a.y«/3.*e7! 
[*10-35] 3 : 3 !/3:xfa.z(y: 

[*35103] = : a ! £: x (a f 7) * 

l-.(l). 31- i:a!^.3«#|(.fi8)|08 ty))x. 3.*(af7)*.-. 

~ (3 10). 3 : ~ [* |(a f 0); {g f y)j ,] „ 3 p . Pl.op 

*35-891. h a ! 0 . v . ~ a ! a : D . (a f >3)1 <5 f a) = (a t „) 
/>em. . 

*■ • *35'88 - 

[SSS s.-T—A.cr^iwr^-A. 

*36 892. I" : (o -f a)* = (a ^ o) [*35-891 |J 

*35 895. l-:«o^ = A.D.(„t^).= A [*8508-82] 

*35 9. I-. D‘(a ]■ a) - d‘(a f a) = C‘(o ]«) = , 
Dem. 

h‘lS-885 86' ^ J" ! 3 1«- 3 . D‘(o ]- a) = O. G‘(a ]«) = « („ 

r*33?91 3h:~a!«-3-~3!(«t«). 

[*24-511 D.D«(«ra).A.a'(at«)-A. 

® 
*35-91. I-: .ft G a f a . = . C‘/£ C a 

Dem. 

[*33 3o2] =:C'iiC.:.31. Prop 

*3692. l-:.(a«).P = ata.3 = iecP.s.e«ftcC<P [,35991] 

(1) 

18-2 
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*3593. 

I>e in. 

*35931. 

*35 932. 

*3594 

*35941. 

*35942. 

MATHEMATICAL LOGIC 

H : (/{). 0 (D‘7t}. = . (a). 0a 

h. *3312. *1418. 

[*101121] 
H . *101 . 

[*359] 

[*1011-21] 

H.(1).(2). 

!■:(/?). «/»(<!*/?). = 

I- :</?). <^(C-/^). = 

H:(y7f).0(D‘7O. 

h:<y7?).0(Cl‘7O. 

H:(y7O.0<C'‘7*). 

D H : (a). 0a . D . 0 (D*7?): 

I>h:(a).0*.D.(7?).0(D‘7?) 

DK:<J?).0(D‘7?).D.0{D‘(ata)] 

D. 0a: 

DI-:(7O.0<D‘7?).D.(«).0a 

D h . Prop 

. (a). 0a [Proof ns in *35 93] 

. (a). 0a [Proof jis in *35 93] 

= . (ya). 0a [*35 93 . Transp] 

= . (ya). 0a [*35 931 . Transp] 

= • (fla) • 0a [*35 932 . Transp] 

[PART I 

(1) 

(2) 



*36. RELATIONS WITH LIMITED FIELDS 

Summary 0f *36. 

,■ iI",-'“1‘SnUmber "e me co"ce™ed ‘he special case in which the same 
Um at,on .. imposed upon the domain and the convene domain of a relation. 

In tins ease, the same result is achieved by imposing the limitation „„ the 

«f . or VTr ‘° ab,le l° rega,d as a descriptive function 
7* t „WtCf we Se“urc hy U,e n°tation P[ a. whence, as will be ex- 

and a C C‘* '/rCaa' 1, C ^,'1" ^7 menD P C K P is “ *eHal -'■•“•ion. 
determined K for “,e 'CrmS of Q “"anged in the order 

S2Z£: * “ ” -»■■ ” *• r t -» 

*36 01. = Df 

We thus have 

*3613. h:*(PC«)y. = .x,yea.*Py 

someIatt|c0lthf,r0|riti°"3-COnCerning Pta dema,,d ,hat P should have 
concerniuTp r- the.charact‘'"st'c* of a serial relation. Hence the propositions 

part not tlfeD 1 71 ^ ‘h° P''CSent numbe1' ara- *>r the most 
part, not the most useful propositions concerning Pha The most useful 
propos,turns in the present number are the following- most useful 

*3625. hC‘PCa.== .Pta=ap 

*3629. b.Pta = P*a fa 

*36 3. h.Pta«Pf(an &P) 

*36 33. V.Pt&P^P 

*36 01. Pta-alPpa Df 

*3611. KPta^alPfa [(*3601)] 

*3613. K : x (P [ a) y. = . Xt y € a . xPy ^3q.x x _ *35.102] 

*36^eSwian,gitpropoSHions ar!obtained frora those of *35 bymeaus of *00 II, which, as it is used in each case, is not referred to again 

*362. KPCaAQt>S = (P/.Q)t:(artiS) [,3515] 

*36201. h.PDaAPC>S = Pt:(a„i8) [.36-21 

*36202. KPCaAgt:a = (PAQ)Ca [*3621 

*36 203. h.PCac,g = (pAQ)t;a [.35181 

*36 21. h.(PCa)t^ = Pt(a„/9) [.35-33-341 
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*3622. M/’Ca) <<2Ca)G(P 

Drill. 

h . *3013 . *34*1 . D h : .#• '(l* [a) ((? £ o)| z. = . (gy). x, y, z e a . xPy. yQz. 

[#105J 3* (3 y).x,zca.xPy.yQz (1) 

Ml). *10*35. *34-1 .31". Prop 

*36 23. I-. (P o Q) [ a = P £ a o Q £ a [*35*422] 

*36 24. haCfS.D.PtaQPta [*35*432] 

*36 241. I-: P G Q. D . P £ a G Q £ a [*35 462] 

*36 25. h : (UP Ca.*.P£a = P 

Dem. 

H . *:t(M3 . *V7 .DH:. = : xPy. D, ,y .x, yea: 

[*:«-352] = : C‘P Cai.DK Prop 

*36 26 V : C‘P na-A.D.P (0t«> - A . (Q £ a) | P - A [*35*473*474] 

*36 27. h:P [A-A [*35 75] 

*36 28. h . P £ V = P [*35*76] 

*36 29. KP£a-PAafa [*35*822] 

*36 3. KP£a-P£(aAC‘P) 

Dem. 

V . *33*17 . *471 . 3 h : xPy. = . x, y c C*P. xPy : 

[Fact] 3 I*: x, y t a . xPy. = . x, y * a . x, y e C‘P. xPy. 

[*22 33) = . x,y e a r\ C*P. xPy. 

[*•3613] =.*(/>[(« a C‘P))y (1) 

1*. (1). *3613. 3K Prop 

*36 31. H : a a C‘P = A . 3 . P £ a = A [*86*3*27] 

*36 32. h : a a Q*P - £ a C*P. 3 . P £ a = P £ £ [*36*3] 

*36 33. f-. P £ C'*/* - P [*36*25] 

*36 34. h.Cnv‘P£a«(P)£a [*35*53] 

*36 35. MPCo)’G(P*)Ca 1*36*22] 

*36 4. h a a D‘P = A . v . a a Q‘P = A:D.(Pc/5r)[a = jS,ta 

Dem. 

h . *35-643 . 3 h : a a D*R = A . 3 . a ] (P o S) = a *| S. 

[*35-21] 3.(PuS)£a = £’£a (1) 

Similarly h : a a QfR = A . 3 .(P ci 5) £ «=* 5 £ a (2) 

1-. (1) . (2) .3 h. Prop 
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*37. PLURAL DESCRIPTIVE FUNCTIONS 

Summary of *37. 

In this number, we introduce what may be regarded as the plural of R',, 

<J was defined to mean "the term which has the relation R to \Ve 

ZJTrT iherM,z:Ry"to mea'' “ti,e **™» which the 
elation R to members of 0 Thus if 0 is .he class of great men. and R is 

the relatmu of wife to husband. R-0 will mean "wives of great men.” If 

0 s the class of fractions of the form 1 - 1/2- for integral values of,, and R 

is the relat.on "less than,” R“0 will be the class of fractions each of which is 

loss than some member of this class of fractions, i.e. R“R will be the class of 

t Tt,0nS- °fneral'/' R“& ** the class of those referents which have 
reJata that are members of /9. 

We require also a notation for the relation of R“0 to 0. This relation 

reanWd‘V2JThUS f- “ ‘IT rclali<'" *“* h°«* between two cCs 

membef of 0 “ C°nS tCrmS which hove the relation R to some 

caseA arises When olwa-vs exists if V '0. In this 
denote .! “S ° * terms of the form R‘,j when y e 0. VVe will 
denote the hypothesis that R‘y always exists if y ( 0 by the notation IS !! R“0 
meaning “the Jis of/9*s exist.” 

The definitions are as follows: 

*37 01. R“0-Sti(ay).ye0.xRy) Df 

*37 02. R, = fi/9 (a = R“0) Df 

*37 03. R, = Cnv‘(iZ.) I)f 

w Thl3 definition serves mcrely for the avoidance of brackets. Without it, 

" ft ” w°u|d be ambiguous as between (R). and CnV(ft.), which are not equal.’ 

*• ■h*" *• “»>«*■-. - 
*37 04. R‘‘‘K = R."K = Cnv‘<«—) 

Thus consists of all classes which have the relation R. to some 

tTmcmh % '* ,S °n‘y 8‘gnifiCant When * is a c>“» classes relatively 
to members of the converse domain of ft; in this case, R“‘K is a class of classes 
relatively to members of the domain of R. 

*3706. EllR“0 .=:ye£ .Du.ElR‘y Df 

the ay“b°‘ “E " ^ mU8t be treated “ * whole, .-«• we must not 
regard it as making an assertion about R“0. If R-g _ we mu8t not suppoge 
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that wo shall ho able to put “E!!a," which would bo nonsense,just as “E\x" 

is nonsense even when ./ = R‘y and E! R*y. 

I'he notation R**a. introduced in the present number, is extremely useful, 

and embodies a very important idea. Its use is somewhat different according 

to the kimi of relation concerned. Consider first the kind of relation which 

loads to a descriptive function, say I). If X is a class of relations, D“X is the 

class of the domains of these relations. In this case, L)“\ is a class each of 

whose members is of the form L)‘P, where lie\. Again, let us denote by 

*'xm" the relation of m to «ixn; then if we denote by "NC” the class of 

cardinal numbers, xn“XC will denote all numbers that result from multi¬ 

plying a cardinal number by n. i.e. all multiples of n. Thus e.<j. x2“NC will 

be the class of even numbers. If 11 is a correlation between two classes a and 

0, i.e. a relation such that, if yt0, R*y exists and is a member of a, while 

conversely, if xta, R*x exists and is a member of 0. then a« 11**0, and we 

may regard R ns a transformation applied to each member of 0 and giving 

rise to a member of a. It is by means of such transformations that two classes 

arc shown to bo similar, i.e. to have the same (cardinal) number of terms. 

In the cast- of serial relations, the utility of the notation R**0 is somewhat 

different. Suppose, for example, that R is the relation of less to greater among 

real numbers. Then if 0 is any class of real numbers. R**0 will be the segment 

of real numbers determined by 0. i.e. the class of real numbers which are less 

than the limit or maximum of 0. Iii any series, if 0 is a class contained in 

the series and R is the generating relation of the series, R**0 is the segment 

determined by 0. If 0 has either a limit or a maximum, say x, R**0 will be 

Ii*x. But if 0 has neither a limit nor a maximum, 11**0 will be what we may 

call an ‘irrational segment of the series. We shall see at a later stage that 

the real numbers may be identified with the segments of the series of rationale 

i.e. if R is the relation of less to greater among rationale the real numbers 

will be all classes such as 11**0, for different values of 0. The real numbers 

which correspond to rationals will be those resulting from a 0 which has a 

limit or maximum; the irrationals will be those resulting from a 0 which has 

no limit or maximum. 

The present number may be divided into various sections, as follows: 

(1) First, we have various elementary properties of the terms defined at the 

beginning of the number; this section ends with *37 *29. (2) We have next 

a set of propositions dealing with relative products, and with such symbols as 

R**Q**7, P**Q***k, and so on. The central proposition here i9 

*37*33. V.\1\Q)“y = P**Q**y 

By the definition, Q***k = Q,**k. Thus P**Q*t*K = (P j Qt)**k. This connects 

propositions concerning such symbols as P**Q***k with propositions concerning 
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relative products.^ This second section consists of the propositions from *37 :* 

to *37 39. (3) We have next a set of propositions on relations with limited 

domains and converse domains. The chief of these are 

*37 401. h . D‘(72 [*£) = R“0 

*37 412. = 

*37 41. h . D‘( 7? [ a) = a ^ R“a . <P(R [ a) = a r> R“a 

These propositions on relations with limited domains and converse domains, 

together with certain others naturally connected with them, extend from *37 4 

to *37-52. (4) We next have a number of very important propositions on the 

consequences of the hypothesis EllR“&, U. the hypothesis that, for any 

argument which is a member of £, R gives rise to a descriptive function 72‘y. 

The chief proposition in this section is 

*37 6. h:E!S R“0 . D . R‘*/3 = 5 |(ay) . y eR . * = R'y] 

Propositions with the hypothesis E !! 72“£ are applied to the cases o f~R 

and /?, in which the hypothesis is verified. This section extends from *37 6 

to *37-791. (5) Finally, wc have three propositions on the relative product 

of w»th other relations. These propositions are useful iu relation- 
arithmetic (Part IV). 

T he propositions of the present number which are most used in the sequel, 

apart from those already mentioned, are the following (omitting such as merely 
embody definitions): 

*37 15. h . R“a C D‘72 

*37 16 h . R“a C d‘R 

*37 2. h:aC/3.D. P“a C 

*37 22. h . i>“(« « £) = Pgia v/ P“fi 

*37 25. h . D‘72 = R**a*R . CI‘72 = R“D‘R 

*37 26. h . R“0 = R“(0 „ d‘R) . 

*37 265. h . R“a = R“(a C‘R). R“a - R“{a * C'R) 

*37 29. h . R“A = A . R“A = A 

*37 32. h . D*(P | Q) = P“D‘Q . Q‘(P | Q) = Q“(1‘P 

*37 45. h (y). E ! R<y . D : a ! R“0 . = . 3 ! £ 

*37 46. h : x c R“a . = . g ! a n R*x 

*37 61. h :: E !! R“0 . D R“0 C a . = : y e 0 . Du. R‘y € a 

For example, let 72 be the relation of father to son, /3 the class of Etonians, 

o the class of rich men; then “72“/9Ca” states “all fathers of Etonians are 

rich, while Rly ea” states “ if a boy is an Etonian, his father 
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must be rich." In virtue of the above proposition, these two statements are 

equivalent. 

*37 62. b : E ! R*y. y * a. D . R*y c 

*37 63. b :: E!! R“a . D .re R“a . lr.r: = :yca.D„.yJr(R‘y) 

*37 01. -»!<&).» Dr 

*37 02. R. = a/3 (a = R“f3) Dr 

*3703. R, = Ciiv‘(/?,) Dr 

*3704. H‘“* = Df 

*37 05. li* y Df 

*371. b :./•€ /?“£• = .(3y).y«£ . .r/ty [*20-3. (*37-01)] 

*37101. b :afc£.B. «-/<“£ [*21-3. (*3702)] 

*37102. b:a(70,/3.«.o-ii“/3 [*37101] 

*37 103. b : a < RttlK . = . ($|/9). 6 * . a — R“8 . = .ae R“k 
[*37 1 101 .(*37 04)] 

*37104. b E !! /£“# . = : y . E! /e*y [*4-2 . (#37 05)) 

*37105. b : a: 6 . a . (fly). #/ < £. . yRx [*371 . *3111] 

*37106. b E ! R*x .D:xe R^fS. = . R‘.i 

Dem. 

b. *37105 . *30 4 . D b :. Hp. I "> zxe . =. (ay) • y * & • y ■ ^ • 
[*14205] = . fj8:.Db. Prop 

*3711. b .RS0-R“0 [*37101 .*30 3] 

*37111. b . E ! R/0 [*37 11 .*14 21] 

*3712. b:(tf)./f“£=Q‘,9. = .Rt = Q [*3042. *3711 1 11] 

*3713. b sP-Q.D.P“fi-Q“0 

Dem. 

b. *21-43. Db:. Hp.D :*Py. -x.v • xQy: 
[Fact] D s y c 0 . xPy . =,.„. y e /9 . xQy: 

[*10 281] D :(gy) .y c/9.xPy. . (gy) . y e £ . :r<?y: 

[*371] Dzxc P“/3 .=x.xe Q“8 :. D b . Prop 

*37131. h:P = Q.D.P'= Q. 

Dem. 
b . *3713. D b :. Hp . D : a = P“/3 a = Q“/9 s 

[*37101] D : aP,/9 . =.,* . aQt0 D b . Prop 
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*3714. f-iP=Q. = .l\ = Q, 
Dem. 

*37101 .*21 15. D 

[•13183] s . (/3). JM.0 = Q..0 . 

[•37 1 .•20-15] = : (£, x) : (3y). y 10. xPy . = . (3y). y e £ . xQy : 

[•101] 3 : (*) : (3y) .ju(j=ui). r/>y . = . <3y) .yti(z-w). xQy : 

[•20-3] D : (*): (3y). y = «•. xPy . s . (3y). y = w. xQy : 

1*13195] D : (.*•) : arPw. = . xQw (1) 

H .(1). *1011-21 .*112.D 

P. = Q, . D z(x, w) : arPw. = . xQw : 

[*21-43] D : P = Q (2) 

H.(2).*37131. Dh. Prop 

*3715. h . R“a C D‘P 

Dem. 
H . *37-1 .Df-:xe P“a . D . (gy) .yea. xRy . 

[*3313] D.xe D*R zDh. Prop 

•3716. h.fl“aCa*7e [•3715 *332] 

•3717. I- :. R“ff Ca.siy«/9. xRy. D, „ .xta 
Dem. 

. *371 .Dh:./i“^Co. = : (gy) .ye&. xRy .Dx.xeaz 
[*10-23] ■ : y e 8. xRy . Z>xy .xc a:.D . Prop 

*37171. h R“a C >9 . = : x c a . xRy .Ox,v.ye@ 
Dem. 

K . *37105 .Dl-:. R“a C /9 . = : (gar) . * 6 a . xRy . Dy . y e 0 : 

[*10 23] = : x e a . xRy. DXty.ye^ z. D H . Prop 

*3718. h : y e £ . D . ~R*y C P“/9 

Dem. 

H . *32-18 .Dh:.Hp.D:xc Rly . D . xRy . y e . 

[*371] D .arc P“/9 D h . Prop 

*37 181. hxfa.D. R*x C R“a [Proof as in *3718] 

*37 2. haC/9.D. P“a C P“0 

Pern. 

I". *22*1 • D h Hp • D : y c a . . y e f3 z 
[*10-31] D zyea.xPy .Dv.ye/3 . xPy z 
[*10*28] D : (gy) .yea. xPy . D . (gy) .ye 0 . xPy : 

[*371] 3 sarc P“a .D.xe P“/3 s.DH. Prop 
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The above proposition (#37 2) is one of the forms of asyllogisbic inference 

due to Leibniz’s teacher Jungius. The instance given by Jungius is: “ Circulus 

est figura; ergo qui circiilum describit, is figurant describit*.” Here the class 

of circles is our a, the class of figures is our 0, and the relation of describing 

is our P. 

*37*201. H : P Q Q. D . P“a C </**a [Similar proof) 

*37 202. zaC0. PGQ.5.P“aCQu0 [*37*2*201] 

*37 21. h . P“(a *0) C P“* n P“0 

Dent. 

H . *371 . D h z.xe /'“(a n 0). = : (gy). y c a n 0 . xPy : 

[*22*33] = : (gy). ye a . y € 0 . /Py: 

(*1° •>] D : (gy). y * a . xPy : (gy).ye0. a*/»y : 

[*371] D:jeP“a.x€P“0: 

[*22*33] D :xe P“a n P“0 :. D h . Prop 

*37 211. .(P f\ Q)**a C /'“a Q“a [Similar proof] 

*37212. \-.{PAQ)“{an0)CP“arxP“0nQ“anQ“0 [*37*21*211] 

*37 22. h . 7'“<* u £)« /'“a v, ]'“0 

This proposition is very frequently used. The fact that here we have 

identity, while in *37*21 we only have inclusion, is due to the fact that 

*10 42 states an equivalence, while *10*5 only states an implication. 

Dent. 

H . *37*1 P*\a \j 0). = : (gy) . ye a\j 0 . xPy : 

[*22*34] = : (gy) iyta.yf.ye0z xPy : 

[*4 4] b : (gy) zyea. xPy . v . y e 0. xPy : 

[*10*42] = : (gy) .yea. xPy : v : (gy) .ye0. xPy : 

[*37*1] = : * € P“a .y/.xeP1^: 

[*22*34] = : x c P“a v P“0 :. D I-. Prop 

*37*221. M/'w Q)“a = Pila \j Q“a [Similar proof] 

*37*222. h . (/»a Q)“(a v0) = P“a v P“0 » Q“a sj Q“0 [*37*22*221] 

*37*23. I-. D‘7?, = a |(g/9) . a = R“0\ [*37*101 . *33 11) 

*37 231. h.a‘7?, = Cls 

The type of "Cls” here is that type whose members are of the same type 

as Q*R. In the proof, use is made of the convention that a Greek letter 

always stands for an expression of the form z(<f> l z). 

Dem. 
h . *37*101 . D h : *Rt2 (<*>! z). = . a = R“2 (</>!*): 

[*1011281] O h : (a«) - aKJ = . (g«) • <* = (-P 
[*33131] Dh:J(^!Z)«a‘«.. = .(aa).o = B“2(^!r) (0 

• Wo quote from Coutur&t. La Logique de Leibniz, Chapter m, § 15 (p. 75 n.). 
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H ■ *20'2 • (*3701) . D h : .?• [(gy) .ye3(0!2). -. 1{“3 (<£•*); 

[*1011-24] D I-1 <<#.): (go). a =K“? <■£»*) 

h.<l).<2).*202. 3h5(Ji!j)f CIs . O . 3 (<{> l s) e R ,;t) 

K *20-41 . *2 02 . 3l-:2(^!j)eG'/i,. D . 2(^ ! ») eCIs ,4) 

I- • (3) • (4) . 3I-. Prop 

As appears in the above proof, it is necessary, when a proposition con- 

taming Us is to be proved, to abandon the notation with Greek letters, and 

revert to the explicit functional notation. 

*37 24. h:«tD'K..D.JCD'ff 

Dem. 

h • *33'13 * *^7101 . D h :: a € . m <g£). a = R“0 .. 

[*20-33.*371] 

[*11-61] 

[*11-23] 

[*11-55] 

[*105] 

[*3313] 

= :• (a£) : XC a . =z . (gy). ,j e £ . xRy 

D x « a . Dx : (g£, y). ye @ . xtiy : 

: (ay. &)»ye@ . xRy : 

3*:(ay):*%:(a£)-ye£: 

^*!<ay)«*ffy s 

D*:x«D‘/f :: D h . Prop 

*37 25. h. D*/e - A«a‘A. a<r *= /*“D‘/e 

Dem. 
h . *3313 . D I-: x e D‘/e . = . (gy). XjRy . 

[*3314.*4-71] ■ . (gy) . y * Cl Vi . xRy . 
[*37 1] =.xeR“Q‘R 

H. *33131 . Dh yeCl‘R. = . (gar) . xRy. 

[*33 14.*4 7 I ] = . (gar) . a: * I)‘R . xRy . 

[*37105] = . y e R“D‘/i! 

^ • (1) • (2). D I-. Prop 

*37 26. h . R“0 = ;<“(£ ^ d‘R) 

Dem. 
H.*371.3h:.a:«JJ“^. = :(gy).ye/3.a.^y! 

[*3314.*4-7l] = : (gy). y r 0. y e a<_ft. ; 

•*22'33] s:(ay)-y*/9na ‘R.xRy. 
= :xtR“(0n (I‘R) :.3K Prop 

*37 261. 1-. R"0 = K‘*<0 n D-ft) [*37-26 

*37 262. han CP.R = 0 n (J‘R . D . fi<«a = [,37-26] 

*37 263. = = [*37 261] 

*37-264. h : g 1 a n R“£. = . (g*, y) .xea.y e 0. xRy. s .El 0 n R“a 
Dem. 

h.*22-33.*371.DI-:.a l «r> R‘‘0. = t fa) *** «z (&,) • y < 0 - *Ry. (1) 

(1) 

(2) 
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(2) [*11-55] y).x€Q.y€0.xRy 
h . (1). *116 . D I- 3 ! a /-» lV'fi . = : (ay) : y € /3 : (ax). x e a . xRy : 

[*37 105] = : (gy) . y € 3 . y e R“a : 

[*22-33] = :g!)9n7?“a (3) 

h . (2) • (3) • D K • Prop 

*37 265. h . R“a = R“ia n C*7f). P“a = P“(a n C‘R) 

Dem. 
h . *33101 . *22 621 .Dh. a*/? = C'R * (l‘R . 
[*22-481] DKon (l‘R = a r\ C*R r* Q‘R . 

[*37-262] DK«“a = r(anC‘i?) . (D 
h .(1). *33*22. D h . Prop 

*37 27. HsCT^Ctf .D.D‘7f-7P‘/9 [*22 621 .*3725 26] 

*37 271. 1- : D‘77Ca. D.CWf «P“a [*22*621 .*37 *25 261] 

*37 28. V . 71“ V - D'R . V = U‘7e [*37 27-271 . *24 11] 

*37 29. h . R“A « A . P“A - A 

JJem. 
I-. *10 5 . D I-: (ay)• y « A . xRy . D . (ay). y c A 

h . (1). Traiisp . *24-53 . D h .~(gy). y e A . xRy . 
[*37 1] DK-a!^‘A. 

[*24-51] D 1-. 7i“A * A 

7( w 
h . (2) . D 1-. 7i‘*A = A 

h . (2). (3). D H . Prop 

*37 3. h . |sg‘(P| V)«^ = 

Dent. 
K *32-23*13. D 
H.|sg‘(P|Q)|^-^(x(7>|Q)x) 

[*34ij -*K3y)-*Py.y«*l 

[*32*18] = £ [(ay). xPy. y e Q‘z\ 

[(*3701)] = P‘*Q‘z . D h . Prop 

*37 301. h . [gs‘(7' | Q)Yx = Q“P«x [Similar proof] 

*37 302. I- s R = P | Q. D . 7?* = P“Q**. P*x = Q“P*x 

[*37-3 301 .*32 23 231*16] 

*37 31. Ksg‘(P|Q) = Pcjl? 

Pern. 

(D 

(2) 

<•**) 

h . *37*11*3 . D I-. (x). [sg*(P | Q)]‘z = P/Q‘z 

H . (1). *34*42 .Dh. Prop 

(1) 
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*37 311. . gs‘( P | (?) = ((?),; P [Similar proof] 

*37 32. h . D‘(Pj (?)= P“D‘(? . a*(P • (?) = <?“d‘P 
Dem. 

. *33-13. *341 . D 

h :• * D«(P| Q) . = . (3s) : (51 y) . 3-Py . yQz . 

[*1123] = : (a^): (H-0 • -i-Py. yQz ; 
[*11-55) = : (ay) s .,p, . (3i). tJQz . 
[*33 13] = : (ay) . ,r/>y . y c ])<<? . 
[*371] = :.vfP“D‘Q (I) 
*-■ (1). *1011 .*20-43.0 

KD*(Pi«)-P“D‘Q 
1-. *33-2 . D 1-. CI‘(P j Q) = D‘Cnv«(P | (?) 

[*34'2] = D‘(Q1P) 

[(2)! -Q“D‘P 

[*38 2] - Q“G‘P (3) 
^ • (2). (3) .Dh. Prop 

.37 321. H : Q-P C D-Q . 0 . D‘(P j Q) = D‘P [,37-32-27] 

*37322. h:D«gca‘/».D.aV|Q,-a*Q [.37-32-271] 

*37 323. 1-: CW» - T)‘Q . D . D'(P | Q) - D‘P. CI‘(P | Q) _ d‘Q [*87 321 322] 
*37 33. K (P | <?)“7 = P“<?“7 

Dem. 

I-. *371 . D h xe(P| <?)“7 . ■ : (g*) . z e y . x(P\Q) z : 

fin-23111 55] B 8 <a*.»)•*« 7 • */*y . : 

„J =:(ay)!xP‘J■ (3*)• SQ*.*e7: 
*:!. ==(a y).*Py.y'Q"y: 

L*)71J s:xfP“Q“y;.0h. Prop 
*37 34. H.(P|Q). = P.|0. 

Dem. 

h • *:*711 • ^ H . (PI <?)/7 = (P| Q)«7 

[*37-33] = p**Q**y 

[•37H] = P/0/7 (1) 
I-. (1). *1011 .*34-42. Dh. Prop ' 

*37 341 >- • (Cnv*(P | Q)|. = (Q). | (P>, [,34.2 . »37 :)4] 

*37 36. !■:<*). = P‘Q‘z .0.(y). R“y = P“Q‘<y 

Dem. 

h . *34 42 .Dh: Hp.D.P = P,Q. 
[*3713] 3 . /e“7 = /p | Q)«7 

[*S7-33] = P*‘Q**y Of-. Prop 
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*37'351. h : (a). 77‘a = P*Q“a .D.(*). 77“* = P“Q<“« 

[*37-35 (j~ . *37 11 . (*37*04/j 
*37-352. f-: (a). 77“a = P*Q“a . D . («). P*“« - P“Q'“k 

£*37-351 . *37*11 . (*37*04)J 

*37-353. !■:(*). 77‘S'* = . D . (7) . R“S“y = P“Q“y 

Dem. 

h . *14 21 . D f-: Hp. D . (s) . E ! 77‘S‘j . 

[*34 41] }.(*). 7?‘S‘*-( 7? | 

[*14-131-144] D m(t).(R\S)€g~ P'Q'z . 

[*37-35] D . (7). (7? | S>“7 - 7J“<?“7 . 

[*37-33] D . (7). R“S“y = 7>“Q“7 : D H . Prop 

*37-354. I-: (a). 77‘.S*‘a - 7>‘Q“a .!>.(*). R“S“tc = P“Q*“* [*37 353 

*37-355. h : (*) . 77‘S‘* - 7,“Q‘* . D . (7). 77“.S*“7 - 7M”QM7 [*37-353 

*37 36. h . D'7?J - 77“1)‘77 . d‘77* = 77“d‘77 [*37 32J 

*37-37. H . (77*), -(77.)’ [*37-34J 

*37 371. 77.’ = <77,)’ Df 

This definition serves merely for the avoidance of brackets. Like *37 03, 

this definition will be extended to all suffixes. 

*37 38. h . liJlx = 77“7?or [*37 3] 

*37 39. b . 773“a * R“R“a [*37*33] 

*37 4. H . Cl4(a ] 77) = 77“a 

Dem. 

h . *33131 . *351 . D b : y e d‘(a ] 77) . = . (gar) . x € a . a;77y. 

[*37 105] = . y e 77“a : D h . Prop 

*37 401. b . I)‘(77 [•£) = 77"/9 [Similar proof] 

*37-402. b . D*(a *| 77 f £) = a ^ 77“,8 . d‘(a ] 77 f £) = >9 n 77“a 

Dem. 
h . *33*13 . *35-102 . D 

I-* e D‘(a 1 77 f* /3) . = : (gy). x e a . x77y . y e £ : 

[*10-35] = :area:(gy).a-77y.y€/9: 

[*371] = : are a .a*e 77“/9 : 

[*22-33] = :x(anR“/3 (!) 

Similarly 

I- : y e G‘(a *] 77[*>S). = .yey9n 77“a 

h . (1) . (2) . D h . Prop 

(2) 
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*37-41. = = [*37-403. *30-111 

*37-411. Ma1-R)“/9 = D‘(a1.R[-/9) = a.We“tf 

Dem. 

f-. *37 401 . D I-. (a 1 R)“f3 = D‘(a 1 7i)f"/9 

[*35-21] =D‘(o1 /?[£) (1 

I-. (1) . *37 402 . Dh. Prop 

*37 412. b .(Rta)“0-R“(an/3) 
Dem. 

h • *:*7'401 . D b . (It r a)“0 = D‘( It r* a) f* (3 

[*37-401] - «“(a « 0,. 3 I-. Pro|, 
*37413. f-. (7J t «)<^ « a a R<‘(an & 

Dem. 

y . *37-411 . *35-21 . D I-. (ft [ a)“ft = an (Hfa)“0 

[*37-412] —an l{“(a <-> £) . D I-. Prop 

*37 42. H : K“(j C o . D . (a 1 R)“ff = ft“/9 [*37-411 . *22 621] 

*37 421. y:0Ca.O.(R[ay<3 = R“ff [*37-412 . *22 021] 

*3743. H:.i8C<Wl.D:j|!fl*./8.«.ai/8 
Dem. 

t: <i8;:S-2:38'6s • i r r* 3: *•<* r«<» 
*37 431. 

*37 44. 

*37 441. 

*3745. 

*37451. 

*37 46. 

*37461. 

*37 462. 

*3747. 

Dem. 

b 

f“ 

b 

b 

b 

h 

b 

b 

. a C D‘R . D : 3 ! R“a . = . a ! o 

*a-i2-V.D:a!fl“/9. = .a!0 

. D‘/2 — V . D : 3 ! R“a . m . a ! a 

• (y) • E ! Rly . D : a ! R“f3. s . 3 ! /9 

. (a:) . E ! .ft‘x . D : a ! £“a . = . 3* a 

x e R“ct. = .a lari R*x 

x~( Rt<a - = • « « R‘x = A . = . c 
v/ t 

x^e ii“a . = . a ^ R‘x = A . = . 7£‘x C 

[(*37 04)] 

ie 

[Proof as in *37 +3] 

f *37-43. *24*11] 

[Proof as in *37*44j 

[*33-431 .*37-43] 

[Proof as in *37 45] 

[*37 1 .*32 181] 

[*37-46. *24-311] 

[*37-461 .*32-241] 

b.(l) 
R‘ 

. 3 ! R“‘a 

D P s 3 ! a. = . 3 ! R,“a . 
s - a l Rt“a (1) 

R*“a (2) 

3 b. Prop 

19 
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*37 5. h : (/3). = Q‘/3•3.(*). 7"“* = Q“* 

Dem. 

K*37 12.DH: Hp.D./*,-Q. 

[*37 13] . D.P“k = Q“k. 

[(*37 04)] D . PttlK = : D h . Prop 

*37 501. h .0rsiVnCH“K“& 

Deni. 

H . *37 1 . *10 24 . D h: y e J . xRy .D.xe 7?“/9 : 

(Exp.*10' 1121] D I-:.//€ /3 . D : xTfy . I>x . x « 7f“£ : 

[*4 7] D : u7?y. Dx. x7*y. x € P“0 : 

[*10 *28] D : (a-r) . xRy. D . (gx). xRy .xeR“&: 

[*33*131 .*37'105] Diy€(l‘R.O.y€R“Rtt0 (1) 

H .(1). Imp. *22*33.3 

t: ye&r\ <I‘7f . 3 . y c Ii“R“0 : 3 h . Prop 

*37*502. . a r> ])*R C RttR,ia [Similar proof] 

*37 51. \-:(3 C Q‘R . = . C !t“R“0 

Deni. 

h . *37\->01 . *22 021 . D h : /3 C (I‘if . D . /3 C Tc'IV'R (1) 

H. *37-16. 3h:/9C/W'/S.D./3Ca'fl (2) 

P . (1). (2). 3 h . Prop 

*37 52. l-:aCD7f. = .aC/W‘a [Similar proof] 

The following propositions, down to *37 7 exclusive, are concerned with 

the special properties of R€tR which result from the hypothesis E!!7?“£, de¬ 

fined in *37 05. The hypothesis E!! R“fi is important, because it has many 

consequences and is satisfied in many cases with which we wish to deal. 

*37 6. V : E !! 7d“£. 3 . 7f“/9 = £ |(gy). y e p. x = R'y\ 

This proposition is very important, and is used constantly. 

Deni. 

V . *37 104 . 3 h :: Hp . 3 :. y e /9 . 3V : E ! 7*‘y : 

[*30*4] Dy : x = R*y. = . xRy 

[*5*32] 3 :. y € £ . x = R‘y.=v. ye &. xRy :. 

[*10281 ] 3(gy) .ye 0.x = R‘y. = . (ay) • y « £ • • 

[*371] s.x*R“R 

h . (1). *10*11*21 . *20*33 . 3 b . Prop 

*37 601. h : (x) . E! 7*‘x. 3 . R“V = £ ((ay) - * = R‘y\ 

Deni. 

h . *2 02 . *10 11*27 . 3 I- :. Hp . 3 : x * V. 3X. E ! Rlx : 

(X) 
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*25)1 

[*37 104] D:E ll R“Y : 
[*37 G] D : R" V = 3 {(gy) . y € V . = R<,,\ 

(I) 

h .*3717 . 

[*ll-262] 

I- .*37104 
[*30-33] 

K*24-!04.*4-73.DI- :y « V .4—. a ]*-*•*: 

[* 10 11-281 ] D h : (gy). jf * V .,- /?',/ . = . <gy). .* = /*<y : 

M°> k <<> 

*37 61. h :: E !! A“/9. D *“/9 C a . s :,, «t . R.y , „ 

Dem. 

3 I-:: «“/3 C a . = :. v e ^. x/f(/. y . .r f Q 

= 0„zxRi/m Ox..rea (1) 
3 r :s. Hp • 3 :: y «£. D* E! /?‘y 

R*y e a . = : j/f// . D,. .v e a /9\ 

• (l) • (2). D h :: Hp . D C«.B:ye^.D,. R‘yeat: 3 h , prop 

*37 62. h : E ! 7i*y . y c a . D . i(‘y e /J"a 

Dem. 
I-. *30 33 . D 

H :: E ! . D «‘y « ie««„ . = : x7?y. . ,£ R„a 

K*32. 3 l- :.y <«. 3 lafly.D.y ea.xllg. 

[*10-24.*37 1] 0.xeH“a 

I-. (2).*10 11-21 . D h y eo. D : .rfty .Ox.xe It“a 

H . (1> . (3). D I-. Prop 

••I inference concerning which Jevons says*: 

cou d not .T ,, !e.nr ’ ',rgaD ren,arkin« ‘hat all Aristotle’s logic 
the hid r “TT “ h'"'SC is an ani"‘“‘. ‘he head of a horseis 

Ariat X- i °n,maL mUSt be COnfess<-d ’hat this was a merit in 

tern^ . E hh: r:, thrU,f 0P°*Kd infere,,CC U fallaciou8 w>‘hout the added 
premiss E ! the head of the horse .n question." Eg. it does not hoi,I lor an 

an imn0,',a / a 'V“h the addition E ! ** ‘h« above proposition gives 
an important and common type of asyllogistic inference. * 

*3763. H .t *11 3 

Dem. 

r*io-23i ‘ 3 h!! * ‘ H“a (ay) .y«a.xjjy. a,.**.. 
r 10 Z3J = :. y € a . x/ty . D, „. drX 

3h H (!) 
P . *37 104 . D J-Hp . D :: y e a . D,,E ! 

This proposition is very frequently used. 

• Principles of Science, chap. i. (p. is of edition of 1887). 

O) 

(2) 

(3) 

19—2 
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*37 64. H E !! R“a . D : <3y) • y ea . ^ (P*y) . s . (gx) . art P“a . yjrx 

Dem. 

h . *30*33 .Dh: Hp . D y « a . D : x/** (P‘y) . = . (g.r). xPy . x/^x 

[*5*32] D :.y*a . x/r(/*‘y). = : y €<* : (gx) .xPy. ^rx (1) 

Ml). *10*11*21*281 . D 

f- :: Hp . D (gy) . y e a . \fr (R*y) . = : (gy) z yea: (gx) . xRy . x/rx: 

t*1 *'■] =: (a^-): (gy) • '/*<*• = Vr*e! 
[*37-1] = : (g.r). j-e 7?“o . ^r.r:: D K Prop 

*37 65. : E !! R“{3 . a C R"& . 0 . a - R“( R"a « 0) 

Dem. 

f-. *30 21 . *3 27 . D h :: H p . D y e Q . Dv : zRy . .cRj . D . * - x (1) 

h. *37*1.3 hi. Hp.D: 

X € R“( Ji“a r\ 0). = . (gy) . y e R**a n & . xPy . 

[*37 105.* 11*55] s . (gy. z). z e a . zRy. y e (3. .rRy . 

[(1 ).*4 7 1 ] = . (gy, z). z e a . zRy . y e f3 . xRy • z = x 

[ * 13* 194] s . (gy, z)*zea,ye $. xPy. z “ x. 

[* 13*195] = . (gy) . x e a . y € & . xPy . 

[*10*35.*37*1] = .xea.xe R“/3. 

[*4a71.Hp] a.xias.DK Prop 

*37 66. h E !! P“£ . D : a C R“0 . = . (g7). 7 C <3 . a - P“7 

Dem. 

h . *37*65 . Exp . *13*195 . *22*43 . D 

h Hp . D : a C . D . (g7) . 7 C£ . a = (1) 

h . *37*2 . *1313 . D h : 7 C £. a = P“7 . D . a C P“£ : 

[*1011*23) D h : (g7). 7 C 0. a = P“7 .D.aCR“0 (2) 

Ml).(2). D h . Prop 

*37 67. h i * 7 . Dz. E! R‘&s : D . R‘ 'S“y = £ ’(gr). * * 7. x = P‘S‘*) 

Dem. 

h. *34*41 . D h : Hp .zey.Dg. R<S‘z - (R1S)‘x (1) 

Ml). *14*21.3 I- : Hp.2ey.D'.El(R\S)‘z (2) 

h - (2). *37 6 . D h : Hp.D . (P jS)“7 = 3 {(g*). r c7. x = (P | S)*y) 

[(1)] -2{<g z).Z€y.x = R‘S‘y) (3) 

h . *37*33 . Dh. R“S“y = (P | S)“y (4) 

h.(3).(4). 3 h. Prop 

*37 68. h z.zey.D,. P*Q‘z = R*z : D . P“Q“y = P“7 

Dem. 

h. *14*21 . D h : Hp . z e y . D . E ! P‘Q*z. E ! R*z. 

[*34*41 ] D . P‘Q‘* = (P | Q)‘z. E! R*z. (1) 

[*14*21 *131 *144.Hp] D . E ! (P | . (P | Q)‘x = R‘z (2) 
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I-. *37-33 . D t-. l'“Q“y = (P\Q)“y (S) 

(2). (3). *37-6. D 

h : HP ■ 3 • P“Q“7 = 2 !(a^). t« y. x = (PI Q)‘z j 

[(2)] 
[*37-6.(l)] = R"z .oh. Prop 

*37 69. b :. y 6 0.O„.R‘y = S<y:O. R“$ = S“0 

Pent. 

I-. *14-21 .3K:: Hp. D :.y«/3. D . E! R‘y . E ! S‘i/:. (1) 

[*30-4] D:.y«/9.D:*%. = .*-*V 

t*14142] 
t*304-n)] = .„Sy:. 
[*5-32] ^■■•yc&.xRy.s.yeB.xSy (2) 

H. (2). *10 11-21-2810 

h Hp O : (gy) . y e £. xRy . = . (gy). y «/3 . a-Sy : 

[*371] D :xtR“,3 . = .xeS“0 :0 h . Prop 

A specially important case of is rt“/3 or *“/S. This case will be 

further studied later (,n *70); for the present, we shall only give a few 

preliminary propositions about it. It will be observed that the hypothesis 

El! R“,3 or El! R“,9 is always verified, in virtue of *3212121. Hence the 
following applications of *37 6 ff.: 

*377. i-. r*‘& - a {(ay). y e &. a-j^y) 

*37 701. h . tf“a = y§ {(a*). K e a . 0 - }?*) 

*37702 * . = : y e ,9 . . 7?‘y « « 

*37 703. h C * . s : x c /9 . Dr . /e** f * 

*37704. 1-: yea . D .7?‘y(^“a 

*37 705. h :arca. 

*37-706. h a e . D« . : = : y 6 £ . ^ 

*37-707. h :. £ « . D* . • = • * € a . ^ ^ 

*37-708. h (3a) . a * R“0. . = . (ay) . y c £. ^ (7?y) 

*37 709. h (30)^ a e *R“0. . = . (30:) 

*37-71. h : * ,D.tc = /?‘{(Cn« £} 

*37-711. h : * C if“£ • Z) . * = ^ £} 

*37-712. h : , C s . (a7> .yC ft. K~jt„y 

*37-713. h s *C.s. (a7).7C £. * = R«y 

[*37 6. *32 12] 

[*37-6. *32 121] 

[*37-61] 

[*37-61] 

[*37-62. *3212] 

[*37-62. *32121] 

[*37-63] 

[*37 63] 

[*37-64] 

[*37-64] 

[*37-65] 

[*37-65] 

[*37-66] 

[*37-66] 
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*3772. b : R = P Q. D . R“y = P“‘Q“y 

Dent. 

I-. *37 11-302 . Z> b : Hp. D . (*). P/~Q‘z=ll‘z . 

[*37-68] D . P“~Q“y =li“y . 

[(*37-04)] D . P‘“7j“y =~R“y Prop 

*37 721. \-:R=l> Q. D . /f“7 . §*“/**7 (Proof as in *3772] 

*37 73. 1-: a ! £. = . g ! 7?‘£. = . g l%‘0 [*37*45 . *32 12 121] 

*37 731. b : /9 = A . = .7<“0 = A . = = A [*37 73 . Transp] 

Observe that the As which occur in this proposition will not be all of the 

same type. Ejj. if R relates individuals to individuals, the first A will be 

l he class of no individuals, while the second and third will be the class of 

no classes. Thus the ambiguity which attaches to the type of A must be 

differently determined for different occurrences of A in this proposition. In 

general, when this is the case with our ambiguous symbols, we shall adopt a 

notation which indicates the fact. But when the ambiguous symbol is A, it 

seems hardly worth while. 

*37 74. I- >9 C (VR . = : a € 7?‘£ . D. . g ! a 

Deni. 

b . *37-706 . D b a € /?“/9 . D. . g ! a : = : y e/3. . a\~Rly : 

[*33*31] = : >9 C d'R D b. Prop 

*37*75. bs.crCD‘R. = : /9€%‘a . . g ! £ [Proof as in *37*74] 

*37*76. b.7*“£CCIs 

Dem. 

b . *37*7 .Dh.of R“0 . D : (gy) ,y(^.a= R‘y : 

[*10*5] 

[*32*13] 

[*20*16] 

[*20*4] 

*37 761. V.*R“a C Cls 

*37 77. b : a . Da . g ! a 

*37 771. b : >9 e . g ! >9 

*37*772. b.A~eJ?“CI‘.« 

*37*773. 

*37*78. b.D'^^'V 

3 : (3y) • a = P*'J : 

(3y) • a = $ (xRy): 

D:(g <*>). a = £(</» !*): 

D z ac Cls D b . Prop 

[Proof as in *37*76] 

[*37-74. *22 42] 

[Proof as in *37 77] 

[*37-77 . *24*63] 

[*37-771 .*24*63] 

[*37*28] 
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*37 781. KD*Jl = R“V [*37 *28] 

*3779. . R“Y = £{('£'/). a = [*37*601 .*32 1*2] 

*37791. h . R“V = /§ j(g.r). 0 - %x\ [*37*601 .*3*21*21] 

*37-8. M«T0)|S-«T£“£ 
Devi. 

h * **5103 . *341 .Dh:x((at£) | (ay>. .,€ a . y e 0 . ySz . 

[*10-35.*37105] m.xea.zeS“0. 

[*35*103] = . .t.(a T : D I-. Prop 

*37 81. h./e|(at^)=-(/i-a)t/9 ^ [Proofas in *37*8] 

*37 82. I-. R. <ct f 0) \S-(R“a) T (S“/9) [*37*8*81] 



*38. RELATIONS AND CLASSES DERIVED FROM A DOUBLE 

DESCRIPTIVE FUNCTION 

Sum mory of *38. 

A double descriptive function is a non-propositional function of two 

arguments, such as an&.av £. It A .S', It v S, It S, a 1 It, It [a, It l a. The 

propositions of the present number apply to all such functions, assuming the 

notation to be (as in the above instances) a functional sign placed between the 

two arguments. In order to deal with all analogous cases at once, we shall in 

this number adopt the notation 

where stands for any such sign as n, \j, A, |, |, |*. [, or any functional 

sign to be hereafter defined and satisfying the condition 

(■*■.!/) • E !(x?y). 

The derived relations and cln>scs with which we shall be concerned may be 

illustrated by taking the case of ar\ft. The relation of a r» & to /9 will be 

written a n, and the relation of a r\ to a will be written n /9. Thus we 

shall have 

h .a n fi = a = n /3‘a. 

The utility of this notation is chiefly due to the possibility of 9uch notations 

as ar\liK and r\fSilK. For example, take such a phrase as "the foreign 

members of English Clubs." Then if we put a = foreigners, k = English Clubs, 

we have 

a r\tl/c = the classes of foreign members of the various English Clubs. 

Or again, let a be a conic, and k a pencil of lines; then 

an“< = thc various pairs of points in which members of k meet a. 

In this case, since a r» a. we have a n = r\ a. But when the function 

concerned is not commutative, this does not hold. Thus for example we do 

not have It | = | R. 

The notations of this number will be frequently applied hereafter to 

In accordance with what was said above, we write It for the relation of It S 
to S, and | S for the relation of It S to R. Hence we have 

Hence will be the class of relations obtained by taking members of X • 

and relatively multiplying them by S. Thus if X were the class of relations 

first cousin, second cousin, etc., and S were the relation of parent to child, 

| S“\ would be the class of relations first cousin once removed, second cousin 

once removed, etc., taken in the sense which goes from the older to the younger 
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It is often convenient to be able to exhibit \S“\ and kindred expressions 

as descriptive functions of the first argument instead of the second. For this 
purpose we put 

X S=\S“\ 
ft 

with similar notations for other descriptive double functions. We then have 

just as in the case of R \S, 
\\‘S= S*\ = \\R. 

** tt tt 

This enables us to form the class This class is chiefly useful because 

the members of its members (i.e. as we shall define it in *40) con- 

stitute the class of all products R | S that can be formed of a member of \ and 
a member of 

Thus we are led to three general definitions for descriptive double functions, 
namely (if x% y be any such function) 

x ? is the relation of x $ y to y for any y, 

% y •• ^ a H „ x „ x, 

a is the class of values of x%y when x is an a. 

Since a?y is again a descriptive double function, the first two of the above 

definitions can be applied to it. The third definition, for typographical reasons 

cannot be applied conveniently, though theoretically it is of course applicable, 

I he relations x ? and ?y represent the general idea contained in some of the 

uses in mathematics of the term “operation," e.g. + 1 is the operation of 
adding 1. 

The uses of the notations introduced in the present number occur chiefly 

iu arithmetic (Parts III and IV). Few propositions can be given at this stage 

since most of the important uses of the notation here introduced depend upon 

the substitution of some special function for the general function " £ ” here 

used. In the present number, the propositions given are all immediate con¬ 
sequences of the definitions. 

*38 01. x $ «* uy (u = i?y) Df 

*38 02. ?y = fi£(u = a:¥y) Df 

*38 03. = Df 

*381. h :u(x$)y . = ,u = x%y 

*38 101. m. u y) x . = . u = x % y 

*3811. h . = = 

*38 12. I" . E ! x% *y . E ! %y*x 

*3813. h : u € x ? “a . = . (gy) . y ea . u = x%y 

*38131. y“a . = . (gar) .xe a . u = x%y 

[(*3801)] 

[(*3802)] 

[*381 101 .*30-3] 

[*3811 .*14-21] 

[*381 .*37 1] 

[*38 101 .*37 1] 
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*38 2. 
77 

[(*3803)] 

*3821. h . a J y = « |('.(.c) .x€a.M = .i-Jy| [*38-2131] 

*3822. h.a?‘y = ?y‘* = a*y 
77 77 77 

[*3811] 

*3823. KK!a?‘y.E!¥/,‘« 
77 77 

[*3.v22. *14*21] 

*3824. 

JJem. 
. *.382 . *37-29 . Transp .^hglo^.D.gla 

K . *38-21 . Dhj-<a.D.(/}y)fa{y. 

[*io-2+] 

K.(]>.(2).Dh.Prop 

(1) 

(2) 

*38 3. h .a £“£-7 |<gy).ye£.7 = a $y| = 7 |<3'/) • V * £ . 7 = ?y“a| 

(*38 13 2] 

*38 31. i-. ?y“* - 71(3«) •«<*• 7 - « ? y) - 7 l(aa) •a * * • 7-S y“«l =* ¥ y‘“* 

[*38 131 -2. *37 103] 



NOTE TO SECTION D 

General Observations on Relations. The notion of “relation” is so general 

that it is important to realize the different sorts of relations to which the 

notations defined in the preceding section may be applied. It often happens 

that a proposition which holds for any relation is only important for relations 

of certain kinds; hence it is desirable that the reader should have in mind 

some of the principal kinds of relations. Of the various uses to which different 

sorts of relations may be put, there are three which are specially important, 

namely (1) to give rise to descriptive functions, (2) to establish correlations 

between different classes, (3) to generate series. Let us consider these in 
succession. 

(1) In order that a relation R may give rise to a descriptive function, 

it must be such that the referent is unique when the relatum is given. 

Thus, for example, the relations Cnv. It, R, D. d. C, Rt, defined above, 

all give rise to descriptive functions. In general, if R gives rise to a 

descriptive function, there will be a certain class, namely (I*R, to which 

the argument of the function must belong in order that the function may 

have a value for that argument. For example, taking the sine as an illustra¬ 

tion, and writing “sin‘y” instead of “sin y.” y must be a number in order 

that sin‘y may exist. Then shi is the relation of y to x when .x-sin‘y. If 

we put a = numbers between - tt/2 and tt/2, both included, sin [ a will be the 

relation of * to y when * - sin'y and - tt/2 sy * tt/2. The converse of this 

relation, which is a lain. will also give rise to a descriptive function; thus 

(a ”1 sin)‘x =» that value of sin“»a; which lies between -tt/2 and tt/2. This 

illustrates a case which arises very frequently, namely, that a relation R 

does not, as it stands, give rise to a descriptive function, but does do so 

when its domain or converse domain is suitably limited. Thus for example 

the relation “parent” does not give rise to a descriptive function, but does 

do so when its domain is limited to males or limited to females. The relation 

“square root,” similarly, gives rise to a descriptive function when its domain 

ih limited to positive numbers, or limited to negative numbers. The relation 

“wi*f gives rise 10 a descriptive function when its converse domain is limited 
to Christian men, but not when Mohammedans are included. The domain 

of a relation which gives rise to a descriptive function without limiting its 

domain or converse domain consists of all possible values of the function; the 

converse domain consists of all possible_arguments to the function. Again, if 

R gives rise to a descriptive function, R<x will be_the class of those arguments 

for which the value of the function is *. Thus Zhi‘x consists of all numbers 
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whose sine is ./•, i.e. all values of sin-1 x. Again, sin“a will be the sines of the 

various members of a. If a is a class of numbers, then, by the notation of *38, 

2 x “a will be the doubles of those numbers, 3 x “a the trebles of them, and 

so on. To take another illustration, let a be a pencil of lines, and let R‘x be 

the intersection of a line x with a given transversal. Then Rila will be the 

intersections of lines belonging to the pencil with the transversal. 

(2) Relations which establish a correlation between two classes are really 

a particular case of relations giving rise to descriptive functions, namely the 

case in which the converse relation also gives rise to a descriptive function. 

In this case, the relation is 44one-one," i.e. given the referent, the relatum is 

determinate, and vice versa. A relation which is to be conceived as a correla¬ 

tion will generally be denoted by N or T. In such cases, we are ns a rule less 

interested in the particular terms x and y for which xRy, than in classes of 

such terms. We generally, in such cases, have some class fS contained in the 

converse domain of our relation S. and we have a class a such that 

In this case, the relation .S’ correlates the members of a and the members of 

/$. We shall have also /$ = .S,<4a, so that, for such a relation, the correlation is 

reciprocal. Such relations are fundamental in arithmetic, since they are used 

in defining what is meant by saying that two classes (or series) have the same 

cardinal (or ordinal) number of terms. 

(3) Relations which give rise to series will in general be denoted by P 

or (}, and in propositions whose chief importance lies in their application to 

series we shall also, as a rule, denote a variable relation by P or Q. When 

P is used, it may be read as 44 precedes." Then P may be read " follows,” 

P*x may be read 44 predecessors of x." P*x may be read " followers of x. 

1 VP will be all members of the series generated by P except the last (if any), 

(I‘P will be all members of the series except the first (if any), C‘P will be 

all the members of the series. P“a will consist of all terms preceding sonic 

member of a. Suppose, for example, that our series is the series of real numbers, 

and that o is the class of members of an ascending series xl% .ra, ... xv. 

Then Pila will be the segment of the real numbers defined by this series, i.e. 

it will be all the predecessors of the limit of the series. (In the event of the 

series xlt .r2, xs, ... xy, ... growing without limit, Ptla will be the whole series 

of real numbers.) 

It very often happens that a relation has more or less of a serial character, 

without having all the characteristics necessary for generating series. Take, 

for example, the relation of son to father. It is obvious that by means of 

this relation series can be generated which start from any man and end with 

Adam. But these series are not the field of the relation in question; more¬ 

over this relation is not transitive, i.e. a son of a son of x is not a son of x. 

If, however, we substitute for 44 son ” the relation “descendant in the direct 
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male line ” (which can be defined in terms of “ son ” by the method explained 

in *5)0 and *91), and if we limit the converse domain of this relation to 

ancestors of x in the direct male line, we obtain a new relation which /« 

serial, and has for its field .r and all his ancestors in the direct male line 

Again, one relation may generate a number of series, as for example the 

relation “x is east of y.” If x and y are points on the earths surface, and in 

the eastern hemisphere, this relation generates one series for every parallel 

of latitude. By confining the Held of the relation further to one parallel of 

latitude, we obtain a relation which generates a series. (The reason for 

confining x and y to one hemisphere is to insure that the relation shall be 

transitive, since otherwise we might have x east of y and y east of * but x 
west of z.) 

A relation may have the characteristics of all the three kinds of relations 

provided we include in the third kind all those which lead to series by some 

such limitations as those just described. For example, the relation + 1 

<,n v,rtue of the notation of *38) the relation ofx+1 to x, where x is 

supposed to be a finite cardinal integer, has the characteristics of all three 

kinds of relations. In the first place, it leads to the descriptive function 

(-f I)x, %.e. x+l. In the second place, it correlates with any class a of 

numbers the class obtained by adding 1 to each member of a, t.e. (+ l)«a. 

This correlation may be used to prove that the number of finite integers is 

infinite (in one of the two senses of the word “infinite”); for if we take ns 

our class a all the natural numbers including 0, the class ( + 1 )“a consists of 

all the natural numbers except 0. so that the natural numbers can be corre- 

ated with a proper part* of themselves. Again, the relation + 1 may be used, 

like that of father to son, to generate a scries, namely the usual series of the 

natural numbers in order of magnitude, in which each has to its immediate 

predecessor the relation +1. Thus this relation partakes of the characteristics 
ol all three kinds of relations. 

l.e. a part not the whole. On this definition of infinity, *ce «laJ4. 



SECTION E 

PRODUCTS ANT) SUMS OF CLASSES 

Sn minnry of Section R. 

In tin* present section, we make an extension of a r\ /3, a v &, R r* S, R sj S. 

(liven a class of classes, say k, tin- product of k (which is denoted by />**) is 

the common part of all the members of k. i.e. the class consisting of those 

terms which belong t*» every member uf «. The definition is 

P*k = .?■ (a e « . Da.xta) Df. 

If x has only two members, a and f3 say, p*x = a n (3. If k has three members. 

a, f3. y. then p*x » a r\ (3 r\ y ; and so on. But this process can only be continued 

to a finite number of terms, whereas the definition of p*x does not require 

that k should be finite. This notion is chiefly important in connection with 

the lower limits of series. For example, let \ be the class of rational numbers 

whose square is greater than 2. and let *• xMy " mean "./•< //, where x and y 

ationals.’ Then if j <X. M*x will be the class of rationals less than x. are 

Thus M**\ will be the class of such classes as M*.r, where xe\. Thus the 

product of which we call will be the class of rationals which 

are less than every member of X. i.e. the class of rationals whose squares are 

less than 2. Each member of Mtf\ is a segment of the series of rationals, and 

y>‘J/“X is the lower limit of these segments. It is thus that we prove the 

existence of lower limits of series of segments. 

Similarly the sum of a class of classes k is defined as the class consisting 

of all terms belonging to some member of k ; i.e. 

£ Ka«) •« « * Df, 
i.e. x belongs to the sum of k if x belongs to some k. This notion plays the 

same part for upper limits of series of segments as plK plays for lower limits. 

It has, however, many more other uses than and is altogether a more im¬ 

portant conception. Thus in cardinal arithmetic, if no two members of k have 

any term in common, the arithmetical sum of the numbers of members possessed 

by the various members of k is the number of members possessed by s*/c. 

The product of a class of relations (X say) is the relation which holds 

between x and y when x and' y have every relation of the class X. 'I he 

definition is 
p*\ = ^(R€\.'DJt.xRy) Df. 

The properties of p‘\ are analogous to those of pgx, but its uses are fewer. 



SECTION E] PRODUCTS AND SUMS OP CLASSES ;$();{ 

The sum of a class of relations (X say) is the relation which holds between 

•r and y whenever there is a relation of the class X which holds between v. 
and y. The definition is 

s'\ -= ZT} !(g.R) . /? e \ . .rIt//\ Df. 

This conception, though less important than is more important than ,Y\. 

I he summation of series and ordinal numbers depends upon it. though the 

connection is less immediate than that of the summation of cardinal numbers 
with s‘/c. 

Instead of defining />'«. s'*. ,V\. i'x. it would be formally more correct to 

define p, s, pnud s. which are the relations giving rise to the above descriptive 
functions. 1 hus we should have 

p = & (/? = £ (a « * . . .r , o)J Df> 

whence we should proceed to 

h : 0pK . 2 ./3 = 2(a€K.Da.xea), 

and h . E ! p*K. 

But in cases where the relation, as opposed to the descriptive function, is 

very seldom required, it is simpler and easier to give the definition of the 

descriptive function in the first instance. In such cases, the relation is always 

tacitly assumed to be also defined; i.e. when we give a definition of the form 

IVx * S*x Df, 

where S is some previously defined relation, we always assume that this 
definition is to be regarded as derived from 

R = ti2(u-S*x) Df. 

In addition to products and sums, we deal, in the present section, with 

certain properties of the relations li , and | S. the meanings of which result 

from the notation introduced in .38. Such relations are very useful in 

arithmetic. 1 he reason for dealing with them in the present section is that 

a large proportion of the propositions to be proved involve sums of classes of 
classes or relations. 



*40. PRODUCTS AND SUMS OF CLASSES OF CLASSES 

Sum in tin/ o/' *40. 

In this number, wo introduce the two notations (explained .above) 

/>** =/(a€ * .D«./(o) Df 

sl< = .7 '(%|a). a € * . xe aj Df 

Both these notations will hi* (bund increasingly useful as we proceed, but s‘k 

remains more useful than //* throughout. It is reipiired for the significance 

of plK and .*‘* that * should Ik- a class of classes. 

In the present number, the most useful propositions are the following: 

*40 12. b : a e * . D . />** C a 

l.e. the product of * is contained in every member of*. 

*40 13. b : a < * . D . a C *‘* 

l.e. every member of* is contained in the sum of *. 

*40 15. b (3 C plK .= : 7 f < . Dv . ^ C 7 

l.e. & is contained in the product of* if /S is contained in every member 

of *, and vice versa. 

*40 151. b s*k C/3. = : 7 e * . Dy . 7 C 

l.e. the sum of* is contained in if every member of * is contained in 

and vice versa. 

*40 2. I-:« = A.D. p‘x = V 

l.e. the product of the null-class of classes is the universal class. This may 

seem paradoxical at first sight, but it is really not so. The fewer members * 

has, the larger, speaking generally, //* becomes. If * has no members, then 

* has no members to which a given term x does not belong, and therefore x 

belongs to //*. 

*40 23. b : a ! * . D . />** C .v‘* 

l.e. unless * is null, its product is contained in its sum. 

*40 38. b . R‘V* = 

This proposition is very often used in arithmetic. What it states is as 

follows: Given a class of classes *. take its sum, s*k, and then consider all the 

terms that have the relation R to some member of s‘tc; this gives the class 

Rtts,K\ next, take each separate member of *, say a. and form the class R“a, 

consisting of all terms having the relation R to some member of a. The class 

of all such classes sis R“a, for various as which are members of *, is Rlit<\ 

the sum of this class, by the above proposition, is the same as RlisiK. 

*40 4. b E !! . D . s*R“0 = £ {(fly) .ye&.xe R‘y) 

This proposition requires, for significance, that R‘y should always be a 
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class. The proposition states that, if R<y always exists when ye/3. then the 

sum ot all classes which have the relation R to some member of 0 consists of 

all members of such classes as i£‘y, where y e 0. 

*40 5. b .s‘ft“/9 = R“0 

This proposition results from *404 by substituting 7? for R in that 
proposition. 

*40 51. b . p‘~R“f3 = £ |y € /9 . . xRy j 

In virtue^of *40*5, p*R**0 is correlative to R“0. Thus if R is a serial 

relation, pfR“0 consists of terms preceding the whole of 0, and R“0 consists 

ot terms preceding part of >9. If >9 has a lower limit, it will be the upper limit or 

maximum ofp'R1*^; if 0 has an upper limit, it will be the upper limit of R“0. 

*40 61. b : g ! /9.3 C R“&.p*R“& C 11“ 0 

In this proposition the hypothesis is essential, since, if 0 = A, p‘R“0 = V 
and Rit0 *= A. 

*4001. 

*4002. 

*401. 

*4011. 

*4012. 

Dem 

*4013. 

Dem. 

*4014. 

*40141. 

*4016. 

Dem. 

p*K = £{a€K.^a.xea) Df 

*‘*-*f<3«)-«€*.x€a) Df 

h * ep‘* . = : a e *. 3. . * < a [*20 3 . (*40 01)] 

h : x e s‘k . 3 . (ga) .atK.xea [*20 3 . (*40 02)] 

b : ae k . 3 C a 

b . *401 . *101 . 3 b z.xtp'tc .3:ae*.3.a:ea:. 

[Comm] 3h:.a«*.3:««p‘*.3.*€a 
b . (1) . *1011-21 . *221 ,3b. Prop 

b:a««.D.aC 

b . *40*11. *10*24 .Db:a«*.*«a.D.#e s*k : 

3b :.ae k.D zxea.D .X€s‘/c 

b . (1) . *1011-21 . *221 .*3 b . Prop 

braex.arepSc.D.arca [*40 i2.Irap] 

bsae^.aea.D.xe^ [*40 11 . *10 24] 

b:.£Cp‘*. = zyeK.Dy.ffCy 

b . *401 .Db::^C p*K 

[*11-62] 

[*43'84.*11 *33] 

[*11-2-62] 

[*22-1] 
R& w 

x € 0 . 3X : y € K . 3V . x e 7 

(#, y) z x e 0 .yex.D.xeyz. 

*• (*, y): y e * . x € /3. D . x e y z. 

y c * . z x e 0 . . x e y z. 

7 e * . 3y . £ C y :: 3 b . Prop 
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*40 151. \-z.8‘KC&. = :ycK.Oy.yC/3 

Dem. 

h . *40-11 . D Y :: s*k C /3 . s (37) . y€K.xcy.Ox.x€@:. 

[*10 23] = (7, x) 7 c k . x e y . D . xe fi 

[*11-62] h:.(7) yek . D : (a*) :.r« 7 , D ..re/?:. 

[*22* 1) =:.7e*c.Dy.7C/i::DK Prop 

This proposition is frequently used. 

*40 16. hsxCX.D. C 

Dem. 

Y . *10*1 . D f-:: Hp • D 7 e k . D . 7 € X 

[Syii] ^ • • y€\,0.xey:D:y€K,D.xty (1) 

t-.(l).*10*11*21 . D 

h :: Hp . D (7) :.7eX.D.j;€7:D:7€/c.D..rc7:. 

1*10 *27] D z. (y) z y e \ . D. x * y z D: (y) z y € #. D • x e y :• 

[*401] D x e p*\. D . x ep*K (2) 

K.(2).*10*11*21 .DK Prop 

*40161. huCX.D.^CA 

Dem. 

t* • *10*1 .Dh. Hp.D:7i«.D.7e\: 

[ Fact] D:7€/c.arc7.D.7cX.xe7: 

[*10*11-28] D : (37)-7« * • xey. D . (37). 7 « X - x ey z 

[*10-11] D : ares** . D . xes'X 

h. (1). *1011*21.3 h. Prop 

*40-17. H .p‘* w p'X C p*(K n X) 

Dem. 

Y . *22-34 . D I- :: x e/*** w p*\ . = :.xep‘* . v . xep‘\ 

[*401] — • • 7€/c.DT.a*t7:v:7€X.Dv.a:€7:. 

[*1041] D:.(7):.7«/c.D.xcy:v:7€X.D..re7:. 

[*4*79] D (7) : 7 e « . 7 e X . D .x€7 

[*22-33] D :.(y):ye * r\\.D .xty z. 

[*401] D X€p*(tc n X) 

h.(l). *10*11 .DK Prop 

(1) 

(1) 

*40171. f-.s‘^s'X = sVuX) 

Dem. 

h . *22-34 . D h :: ares'* us‘X. = :.xes‘>c.v.xes‘X:. 

[*40-11] = :. (37) . 7 e * . x e 7 : v : (37) . 7 e X . ar e 7 

[*10-42] = (37) zy€K.xey.v.ye\.X€yz. 

[*4*4] — :• (37) :• 7€ K • v • 7 6 X : xe 7 
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[*22-34] =:-(37)-7**«X...c<r7:. 

[*4011] s:.X£s‘(*v/X)::DI-.Prop 

*40-18. f-. p\K yj \) — p*K r» p*\ 

Bern. 

I-. *40-1 . D t-:: x £/.<(* u X). = y e K w x x e .. 

[*22-34] = s. (7)7 * «. v. 7 £ x: D. x £ 7 

[*4-77] s ”<7):-7«*-3.x£7:7£X.D.x£7:. 

[*10-22-221] 5 :-(7):7«*- 3.x£7:.(7)!7ex. D.X£7:. 
[*401] =■. xep‘K .xcp‘\:. 

[*22-33] = z.xep'x n:: D I-. Prop 

*40181. H.»‘(*«\)C*‘*na«X 

Dem. 

= :-(H7)-7* *-7«X.*«y:. 

r f 1 ^ (37) •yctc.xey: (37) .yeX.xey:. 
[*4° 11 -*^2-33] D:.ze5‘*As‘\::Dh. Prop 

*4019. hs:*<^.2:.7<ie.DT.7C^Ol.a.^ 

lhis proposition is the extension of *22*6. 
Dem. 

h. *40-151 . D 

H ::7« *- .**£:. 9 :.s‘*C/9. D$.xeS 
.*10-1 . Dh D : *«*C«‘*. D : 

307 

[*22-42] 
3:xfs' 

h . *22-46 . D h x t s'k . s*k C /3 . D . x e >9 

[Exp] C£.I>.*«/9:. 

[*1011-21]Dh:.xe^.D:^C,i.Da.,^ 
[* • (2) • (3) • D h Cft.Da.xcfi: = .xc s‘k 
h.(l).(4).Dh.Pr0p 

*40 2. H : * = A . D = V 

Dem. 

K *24-5-51. 3 I-Hp. D : ~ (ga). o £ «: 

1 (°) 5«£*.3.xta: 
t*40’1] 3:xf/,V 

l-.(l).*10-11-21. Dh:Hp. D.(x).x£P‘*. 

[*24'14] 3 . p‘K = V: 31. Prop 

*4021. l-:* = A.3.*‘x = A 
Dem. 

rH ‘ *24®1 • 3t- = Hp.D.~(aa).a£«. 
[*10-6.Transp] 3 . ~(ga> . a ex . x e a . 

(1) 

(2) 

(3) 
(4) 

(1) 

20—2 
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(1) [*40- 11 .Transp] D.x~€s*k 

h . (1). *10*11*21 . D h : Hp . D . (x) . x~ cs'k . 

[*2415] D . s** = A:Dh. Prop 

In the above proposition, the two A’s are of different types, since k is of 

the type next above that of s‘*. Tims it would be more correct to write 

hjf-Aft CIs . D . s*k = A r\ V. 

But in the case of A it is not very important to keep the types distinct. 

*40 22. h : A e «. D. p*K = A 

Dem. 

h. *40-12. Dh : Hp . D . />** C A . 

[*24‘13] D ,p*K = A : D H . Prop 

In this projjosition, the two A’s are of the same type. 

*40-221. h : V € * . D . - V 

Dem. 

h . *4013 . D h : Hp . D . V C s*k . 

[*24141] D . s*k = V : D V . Prop 

*40 23. h : g ! * . D . />‘* C 

Dem. 
H . *40- 12*13.DH:ae«r.D. p*K C a . a C s*k . 

[*22-44] 

[*10-11-23] D H : (ga) .ac«.D .//* Cs‘*:DI-. Prop 

Observe that the hypothesis g ! * is essential to this proposition, since 

when k = A, p*tc = V and s*k = A. Thus 

h s a ! * . ■ . p*K C s'*. 

*40 24. h.g!< :7f<.Dy.i9C7:D./9C«‘« 

-Dew. 
h.*40-15. Dh:.7€*.Dv./3C7:D.£C/j‘* (!) 

K *40-23. Dh:g!*.D./)‘«C#‘* (2) 

h . (1). (2). D I-: Hp . D . /9 C/>‘* .C . 

[*22-44] D.j8Cs‘/t:Dh. Prop 

The above proposition is used in the proof of *215*25. 

*40 25. h:x€5V. = .g!/<oa(a:ea) 

Dem. 

*4026. 

Dem. 

h . *22-33 .Dh:g!/tna(a;fa) 

[*203] 

[*4011] 

V : g ! s‘k . = . (ga) . a c * . g ! a 

S .(a7>-7«***«7* 
= . x e s‘tc :Dh. Prop 

h . *4011 .Dh:.g! s*k . = : (gx) s (ga) . a c * . x c a : 

[*11-23-55] = : (ga) : a e * : (gx). x € a s 

[*24-5] s : (ga) .ae/c. glas.DK Prop 
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The following proposition is used in the proof of *210 51. 

*40 27. h a s*/c ™A. = :y€<.DY.on<y = A 

Dem. 

b. *24 311 . D 

h :: a r\ s'k = A . = s‘tc C - a 

[*22-1-35] = :.x e s*k . Dz . e a 

[*401] = (g7).r€4c. xey. D, 

[*10 23] = 7 c * . *€7 . Dx y . #*■'*' e a 

[*11-2-62] s:.7f*f.DY:a:«7.Dr.^<vfa:. 

[*24-39] ss-7€/f.Dy.or»7 — A::DH. Prop 

The following propositions are only significant when R is a relation whose 

domain consists of classes, for they concern or s‘R“a, and therefore 

require that R“a should be a class of classes. 

*40 3. h . p*Rli(a w 0) =p*R“a « [*37*22 . *40 18] 

*40 31. 1-. s'R'^a u 0) = ^ [*37 22 . *40 171] 

*40 32. h . p*R“a u C />'/*“(<* n 0) 

Dem. 

I-. *37-21.3 h . R“(a r> 0) C «“a « R“0 . 

[•4016] Oy.p‘(R“ar>R“/3)Cp‘Ii“(an/3) (1) 

I-. *40-17 . D t-.p‘R"a u p'if# Cp‘(R“a n R“/3) (2) 

I- . (1) . (2) . *22-44 . D h . Prop 

•40 33. h . s‘R“(a n R) C s‘R"a n s‘R“(3 [*37 21 . *40161 . *40181 ] 

The following propositions no longer require that the domain of R should 
be composed of classes. 

*40 35. b. p'R'^K = £ \0 € k . D* . * < R“0\ 

Dem. 

h . *401.31- ■..X€P-R‘"K. = iy(R<"K.^y.x(y. 

[*37 103] = -.(a/3)./3'*.y = R“0.Oy.X(y: 

[*10-23] =:0€K.y = R“R.^0 r.X(y: 

[*13191] =:/9 €K.O0.xeR“0 (1) 

K(l). *1011 .*20-3.31-. Prop 

*40 36. * ■ s'R“‘k=S [(■&&). $eK.xeR"0\ [Similar proof] 

*40 37. I- . R"p‘k C p‘R‘“k 

Dem. 

V . *37*1 ,D\- zzxe R“p‘K . = (gy) . yep‘K . xRy 

[*401] = (gy) z 0 c k . . y € 0 : xRy 

[*10-33] = (gy) z.(0)z0c*.D.y€0z xRy .. 

[*1126] ^:.(/9):*(a y)y e 0 z xRy z. 
[*5-31] D (£) .. (ay) z0ck.D.y€0. xRy 
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[*1037] D (/3)£ e * . D . (gy) .y e/9 . xRy :. 

[*371] D <£): # e *. D . x e /?“£ 

[*40*35] D x e y>‘7:: Z> k . Prop 

*40-38. k . P‘V* = s*R“€k 

J)em. 
k . *37*1 . D k :: x e R*‘s‘< . = (gy) . y € . xPy 

[*40 11] = s. <gy):-(ga) - at* .yea i xRy z. 

[*11*0] = :. tga)a e k : (gy) .yea. xRy :. 

[*37 1] 5 (go). a e k . xe R“a z. 

[*40-36] = .res*Rt€tK ::Dh. Prop 

This proposition is frequently used in the proofs of arithmetical pro¬ 

positions. 

*40 4. k : E!! R“0 . D . t*R“R = .7 |<gy). y e /3 . x e R*y\ 

This proposition is only significant when D*R C Cls. 

Vein. 
h . *37*6 . D k : Hp .D.R“/3 = a |(gy) .yeff.a- R*y] (1) 

h.(l). *4011 . D 

k :: Hp. D :.x es‘P“/9 . = : (ga): (gy). y e f3 . a = R‘y z x e a z 

[*11-6] = s (gy) :y «/9 : (ga). a - P‘y • : 

1*14-205] = : (g y). ye 0 .xe R*yz: D I-. Prop 

*40-41. k ; E !! R“/3. D . = 7 \y e £ . . or e R‘y\ [Similar proof] 

*40-42. k : (x). R*x = Iu.c \j Q*x . D . s*R“a =* *‘(P“a v Q“a) = ^P^a ^ s‘(?“a 

Dem. 

k . *14-21 . D k : H p . D . (x). E ! R‘x . E ! Plx. E ! Q'x (1) 

k . (1). *40-4 . D k : Hp. D . s‘Rua = 7 {(gy) .yea.xe R*y\ 

[Hp] = 7 {(gy) .yea.xe P‘y u Q*y\ 

[*22-34] = 7 j(gy) :yea:xe Ply .v.xe Q‘y\ 

[*4-4.*10-42] = 7 |(gy) . y e a . x e P‘y . v . (gy) .yea.xe Q‘y) 

[< 1 ).*40-4] = 7 {x e s‘P“a . v . x e s‘G“«i 

[*20-42.*22-34] = s‘P“a u s*Q“a 

[*40171] = st(P“a » Q“a) : D k . Prop 

This proposition is used in *40-57, where we take R = C, P = D, Q = H. 

*40 43. h :: E !! P“/9 . D :. s'R^P C a . = : y e /9 . Dy . P‘y C a 

Dem. 

k . *37-63 . DH:: Hp . D :. y e . Rly C a : = : 7 e P“£ . Dy. 7 C a : 

[*40151] = : C a :.0 k . Prop 

*4044. f-::E!!ii“/9.D:.aC />‘P“£ . = : y e >9 . Dy . a C P‘y 

Dem. 

k . *37-63 . D k :: Hp . D :. y e £ . Dy . a C R*y z = : 7 e . Dy . a C 7 : 

[*4015] =zaC p‘R“& :: D k . Prop 
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The following proposition is used in the proof of *8444. 

•40 45. h y < 0.3y . R-y c S‘y : 3 . s‘R“0 C s‘S“0 

Dem. 

h • *14-21 . 3 h Hp . 3 : E !! S"0 . E !! R"0 : (1) 

[*37 «2.*4013] D:yffl.D„.S‘jC s‘S"0 : 

CHP] D:y^.3„.fi‘yCs'S“^: 

[*40-43.(1)] 3 : *‘#“,8 c s‘S“0 3 I-. Prop 

The following proposition is used in the proof of *94-402. 

*40 451. h :.yf0. 3„. R‘yC S‘ y: 3 .p‘K“ 0Cp‘S“ 0 

Dem. 

I- . *14-21 . *37-62 . *40 12.3 1-Hp . 3 : y f 0.3 . p‘R“,9 C R‘,j. 

[HPl 2.p‘R“0CS‘y. 

1*40-44]^ 3 : p‘R"0Cp‘S“0 Dh . Prop 

*40 5. 1-. S>R“0 = R",3 

Dem. 

h . *32 12 . *40-4 Oh. s‘R“0 _ 2 ;(ay). y ( 0 . * e R'y} 

[*32-18] = * i(3y) ■ y e 0. x/iyj 

[(*37 01)] - .31-. Prop 

*40 51^ I- .p‘R"0 - 5) (y . 3y. «.Ry) [*32 12 . *40 41 . *3218] 

p‘R“0 is the class of terms each of which has the relation R to every 

member of 0, just as R“0 is the class of terms each of which has the relation 

R to some member of 0. In the theory of series, p‘~R“0 plays an important 

part, correlative to that played by R“0 (which is by *40 5). If 0 is 

a class contained in a series whose generating relation is R, p‘ll“0 will be 

the predecessors of all members of 0, while R"0 will be the predecessors of 
some /9. 

*40 52. V.s‘R“0 = R‘‘0 [Proof as in *40 5] 

*40 63. h . p‘%‘0 _$(*«£. 3.. xRy\ [Proof as in *40-51] 

*40 64. t-.p7R‘‘0 = i(0CR-x) [*40-51. *32-181] 

*40 65. h.p'ft“a.J(aCff,) [*40-53 . *3218] 

From this point onwards to *40 69, the propositions are inserted on 
account of their use in the theory of series. 

*40-66. I-. ,‘C“\ - F“\ [*33-5 . *40 5] 

In the above proposition, the conditions of significance require that X 
should be a class of relations. 

*40 67. h . «‘C“X = «‘(D“X u d“X) = *‘D“X w «‘d“X [*40-42 . *3316] 
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*40 6. h . p*R"A = V . p*R" A = V [*37 29 . *40 2] 

*40 61. I-: a ! &. D . p‘“/9 C 7*“/9 . p‘/F“/9 C tf“/9 

Dem. 

h. *3773. Dh: Hp.D.g !/?‘/9. 

[*40-23] D . y/"7e“/S C $‘7?‘/9. 

[*40 5] D./>‘7?“/9C/e“/9 (1) 

Similarly b s Hp. D . p*R“& CR“& (2) 

h.(l).(2).Dh. Prop 

*40 62. H : 3 ! /9. D . p‘/?‘/9 C C"/* . //v7“/9 C C*‘/* 

[*40 61 .*3715 16. *33 161] 

The two following propositions (*4063-64) are used in proving *4065, 

which is used in *204*63. 

*40 63. I* s a ! £ - (J'A . D • p<R“0 - A 

Dem. 

H . *33*41 • Transp • D h : x*w CP7?. D,R‘x= A (1) 

K *37-704. D./?‘xe/?“/9 (2) 

h . (1) . (2). *22-32 . D h :xe/9- a*/;. D . 7?‘x e/?“£. 7?‘x = A . 

[*20*57] D. Aeli“0. 

[*40*22] D.p‘7?“/9-A (3) 

h. (3). *1011-23. D h . Prop 

*40 64. h : 3 ! £ - D*R . D . p‘7F“/9 - A [Proof as in *40 63] 

*40 65. b : a ! £ - C”/* . D . p‘~R“0 = A .p‘tf“/9 = A [*40 6364. *33*16] 

*40 66. b aCp'R^fi . = :xea . ye/9. 3x,y .x/fy 

Dem. 

h . *40-51 . Dh:aCp‘/*“/9. e :. a C2(y e 0. !>„. xRy) 

[*20*3] = :.xea. Dx:y e/9. D„ .x/fy 

[*1162] = :. (x, y):. xe a. y e/9. D . x/2y ::DK Prop 

*40 67. b /9 Cp<R“a . = : xe a . y e/9 . . x7?y : = . a C 

[Proof as in *40 66] 

*40 68. b .an p*P“a C Tu<ptPita 

Dem. 

h . *4053 . D b x e a n p*Plta .D:xea:yea.Dy. yPx: 

[*10 26] D : xPx: y e a . Dy . yPx: 
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[*10-24] 

[*40'58.*37‘105] 

This proposition is used in 

D zPr : y *a . D„ . yPz : 

D:.r€?yK:.Dh.Prop 

the theory of series (*2062). 

*40 681. h . a a p‘P“a C P“p*P“a [Proof as in *40 68] 

The following proposition is used in *21156. 

*40 682. h:g!an p‘P“& . D . /9 C P“a 

Dem. 

h . *40-53 . D h Hp . D : (gar) : a : y e/9 . ^ : 

[*5 31 ] D : (go;) : y e & , D„ .xe a.yPx: 

[*11-61] D :y e/3 . Dv . (g#) .xca.yPx. 

I>37-1] 3y.y«P“«:.Dh.Prop 

*40 69. h : g ! C‘P a p^P^a . s . g ! P. g * p?P“a 

Dem. 

h . *33-24 . *24-561 . D h : g ! C‘P a p*P“a . D . g ! P. g ! p**P“a (1) 

h . *40 62 . ^ : 3 * a • 3 !p‘^P“a . D . g ! C*P ap*Pf*a (2) 

h . *40-6 . D h a = A . D : C‘7^ a p*P“a - C‘P: 

[*33-24] DsgfP.D.glOPAj/P"* (3) 

H . (2) . (3) . *4-83 . D h : g ! P. g ! p‘P“a . D . g ! C‘P a ;/P“a (4) 

h.(l).(4). D 1-. Prop 

The above propositions concerning p‘~R“/3 and p‘fr‘/3 of course have 

analogues for s‘7P‘/3 and s‘/T“0. But owing to *40 5. these analogues are 

more simply stated as properties of P“/9 and R**/3. Thus, for example, 

*37-264 is the_analogue of *40 67. The above propositions concerning 

p‘H“0 and p‘P“/3 will be used in the theory of series, but until we reach 
that stage they will seldom be referred to. 

*40 7. t-.8‘af“/3 = 2[('3ix,y).xca.yt0.z = x%y} 

Dem. 

h- *40 11 .*38-3. D 

Ks‘a£«/9~2((g 7,y).ye/3.y = ?y“a.*e7) 

[*38131] =2((a%*. y)-y€^.7*?y“a.®ea.2 = a:?y] 

[*13-19] =2 \('&x,y) . x e a . y e 0 . z = x%y) .O .Vrop 

This proposition is of considerable importance, since it gives a compact 

form for the class of all values of the function x%y obtained by taking * in 

the class a and y in the class >9. Thus, for example, suppose a is the class 

ot numbers which are multiples of 3. and >9 is the class of numbers which 

are multiples of 5, and xxy represents the arithmetical product of a; and y, 
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then 6*ax“/3 will be the class of products of multiples of 3 and multiples 

• »f •>, ?.e». the class of multiples of 15. Again suppose a and are both classes 

of relations; then will be all relative products R' S obtained by 

choosing R in the class a and .S' in the class /?. 

*40*71. V . .*< ?y“* = (s*k)$ ,j = ?y‘V* 

I Jem. 

V . *40-38 . *38*31 y“* = ?y“s‘* 

[*38*2) = (s*k) ? y. D f- . Prop 

Ihe hypothesis R“a Co, which appears in *40*8*81, is one which plays 

an important part at a later stage. In the theory of induction (Part II, 

Section E) it characterizes a hereditary class, and in the theory of scries it 

characterizes an upper .section (when combined with a C C‘R). 

*40 8 h a e * . I>. . R“a C a : D . R* V* C 

J)em. 

h . *37*171 . D h :: Hp .D:.a««.Da:xea. .r/fy. .yea:. 

[*11*62] D :. ae k .xt a .xRy . yea:. 

[*4013] 

[*4011 .* 10*23] D :.x c.s‘* . xRy . . yes** 

[*37*171] D ft-V*Cs‘* :: D h . Prop 

*40*81. I-:. a e * . D. . R“a C a : D . /{“/>'* C y‘* 

Dem. 

h . *37*171 . D h Hp . D :: a e * . D : x e a . x/fy. D . y e a :: 

[Exp.Comm] D :: x/?y .D:.ae«.D:«ea. D.yea:. 

[*2 77] D :. a e * . D . xe a : D : a e *. D . y e a (1) 

h . (1). *1011*21*27 . D 

h Hp.D zzxRy . D:.ae*.D«.xea:D:ae*.3«.yea:. 

D:.ar e/>‘* ■ D . y e/>‘* :: 

[Imp] D :: xcp‘* .xRy . D . y e y‘* 

h. (2). *37*171 . DH. Prop 

(2) 



*41. THE PRODUCT AND SUM OF A CLASS OF RELATIONS 

Summary of *41. 

Lhe propositions to be given in this number, down to *41 3 exclusive, are 

the analogues of those of *40, excluding those from *403 onwards, which 

have no analogues. Proofs will not be given, in this number, when they are 

exactly analogous to those of propositions with the same decimal part in *40. 

l he smaller importance of p*\ and *‘X. as compared with p‘\ and s‘X. is 

illustrated by the smaller number of propositions in *41 as compared with 
*40. 

Our definitions are 

*4101. Df 

*4102. a‘X=££| (nR).Re\.xRy] Df 

Of the propositions preceding *41 3, which are analogues of propositions 

m *40, the only two that are frequently used are 

*4113. 

*41161. h.VXGS.miRcX.^ji.RGS 

Of the remaining propositions of this number, which have no analogues 

in *40, the most important are *4143 44 45, namely 

D‘s‘X = s‘D“X, a‘i‘X = s‘CI“X, CVX=:^C“X. 

These propositions are constantly required in the theory of selections (Part II, 

Section D) and in relation-arithmetic. Most of the other propositions of this 

number are used only once or not at all. 

•4101. p‘\-H$(Re\.0R.xRy) Df 

•4102. i‘\~S${(aR).Rf\.xRy\ Df 

•411. b:.x(J,‘\)j/.s :Rt\.0B.xRv 

*41-11. I-:x(i‘\)y. = .(3R).Rtx.xRv 

*4112. I-:Re\.O.p‘\CR 

*41-13. 1-:Re\.3.RGi‘\ 

*41-14. \-:Re\.x(p‘\)v.O.xRy 

*41141. ^:Re\.xRy.O .x(i‘\)y 

*41-16. hi.Sep‘\.= -Rt\.0B.SCR 

*41161. \-t.i‘\GS.s-.Re\.0B.RGS 

*4116, h:XC/i.3, P*P Gy'X 

*41161. h:XC)i.D. s‘\ C i‘p 

*4117. H . p‘\ im pV Gj‘(Xn p) 
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*41171. H.s‘Xo.v‘/i = «‘(Xw/i) 

*41 18. h .//(X ^ n) = //X rt j/fx 

*41181. h.i‘(\ft/i)G4,‘Xrts‘/i 

*4119. h :: r (*‘X) y. = R € X . D* . 7? G S: D*. x£y 

*412. hsX- A.D.yVX- V 

*4121. H : X = A . D. i*X = A 

*4122. h:A<X.D./>‘X = A 

*41221. H : V € X . D . .*‘X = V 

*41 23. h : g ! X • D . yVX G *‘X 

*41 24. 1-a ! X: 7f « X . D,...S’G7? : D . »S G i‘X 

*41 25. h s .r(.v‘X)y . = .g!Xn R(j-Ry) 

*41 26. h : g ! «‘X • s . (g/?) • 7? e X • g ! 7? 

*41 27. h P A .v‘X ■ A . s : 7f « X. D* . P n 7J A 

*41 3. h . Cnv'yVX = y>‘Cnv“X 

Dein. 

h . *31131 . Z> 

h :.y (Cnv*yVX)x . = :x(/VX) y : 

[*411] = : P c X . D/f. xPy : 

[*31131] z : /?«X. D/?. y (Cnv‘7?)x: 

[*37 63.*31*13] = : 7Jc Cnv“X . D,.. y/'x : 

[*411] = : y (yVCnv“X)x :. D h . Prop 

*4131. h . Cnv'^X — i‘Cnv“X [Proof as in *41*3] 

*41 32. 1-. Cnv“//‘* - y>“Cnv‘“* [*41 3 . *37*354] 

*41 33. h . Cnv* W = *"Cnv‘“* [*41*31 . *37*354) 

*4134. h..v‘a1 “X = «1#‘X 

I Jem. 

h .*4111 .*38*13 . *13*195. D h x(*‘a "J “X)y . = : (gP). Pt X .x(a1 P)y : 

[*35*1] = : (gP) .PeX.xea.xPy: 

[*10*35] = : x € a: (gP). P c X. xPy : 

[*41*11.*35*1] = : x(a 1 s‘X)y3 H . P™P 

*41*341. H. i* fa“X = (s‘X)f*a [Proof as in *41*34] 

*41342. Ks‘[a“X = (s‘X)Ca 

jDent. 
h.*36*11 .*35*21 .DK.i‘ta“X = 6*‘a1 “fa“X 

[*41*34] = a] (i‘f* a“X) 

[*41*341] =a1(i<X)f‘a 

[*36*11] ' =»(s*\)^a.Df*. Prop 
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The following proposition is used in *85 *22. 

*41 35. h . s*M [“« = M fs*K 

Dent. 

h .*4111 .*3813 . D ..c(j!/[*a)y . 

[*35101] =.(3 «)-aeK.!/€a.xMy. 

[*40 ll.*3510l] = y:D(-. Prop 

*41351. = [Proof as in *41-35] 

*414. h . D‘/>‘X Cp‘D“X 

Dem. 

h. *3313. D 

h ::a?«D‘/>‘X. = 

[*411] = 

[*11-61] D 

[*3313] D 

[*40-41.*33 12] D 

May) :. 

(3y) : -/i € X. D* . xRy :. 

:. 7? e X . D* . (ay). */2y 

:. X. D* . art D‘72 :. 

:. xe p'D^X :: D h . Prop 

*4141. f-.(l‘;V\Cp‘a“X [Proofas in *414] 

*41-42. h . C‘p‘X Cp*C“\ 

Dem. 

K *33 132 .D I-:: 

[*411] 

[*10-41-221] 

[*4-78] 

[*11-61] 

[*33132] 

[*4041 .*33* 122] 

. a: e C‘;VX . = :: (ay) : a: (p‘\) y . v . y (p‘X) x :: 

= :: (ay):: R * X . Z)n • xRy :v:R€\.DK. yRx :: 

^ :: (3y) :: W s. 7£cX.} .xRyz v z Re\. D.ylixzz 

3 :: (ay) s: (R)J%«X. D : xRy . v . y/fcr :: 

D :: (/£) :: R e X . } : (ay) : xRy . v . yRx z 

3 : xe C‘R zz 

D :: xep‘C“\ D h . Prop 

*4143. \- .T>*st\ = s‘D“\ 

Dem. 

*4144. 

*4146. 

Dem. 

h . *33"13 . Dh.a:e D‘i‘X. 

[*4111] 

[*11-23-55] 

[*3313] 

[*40-4.*33 12] 

(ay)-*(*‘*)y: 

(ay) : (a^) - Re\. xRy z 

(aR) i Rc\: (ay) • xRy : 

(aR).R€\.xeD‘R: 

a€s‘D“X :. D H . Prop 

h . CPi‘X = s‘(I“X [Proof as in *4143] 

H . *3316 . D I-. C‘i‘X = D‘i‘X w d‘*‘X 

[*4143 44] = *‘D“X w «‘<I“X 

[*40-57] = *‘C“X. D I- . Prop 
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■*415. h . yVX lYfiG/Vs'X “u 
»» 

Dem. 

f- .*34 1 . D 

h :: x(//X /V/a) 2 . = :. (gy). x(/VX)y . y (/>»* 

[*41*1] = (gy) z.PeX.D?. xPy zQ(>a . Dv. y<?* 

[♦11*50] = :• <3.'/> s. (P. (?): P « X. D . xPy: <? ey . D. yQz:. 

[*11*37*39] 3 <3P) :• (P, (?): P € X . (? €/a . D . xPy. yQz 

[♦11*61] D (P, Q) s. P € X . Q e y. D . (gy) . .rPy . y(?* . 

[*34l] D..r(P|(?)2i. 

[♦13191] D (P. (?. P)P« X .(?«/*. P = Pj (?. D .xRz 

(* 11*21-35] D:.(P):(gP, (?). Pc X . (?*M . P = P| (?. D .xP; 

[*40-7] D s.(P): Pcs'X “y.’S.xRzz. tt 
[*411] D:.x(/>VX #</a) x :: D h . Prop 

*4151. Ks‘X|*y = iVXi‘V ■ I 
Dem. 

h . *34*1 . D 

1- ::x(«*X | r . = :.(gy).*(PX)y.y(*V)*:. 

[*41*11] 5 !* (ay)s- (3P) • p «* • jPy : (3<?) • <? * p • y<?*!* 
[*11*54] = (3y) •• OP* (?): p € X . xPy .Qcy. yQz 

[*11*24-27] = (gP, f?) :.*(gy). PtX. xPy .Qey. yQz 

[*10 35] 2 (gP, (?):. Pc X. (? c/a s (gy). xPy. y<?* 

[*341] a s.OP. (?): P « X . (? € /a . x (P | (?) 2 

[*13195] a :.(3P* (?. P). P«X. (?€/a- P = P| Q.xRz 

[*U-24.*40-7] = :.(gP). Res'X “y. xP* 

[*41*11] = :. x (iVX *V) * ss ^ H • Prop 
• a 

The above proposition, which is used in *92 31, states that, if X and /a are 

classes of relations, the relative product of the relational sum of X and the 

relational sum of y. is the relational sum of all the relative products formed 

of a member of X and a member of /a. 

The following proposition is used in *96111. 

*41-62. l-s.al^XGQ.srPeX.Dp.alPCQ 

Dem. 
K *351 .*4111. D 

h :: a*] 5‘X GQ. = :.x<a: (gP). P c X. xPy : D*,,,. x(?y 

[*10*35*23] = xea. P eX.xPy . Dj»tX>y. xQ)y 

[*351] = :• P eX.x(a]P)y. Dp,*,* • xQy :• 

[*11*62] = P c X. Dp. a] P G (? :: D h . Prop 
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The following proposition is used in *102 32 and in *160 401. 

*41-6. 1-,J 6 £ . Dy . 0 #*t/ . D . ,s*p«0 = t‘Q«0 ^ 

Bern. 

h .*37 6. *14-21 .*41 11 .*13 195. D 

h :: Hp. D :. w(«‘P“£) v. = : (gy). u € £. u (P‘y) „ . 

f1IpJ = : (ay) •yffi.u {Q‘y KJ R*It) V : 

3: <a*> • ue 0 •" W#)»•v • (ay) • y • e.«(/?<-/> v: 
[*3/ G.*41 11] = . U (i4Q**0) v.v.u v :: D h . Prop 



*42. MISCELLANEOUS PROPOSITIONS 

Sit m inn ry of *4 2. 

The present number contains various propositions concerning products and 

sums of classes. They are concerned chiefly with classes of classes of classes, 

or with relations of relations of relations. These .are required respectively in 

cardinal and in ordinal arithmetic. Thus *421 is used in *112 and *113, 

which are concerned with cardinal addition and multiplication, while *42*12*2 

are used in *1(50 and *l(i2, which are concerned with ordinal addition. *42 22, 

though not explicitly referred to, is useful in facilitating the comprehension of 

propositions on series of series of series, or rather on relations between relations 

between relations, which are required in connection with the associative law 

of multiplication in relation-arithmetic. 

*421. K*V‘*-*V* 

Here k must, for significance, be a class of classes of classes. The proposi¬ 

tion states that if we take each member, a, of *, and form sfa, and then form 

the sum of all the classes so obtained, the result is the same as if we form the 

sum of the sum of *. This is the associative law for s, and is (as will appear 

later) the source of the associative law of addition in cardinal arithmetic. The 

way in which this proposition comes to be the associative law for 5 may be 

seen as follows: Suppose k consists of two classes, a and suppose a in turn 

consists of the two classes £ and y, and £ of the two classes £' and y. Then 

6‘a ■* { v y. « £' v y. (This will be proved later.) Thus *•“* has two 

members, one of which is f v y, while the other is f v y . Thus 

s‘s“x = ((sjy)u((,\jy). 

But s*x has four members, namely £. y, g, y. Thus ***** = g v y u l; v y . 

Thus our proposition leads to 

which is obviously a case of the associative law. 

Our proposition states the associative law generally, including the case 

where the number of brackets, or of summands in any bracket, is infinite. 

The proof is as follows. 

Dem. 

h . *404 . D h :: x € ****** . = (ga) .ae/c.xes'ai. 

[*4011] = :.(ga):ae*:(g£).£ea.*e£:. 

[*11*6] = :. (g|) (ga) .ae/c.fea:*ef:. 

[*4011] = :-(gf)*f cs‘K.xe( 2. 

[*4011] = z.xt ***** :: D h. Prop 
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*4211. H . ptpt*x = p*s‘fc 

Deni. 

I- • *40 41 . D h x € pipliK . = 

[*40 1.*1162] = 

[*11*2.*1023] = 

[*4011] = 

[*40 1] = 

&€« • ^ .A'cp'Q : 

.ye/3 . .xey: 

<3£> • fi < k . 7 e (3 . Dy . .i- € y : 

y e s€k . Dy. x e 7 : 
X€p,s*K :.DK Prop 

This is the associative law for products. Supposing again, for illustration, 

that * consists of the two classes a, 0. while a consists of the two classes f. ,, 

and /3 of the two classes f. then />“* consists of the two classes £ n ,, and 

fn,’So that />'/>“* - (f - V) « <f n V). while p‘s‘K - f „ „ f' „ y. Thus 
our proposition becomes 

(£ A *?) ** (£' a V) — £ n *7 n £' r\ tf. 

A descriptive function whose arguments are classes or classes of classes 
may be said to obey the associative law provided 

R‘R“* = R‘s‘k. 

This equation may be interpreted as follows: Given a class «, divide it 

into any number of subordinate classes, so that no member is left out, though 

one member may belong to two or more classes. Let the classes into which 

“ " d:r,d0?. make “P. the class *■ 80 that * is a class of classes, and ,*« = a. 
X hen the above equation asserts that if we first form the R‘s of the various 

sub-classes of -. and then the R of the resulting class, the result is the same 
as if we formed the R of a directly. 

In some cases-for example, that of arithmetical addition of cardinals- 

the above equation holds only when no two members of * have a common 

term, «.e. when the parts into which a is divided are mutually exclusive. 

shalffi A de’C,ri!PtiV® fUnfionLwh°se arguments are relations of relations, we 
shall find another form for the associative law; this form plays in ordinal 

arithmetic “ analoKous 10 th»t played by the above form in cardinal 

*4212. = 

Dem. 

h . *4111 . D h : * (s‘*“X) y. = . (a„) . x(i‘p.)y. 

r[*41'11] =-(a 

C*40”] >.(H P).P"‘K.xPy. 

[*4111] =-*(iVX)y:3l-.Prop 

•4213. y .p,p“\ = p‘g‘\ 

Dem. 

rirtriV •3 h ■-1&‘p“V *■■ = ** ■ 3.•* (p» y: 
.. w ^ xRy: 

21 
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*42 2 

[*U-2.*10 23] 

[*4011] 

[*+n] 

= : (g/x). /ie \ . R € ft .Or . xfty : 

= : ft e s*\ .0/i. xfty : 

= : x(/»VX)y :.0\-. Prop 

. c*vop = .9* c“c<p = = /■*«/> 

This proposition assumes that P is a relation between relations. For 

example, suppose we have a series of series, whose generating relations are 

ordered by the relation P. Then C*P is the class of these generating relations; 

s'C'P is the relation "one or other of the generating relations which compose 

C'P; and C‘s‘C*P is the class of all the terms occurring in any of the series. 

CUC*P is the fields of the various series, and siCt,CiP is again all the terms 

occurring in any of the series. FttCtP is all the terms belonging to fields of 

series which are members of C*P, and F*‘P is all members of fields of members 

of the field of P: each of these again is all the terms occurring in any of the 

series. The proof is as follows: 

Dem. 
h . *41 45.0 h . WP - s*C“C‘P (1) 

h . *40-56 .Dh. s'CuClP - F“C*P (2) 

K*335. 0V.F“C*P 

[*37-38] =~F3tP (») 

h.(1).(2).(3).D h . Prop 

The following propositions apply to a relation of relations of relations. 

These propositions are useful for proving associative laws in ordinal arith¬ 

metic, since these laws deal with scries of scries of series, ami series of scries 

of series are most simply constituted by supposing the generating relations of 

the constituent series to be ordered by relations which are themselves ordered 

by a relation P. 

*42 21. h . = C‘= C“C‘s‘C</> = C“F“C‘P = C^F^P 

Dem. 
h . *40-38. 0 h . s‘C‘“C“C‘P = C“s*C“C‘P (1) 

K (1). *42-2. Ob. Prop 

*42 22. h . sVC“‘C“C‘P = s‘C“s‘C“C*P = s‘C“C‘s‘C*P 

= C‘s*C‘s*C‘P = stCttFtiC*P 

= F^F^&P = F‘*F2*P =~F*‘P 

[*42-21 . *41-45 . *40 56 . *42 2 . *37 3] 

If P, in the above proposition, is a relation which generates a series of 

series of series, the above gives various forms for the class of ultimate terms 

of these series. Thus suppose Q e C‘P; then Q is a relation between generat ing 
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relations of series. If now It e C‘Q, It is the generating relation of a series 

Which we may regard as composed of individuals. The class of individuals so 

obtainable may be expressed in any of the above forms, as well as in others 
which are not given above. 

*42 3. h . s‘s“?“o = s*R“a 

Dem. 

^ . *421 . D I- . s‘s“R“a = 

[*4°-5] = s€Rtfa. D I-. Prop 

*42 31. h . = s*R“a [Proof as in *42 3] 

21—2 



*43. THE RELATIONS OF A RELATIVE PRODUCT 

TO ITS FACTORS 

Summary of *43. 

The purpose of the present number is to give certain propositions on the 

relation which holds between P and Q whenever P = Q | R, or whenever 

R=R Q, or whenever P—R Q S, where R and S are fixed. In virtue of 

the general definitions of *38, these relations are respectively | R, R |, and 

< ft ) I (I &)• Such relations are of great utility both in cardinal and in ordinal 

arithmetic; they are also much used in the theory of induction (Part II, 

Section E). In place of the notation (7f |) ( S), which is cumbrous, we adopt 

the more compact notation R S. If X is a class of relations, R |“X will be the 

class of relations R P where PeX, | R**\ will be the class of relations P\R 

where P * X, and (R || «S')“X will lie the class of relations R | P |S where Pe\. 

These classes of relations are often required in subsequent work. 

In virtue of our definitions, we have 

*43112. K(7i||S)‘Q-fl|Q|S 

The propositions most used in the present number (except such as merely 

embody definitions) are the following: 

*43 302. K(P).P«(I‘(7J||S) 

*43411. h.7P“(i“x = (i“|P“x 

*43 421. H..v‘|7e<<X = (s<X)|^ 

The remaining propositions arc used seldom, but their uses, when they are 

used, are important. 

*43 01. R\\S- (721)1(1 S) Df 

At a later stage (in *150) we shall introduce a simpler notation for the 

special case of P||72. The following propositions are for the most part 

immediate consequences of the definitions, and proofs are therefore usually 

omitted. 

*431. h:P(7?!)Q. = .P = 72|Q 

*43101. h:P(|P)Q. = .P=Q|7* 

*43102. ^•:P(7^||^$)Q. = .P=7^|Q|«S, 

*4311. V.R\*Q = R\Q 

*43111. \-.\RlQ=Q\R 

*43112. h.(P||S)‘Q = 7*|Q|S 

*4312. h.E!7e|‘Q 
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*43121. h.E!|.ft‘Q 

*43122. h.E!(.R||S)<Q 

*432. t-.(R\)\(S\) = (R\S)\ 

Dem. 

I-. *43-1 . D h : L {(«|) | (S|)J N. = . <aJ/). I. = R | M . M = SI N. 

[*13195.*34-21] = .L-R\S\N. 

t*43'1] s.Z|(iJlS)|)JV:Dh.P,0p 

*43 201. I-.(|«)|(|S) = |(S|B) [Proofas in *432] 

*43-202. H.(|ii)|(S|) = (S|)|(|ie) = S||ii [Proof as in *43 2] 

*43-21. h.(P||Q)|(«|)-(P|U)||Q 

*43 211. I- • (R |) | (P || Q) = (72 | P) || Q 

*43-212. M-P||<3)|<|72)-P||(72|Q) 

*43 213. l-.(|i2)|(P||Q)-P||(Q|72) 

*43-22. h . (P || Q) | (R || S) = (P | R) || (S | Q) 

*43 3. H . (P) . P « a ‘R | [*4312 . *3343] 

*43 301. K(P).P«<I‘j72 

*43 302. K(P).P«a‘(fl||S) 

*4331. h.Pfa‘ie| = Pf C‘R\ = P 

Dem. 

K *43-12. *33-431. D I-. d‘P C d‘721 (1) 

[*33161] DKd‘PCC‘72| (2) 

H.(l).(2).*35-452.31-. Prop 

*43311. l-.Pra‘|P = PrC'|fi = P 

*43 312. I- . P r d‘(/2 || S) = P r C‘(R || S) - P 

*4334. h.P|‘P = |P‘P = iJ> [*4311111] 

*43 4. I-.72««D‘P = D‘72|‘P [*37-32. *431] 

*43 401. h . R“d‘P = a* | R-P [*37-32. *43101] 

*43 41. K72“‘D*«\ = D“72|‘‘A. [*43-4. *37 355] 

*43 411. h . J2‘“d“\ = d“ | R“\ [*43-401 . *37 355] 

*43 42. t-.*‘«|“X = «|i‘x 

Dem. 

• *4111. *371. *43 1 . D 

[*341] = . (aT) : Te X ; (ay). xRy. yTz : 

[*11-6] = : (gy) . xRy . ^T) mT€Xm Tz . 

[*4111 . *341] =zx(R\ i‘\) rr.DH. prop 
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*43421. P.i‘ if“X = (i‘X) R [Proofas in *43 42] 

*43 43 P . i‘< R |l .S')“X = (R || ,V)S‘X 

lion. 

H . *37 33 . D h . i‘< R || S)“\ - “ S“\ 

[*«•«] = /?(«* |S“X) 

[•43-421] = R; s‘X 15 

[•*3112] = (R||,S')‘i‘x Prop 

*43 48. P : l)‘7*Ca.D.<? */*— (<?[■«) 1*7* [•35-481] 

*43 481. P : <I‘/'C/3. D . 7f‘7’ = <>31 [*3548] 

*4349. P : s‘E)‘*X C a . D . «/ )T X “ [(Qfo) 11 Tx 

Dew. 

P. *4043. DP:. Hp. D : Pt X . D . V‘P C a . 

f*43'48] 3.$|'7>-[(Qr«)l!‘^> (!) 
P.(l). *35-71 .DP.Prop 

*43491. P:*«a“XC/9.D.(|R)|-X= [|(/91R)|fX [Proofns in *4349] 

*43 5. P : IV/'C o . (PRCR. D .(Q|| R)‘P — (((?[• o)||(/91 R)}‘P 
[*35-48*481 .*43112] 

*43*51. h : s‘D“\ C a . *‘d“\ C 0. D . (Q|| R) f* \ - |(Q f «)|| (0 ] 7?)) f \ 
I)em. 

h • *40-43 . D h Hp. D : P « \ . D . D*P C o . Cl‘P C £. 

t*+:i'5] ^ • <Q||RyPm [(Qf-a)||(/9] R)\‘P (1) 

P.(l). *35-71. DP. Prop 

The above proposition is used in the proof of *74773. 



PART II 

PROLEGOMENA TO CARDINAL ARITHMETIC 





SUMMARY OF PART II 

The objects to be studied in this Part are not sharply distinguished from 

those studied in Part I. The difference is one of degree, the objects in this 

Part being of somewhat less general importance than those of Part I, and 

being studied more on account of their bearing on cardinal arithmetic than 

on their own account. Although cardinal arithmetic is the goal which 
determines our course in Part II. all the objects studied will be found to be 

also required in ordinal arithmetic and the theory of series. As this Part 

advances, the approach to cardinal arithmetic becomes gradually more marked, 
until at last nothing is lacking except the definition of cardinal numbers, with 
which Part III opens. 

Section A of this Part deals with unit classes and couples. A unit class 

is the class of terms identical with a given term, i.e. the class whose only 

member is the given term. (As explained in the Introduction, Chapter III, 
pp. 76 to 79, the class whose only member is x is not identical with x.) We 

define 1 as the class of all unit classes, leaving it to Part III to show that 1. 

so defined, is a cardinal number. In like manner, we define a (cardinal or 

ordinal) couple, and then define 2 as the class of all couples. The propositions 

on couples will not be much referred to in the remainder of the present Part, 

since their use belongs chiefly to arithmetic (Parts III and IV). On the other 

hand, the properties of unit classes are constantly required in Sections C. D E 
of this Part. 

Section B deals, first, with the class of sub-classes of a given class, i.e. of 

classes contained in a given class. The sub-classes of a given class are often 

important in arithmetic. Next we consider the class of sub-relations of a 

given relation, i.e. relations contained in a given relation. The propositions 
on this subject arc analogous to those on sub-classes, but less important. 

Next we consider the question of “relative types,” i.e. taking any object*, and 
calling its type t‘x, we give a notation for expressing in terms of tlx the type 

of classes of which * is a member, or of relations in which * may be either 

referent or relatum. and so on. The notations introduced in this connection 

are very useful in arithmetic, especially in connection with existence-theorems. 
ut the propositions of Section B are very seldom required in the later sections 

of the present Part. 

Section C, which deals with one-many, many-one and one-one relations, 
is very important, and is constantly relevant in the sequel. A relation is 
one-many when no term has more than one referent, many-one if no term has 
more than one relatum, and one-one if it is both one-many and many-one. 
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In this section, we define the notion of similarity, upon which all cardinal 

arithmetic is based: two classes are said to be similar when there is a one-one 

relation whose domain is the one and whose converse domain is the other. 

We prove the elementary properties of similarity, including the Schroder- 

Bernstein theorem, namely: If a is similar to part of /9, and /3 is similar to 

part of a, then a is similar to 

Section I) deals with the notion of selections, upon which both cardinal 

and ordinal multiplication are based. A selection from a set of classes is 

a class consisting of one member from each class of the set. Thus a selective 

relation It may be defined as one which, for a given class of classes k, makes 

Il'a a member of a whenever a is a member of k. More exactly, a selective 

relation for a class of classes * is one which is one-many, which has k for its 

converse domain, and is such that, if .rlia, then xea. Such a relation may 

be called an c-sclector from k. More generally, we may define a /^-selector 

from k as a relation which is one-many, which has * for its converse domain, 

and which is contained in P. The theory of selectors is very important in 

arithmetic. But until we come to cardinal multiplication in PartHI, Section B, 

the propositions of this fourth section will seldom be relevant. 

Section E deals with mathematical induction, not in the special form in 

which it applies to finite integers (this is considered in Part III, Section C), 

but in a general form in which it applies to all relations. The propositions 

of this section are of very great importance, primarily in the theory of finite 

and infinite (Part III, Section C, and Part V, Section E), but also in many 

other subjects, and especially in the derivation of series from one-many, 

many-one or one-one relations—for example, in ordering the "rational” points 

of a projective space by means of successive constructions of harmonic points. 

The ideas involved in this section arc somewhat complicated, and we must 

refer the reader to the section itself for an account of them. 



SECTION A 

UNIT CLASSES AND COUPLES 

Summary of Section A. 

Iu this sectioD we begin (»50) by introducing a notation for the relation 

of identity, as opposed to the function “.r-y”; that is, calling the relation of 
identity I, we put 

I = xy (x = y) Df. 

Tlie purpose of this definition is chiefly convenience of notation. The 

definition enables us to speak off D‘/, I\R, o']/, etc., which we could 

not otherwise do. 

At the same time we introduce diversity, which is defined as the negation 

of identity, and denoted by the letter J. The properties of I and J result 

immediately from *13, since 

xly . = . x =* y. 

We next introduce a very important notation, due to Peano, for the class 

whose only member is *. If we took a strictly and purely extensional view of 

classes, we should naturally suppose this class to be identical with x. But in 

view of the theory of classes explained in *20. it is plain that * can never be 

identical with a class of which it is a member, even when it is the only member 

of that class. Peano uses the notation “lx" for the class whose only member 

is x; we shall alter this to “l‘x ” following our general notation for descriptive 
functions. Thus we are to have 

= P (y ~r) - p (ylx) =7‘x. 

Hence we take as our definition 

1=7 Df, 

since this definition gives the desired value of i*x. The properties of i are 
many and important. 

It is important to observe that “7v means "the only member of a.” Thus 

it exists when, and only when, a has one member and no more, in which case 

a is of the form t‘<cjf * is its only member. Thus "7‘a" means the same as 

"(J*) (*««).” and (<#>*)" means the same as " (>*) (^*).” What we call 

"l*a is denoted, in Peano’s notation, by "ja.” 

Classes of the form t*x are called unit classes, and the class of all such 

classes is called 1. This is the cardinal number 1, according to the definition 

of cardinal numbers which will be given in *100. The properties of 1, so far 

as they do not depend upon other cardinals, or upon the fact that 1 is a 
cardinal, will be studied in *52. 
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After a number (*53) containing various propositions involving 1 or t, we 

pass to the consideration of cardinal couples (*54) and ordinal couples (*55). 

A cardinal couple is a class ilx v i*y, where x\y. The class of such couples 

is defined as 2, and will be shown at a later stage (*101) to be a cardinal 

number. An ordinal couple, which, unlike a cardinal couple, involves an older 

as between its members, is defined as a relation i‘x\ i*y (cf. *35 04), where 

we may either add x % y or not. The properties of ordinal couples are in part 

analogous to those of unit classes, in part to those of cardinal couples. In *56, 

we define the ordinal number 2 (which we denote by 2r, to distinguish it from 

the cardinal 2) as the class of all ordinal couples i‘x f i*y, where x^y. It will 

be shown at a later stage that this is an ordinal number according to our 

definition of ordinal numbers (*153 and *251). 



*50. IDENTITY AND DIVERSITY AS RELATIONS 

Summary of# 50. 

The purpose of the present number is primarily nofcationul. For notational 

reasons, we must be able to express identity and diversity as relations, and not 

merely as propositional functions, i.e. we require a notation for .71) (x = >,) and 
xy (x ^ y). We therefore put 

I = xj) (x = y) Df. 

Df. 

In spite of the fact that diversity is merely the negation of identity, the 

kinds of propositions that employ diversity are quite different from the kinds 

that employ identity. Identity as a relation is required, to begin with, in the 

theory of unit classes, which is our reason for treating of it at this stage. It 

is next required, constantly, in the theory of mathematical induction (Part II, 

Section E). It is required also in showing that cardinal and ordinal similarity 
are reflexive. These are its principal uses. 

Diversity, on the other hand, is required almost exclusively in the theory 

of scries (Part V). and the first number in that theory will be devoted to 

diversity. Until that stage, diversity will seldom be referred to, with one 

important exception, namely in proving the associative law of multiplication 
m relation-arithmetic (#174). 

follmving1081 in,p°rta,,t ProP°sitions on identity in the present number are the 

*6016. h . /“a = a 

*504. V .R\I = I\R = R 

*50 5. 

*50-51. I-. Cnv‘(a *| 7) «= a-] 7 

*60 52. I-. D‘(a *] 7) - <3‘(a 17) - C‘(a *] 7) = a 

*6062. h:a‘RCa.D.«|(/f*a)=/i 

*60 63. h : D ‘R C a . 2.1 f a\R = R 

the following lmP°rtant propositions on divereity in the present number are 

*6023. hRGJ. = .R(zj 

*6024. \-zRQ.J. = .(x).~(xRx) 

*6043. = A 

*6046. h : R*GJ.D .RQJ 

*5047. 



334 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 

It will be observed that all these propositions are concerned with RG J or 

R-GJ, both of which are sati.-fied if R is a serial relation. The hypothesis 

1<: G J or R r\ R — A characterizes an asymmetrical relation, i.e. one which, if 

it holds between .<* and y, cannot hold between y and .r. 

*50 01. 7 = .?y(x = y) Df 

*50 02. J - - / Df 

Most of the propositions of this number are obvious, and call for no 

comment. 

*501. b:x/y. = ..r = y [*213. (*50*01)] * 

*5011. h : uJy . s . x + y [*23*35 . *50* 1 . (*50 02)] 

*5012. h . 7 = 7y (x + y) [*50*11 .*21*33] 

*5013 h.g!/ [*13*19. *10 24 281 . *501) 

*5014. [*30*3. *50*1 .*10*11) 

*5015. K(y).E! I'.j [*50*14.*1421 .*10 11] 

*5016. K/“a-a 

Dem. 

b . *37 l . D h zxe /“a . s . (gy).yca.x/y . 

[*50*1 J = .(gy).y«? a.x = y 

[*13*195] = . xe a : D h . Prop 

*5017. h x ea. Dx. 7?‘x»x: D . R 

Dem. 

h. *14-21 . D h : Hp. D . E!! R“a 

h . *5014 . D h :. Hp.D:xca. Dx • Rtjc ™ I*x! 

[*37*60.(1)] D: R“a = I“az 

[*5016] D : R“a = a:.Dh. Prop 

*502. h 

Dem. 

V 

/ = / 

h . *501 . D h : xly • s . x = y • 

[*13*16] = . y = x. 

[*501] = . y/x. 

[*31*11] = . x/y Oh. Prop 

*50 21. H../W 

Dem. 
h . *21 2 . (*50 02). D h . */= — / 

[*50‘2.*23*83] = - / 

[*31*16] =Cnv‘x_/ 

[(1).*31*32] = J. D h . Prop 

(1) 

(1) 
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*50 22. h : Ii G /. = . it c / [*314. »50 ->] 

*50 23. h-.RGJ.s.RGJ [*31-4. *50-21] 

*50 24. I■: RGJ.s. ~ 

Deni. 

K *50-11= + 

[Transp] = : a- = y . D,, . ~ (.<%>: 

[*13191] s : <*). ~ (xRi) :.3K Prop 

*50 3. H . (x). xlx [*501 . *1315] 

*50 31. t-. D‘/ - V . a*/ = V 

Dent. 

*5032. 

*5033. 

Bern, 

H . *50 3 . *10-24 . D H (*) ; (g/,) . xI,j (x). (ay) # y/>4. 

[*3313131] D t-: (*). * e D‘I : (x) .xe(l‘f: 

[*2414] D P . D'/. V . Q‘I- V . D h . Prop 

h . C‘I - V [*50-31 . *33 16 . *24-27] 

ha!j.3.Dv=v.a‘/.v,w= v 

P . *13-171 . Transp .SHt.y + z.Dix + y.v.ir + j:. 

[*5011] DH:.y/r.D:r./,.v. *JV: 

[*3314] O-.xcXVJ (1) 

•"•(!)• *11-11-35. 3h jiy.D.te jyj: 

[*1011-21] 9Ha!/.3.(*).«,DV. 

t*24,14] D.DV=V (2) 
h . (2) . *50-21 .Dh. Prop 

r“ the nb«'’e Proposition (.50-33), the hypothesis g ! J is equivalent to 

the hypothesis that more than one object exists of the type in question. This 

can be proved for all except the lowest type. For the lowest type, we can 

only prove the existence of at least one object: this is proved in *24-52. Foi¬ 

led v X^tyPe' WC T"- T ,h° exUtencc of two objects, namely A 
and V, these are distinct, by *241. For the next type, we can prove the 

existence of 2- objects; for the next. 2*, etc. But for the class of individuals 

we cannot prove, from our primitive propositions, that there is more than 

one object ,n the universe, and therefore we cannot prove -j'.J. We might 

UiaTmTwe Hr ‘ a aT°n,g °Ur Primitive Propositions the assumption 

wo^Uoi^eh"* md,V,dUal °r S°me *«***• 

(a^*- x> y) • <t>! x. ~ <f>! y. 

fhil T-°f th<apr0p?siti0ns which we might 'Vsh to prove depend upon 
this assumption, and we have therefore excluded it. It should be observed 
that many philosophers, being monists, deny this assumption 
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*50-34. h . g !./ t Cls 

Dem. 
K . *20 41. *22 38 . (*2401 02). D h . A, V e Cls. 

[*24’1] Dh.A + V. A, V«Cls. 

[*3(>13.*5011] Dh.A {,/[ Clsj V . 

[* 10'24] D H . Prop 

*50 35. h . a ! J t Re I (Proof as in *50 34) 

*50 4. h./?|/=/ R=R 

Dem. 
H . *341 . D h :.r(7? 1)2. = .(qy) .xRy. y/z. 

[*50 1] s.(gy).jRy.y = z. 

[*13105] = .xRz (1) 

y . *34-1 . D H : x (/1 72) «. = • (ay) • -r/y - yR* • 

(#50-1 ] =. (ay) • * = y • yBx. 
[*13195] m.xRz (2) 

h.(l).(2).Dh. Prop 

*50 41. y : R \ P G J. = . R \ P G J. = . R r> P = A 

Dem. 

h . *34*1. *501 l.Df-:. R\PGJ . = : (gy). xRy. yPz. Dx>, .x + z: 

= :(x):~ (gy). xRy. yPx: 

= : ~ (gx, y) . ar% . y-P*: 

» :~(3*.y).xRy.xPy: 
w.RfsP- A: (1) 

= :RhP- A: 

= : R | Cnv'P G «/: 

= :fl|PG./ (2) 

[*13100] 

[*10-252] 

[*3111] 

[*23-33.*25-51] 

[*3114-24] 

[*34-203] 
H.(l).(2).Dh. Prop 

*50-42. y. /*=/ 
Dem. 

H . *34-5 .Dh: ar/*x. = . (gy). xly .ylz. 

[*501] =-(g y).xly.y = z. 

[*13195] = . xlz OK Prop 
\s 

*6043. t--.R>eJ. = .RnR = A [*50 41^] 

This proposition is useful in the theory of series. “Rf\R = A is the 

characteristic of an asymmetrical relation. 
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*50-44. h : g ! (R « 7). D . g ! * /) 

Vein. 

h . *23*33 . *.">01 .Dha!(iEn/). = . (gar, y) . .cliy . x = y . 

[*13*195] = . (gar) . xRx. 

[*34 54] D.(g.r )..rR-\c. 

[*‘3-196] D . (g*. ,j). xR‘y. x-y . 

[*23’33.*50 1] D. g! (Rr n|):3h. Prop 

*50 45 b ■. R-GJ.Z) . HGJ [*50 44. Trnnsp . *2V3 11 ] 

*50 46. \-:R*R-A.0.RCJ [*50-43-45] 

*50 47. h.R’GR.3:RGJ.s.R=GJ.E.Ji*R = \ 

Dem. 

h . *23 44 .Dhs.Hp.Ds RGJ.^.R'QJ (1) 

H . (1) . *50*45*43 . D h . Prop 

This proposition is used in the theory of series. If R is a serial relation, 
we shall have R1 G R and RQJ. 

*50*5. h .o']/ = /f*a = a']/f‘a 

Dem. 

*5051. 

*5062. 

Dem. 

h .*35-1 . D h :x(a11)y .s.xea .xly. 

[*50T] = . x e a . x y 

[*13*193] = .yea.x<=y 

[*50*1] = . xly .yea. 

[*35-101] = . x(7 [ a)»/ 

h • (1) . *23*5 .DKa]/ -a] I * / [ a 

[*35*11] =«1/r« 

K.(l).(2).DKProp 

h . Cnv*(a 1 /) * «1 / [*35*51 . *50-2*5] 

h . D‘(a 1 /) = a*(o 1 /) = C‘(« 1 /) - a 

(1) 

(2) 

I-. *35*61 . D h . D‘(a ]1) = a rs D41 

[*50*31] =anV 

[*24*26] = a 

Similarly h . a‘(a 1 /) = a 

h . (1) . (2) . *33*18.31-. Prop 

*50*63. h.a1/r/3 = (a^/9)1/ = /r(«^/3) 
Dem. 

(-.*35-21 .*50-5.Dh.a-]/r^ = a1(fl1/) 

1*35-32] = (ao/9)-|/ 

I- . (1) . *50-5 Oh. Prop 
K&W I 

(1) 

(2) 

(1) 

22 
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*50 54. h . (a 1 / y = a 1 / 

Deni. 
h . *50*5 . D h .<a1/)J = (a1/)iarc0 

[*3512] =a1/=r« 
[*50*42] =a1/pa 

[*50*5] = a 1 / . D h . Prop 

*50 55. h:an0-A.s.«t#<&'S 

Dem. 
h. *24*37. *50* 11 . D 

K a a £ ■= A . s : xe a . y e/3 • Dx.y . x«/y : 

[*35103] Prop 

*50 56. I- s g ! (* a /J). « . a ![(a t /3) n /| 

Dem. 
I-. *50*55 . Trnosp . *24*54 . D 

hgl(oA^). = . ~ [a |/3 G ./j. 

[*25*55] =.a(«T 

[*23*831.(*50*02)]■ .a ! |<at #) A/) x D I-. P,0P 

*50 57. 

Dem. 
K.*35*I6.DK I rsa^R^a^I *R 
[*50*5] = l[ «A/i 

(i) [*35*17] = I r\ R[ a 
[*50*5] = a]/[ a f\ R 

(2) [*35*16 17*21] = Ifsa‘\R[a 
h.(l).(2).DH . Prop 

*50 58. P:a1/?Cy. = .KraGJ. = .a1/ir«G^ 

Dem. 

h.*50-57.3h:/Ao1/e = A.s./ARr“ = A.s./na1Rra = A (1) 

1-. (1). *50*41.3 V . Prop 

*50 69. h.(/fa)‘^ = anj8 

Dem. 
V . *37*412 . D I-. (/1* a)“/9 = /“(<* a £) . 

[*50*16] = an£.Dh.Prop 

*606. \-.R\(I[a)=Rta 

Dem. 
h . *35 23 . D h . i? | (/ a) = (i? | /)[“ a 
[*50*4] = /£ f* a. D H . Prop 

*6061. h./M^ = «1^ 
Dem. 

h.*35354.Dh./rai/e = /!(a1 R) 

[*50 4] = a 1 i? . D P . Prop 
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*50 62. CI‘.ft C a. D. ft !(/[<,)=« [.50-6 . *35-452] 

*50 63. H : D‘«Co. D./Ca! « = [*5061 . *35-451] 

*50 64. 1-. R | (/1- a<«) = R | (1 r C‘li) = R [*50-62 . *22 42 . *33101 ] 

*5065. H . /f (D‘R)\R=l[(C‘R)\R = R [,50-63 .*22 42 . *33-101] 

*507. H:a‘/£CQ.D.fl|*/pa=7f [*5002. *4311] 

*50 71. \--.V‘RCa.Z>.\R‘I[a = R [*50-03 . *43-111] 

*50 72 K*j-(/rC‘fl) = |*<(/|-C‘*) = « [*50-7-71] 

*50 73. | «/-|«‘/-A [*50-4. *43 11-111] 

*50 74. ' 

Dem. 

h- *43112. Dh.(«,|/)‘Q-/e Q I 

[*50-4] =R,Q 

[*4311] =Rl.Q 

h. (1). *30-41 . DK Prop 

*50 75. H./||K_|71 [Proof as in *50-74] 

*5076. 

Dem. 

. *34-27 . *30-41.31-:P=R.O.P\-R 

h . *50-73 . *30-36. 5 h : P \ = R\. 3 . p = R 

*" • (1) • (2) .31-. Prop 
*50 761. H : | P - | R . 3 . p _ R [Pl.oof ^ in »50.76] 

(1) 
(2) 

22—2 



*51. UNIT CLASSES 

Sn in mnnj of *51. 

In this number we introduce a new descriptive function i*x, meaning 

“the class of terms which are identical with .r,” which is the same thing as 

"the class whose only member is We are thus to have 

Hut fi(y - x) = I‘x. Hence we secure what we require by the following 

definition: 

*51 01. i =7 Df 

As a matter of notation, it might be thought that / would do as well as f.and 

that this definition is superfluous. But we need also the converse of this 

relation, and "Cnv1/ ” is not a sufficiently convenient symbol. 

The propositions of this number are constantly used in what follows. It 

should be observed that the class whose members are x and ij is i*x«-»i1}/, the 

class whose members are x, »/, z is i*x \j (‘yv i*z, the class formed by adding 

x to o isov i*x, and the class formed by taking x away from a is a — llx. (If 

x is not a member of a, this is equal to a.) 

The distinction between x and i*x is one of the merits of Peano's symbolic 

logic, as well as of Freges. On the basis of our theory of classes, the necessity 

for the distinction is of course obvious. But apart from this, the following 

consideration makes the necessity apparent. Let a be a class; then the class 

whose only member is a has only one member, namely a, while a may have 

many members. Hence the class whose only member is a cannot be identical 

with a*. 

The propositions of the present number which are most used are the 

following: 

*5115. h : \j e i*x. = . y = x 

*5116. \-.xei‘x 

*612. h:j<a. = .t‘jCa 

This proposition is useful because it enables us to replace membership of 

a class (.rco) by inclusion in the class (i‘iC a). 

*51*211. h:x~£0. = .f‘xr>a = A 

*51*221. h:ifa. = .(a-t‘i)vt‘x=a 

• This argument is due to Frege. See bis article ••Kritische Belouclitung einiger Ponkte »n 

E. Schroder’s Vorlcsungen liber die Algebra der Logik,” Archiv fur Syit. Phil., vol. l P- 

(1S95). 
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*51222. h : x^e a . = . a — i*x = a 

*51 23. h : i<x = L<y . s . ,j € i*x. = . x € 1 *y m s # r = y 

*51 4. h : g ! a . a C l‘x . = .a = i*x 

I.e. an existent class contained in a unit class must be identical with the 

unit class. From this proposition it will follow that 0 is the only cardinal 
which is less than 1. 

*5151. : a = l*x . = . x = i‘a . = . x i a 

For classes. i‘a has the same uses that <(x) <$*) has for functions; "7‘«" 

means "the only member of a." We have 

*51-59. h : >/r [t‘2(<f>2)\ . = .yfr (ix)(4>x) 

*5101. 

*511. 

Deni, 

i = I Df 

h : aix . = . a - $ (y =» x) 

h . *4-2 . <*51 Ol).D\-:aix, = .aTx. 

• a * 9 (y =* *) : 3 h • Prop 

0303. *51-1] 

051*11 .*14-21J 

[*20-57'-2. *51-11] 

[*51113] 

[*321] 

O501J 

*5111. 

*5112. h . E ! i*x 

*5113. h:aB(‘*.s.a»J(ya* x) 

*51131. h : aix. = . a — i*x 

*6114. h:.a = e‘x. = :yea.=4,.y = ar [*51 13 . *2033] 

*51141. h :. a - i*x. s : a ! a : y * a . D,,. y = a:: = : x c a : y e a . D„ y = 

[*51*14. *14122] 

*51-15. h : y e i‘x. = . y = * [*5111. *20 33] 

*6116. [*5115. *1315] 

*51161. h . g ! i*x [*5116. *10-24] 

*5117. h . = V 

Dem. 
h .» 51 -1 . *202.3 I-. {J (y = x) j t x. 

[*10-24] DK(aa).Mx. 

[*33131] PH. ttfl'i. 

[*1011] 3K(,).I(a'i. 

[*2414] P h . d‘t = V 

The above proposition is used .in the theory of selections (*83 71). 

X 
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*512. h/to.s./'xCa 

Dem. 

K*13-191 . Dl-sy-x.D,. yea; 

l*3l,53 sryei^.D^.yea: 

[*22-13 = : i‘xCo :.D h . Prop 

Thc nbove proposition shows how to replace membership of a class by 

inclusion in a class; thus for example it gives: 

Socrates is a man . = . the class of terms identical with Socrates is included 

in the class of men. 

Before Peano and Frege-, the relation of membership (e) was regarded as 

merely a particular case of the relation of inclusion (C). For this reason, the 

traditional formal logic treated such propositions as “Socrates is a man " as 

instances of the universal affirmative A. 'All S is P," which is what we 

express by "o C ff." This involved a confusion of fundamentally different 

kinds of propositions, which greatly hindered the development and usefulness 

o' symbolic logic. But by means of the above proposition (*51-2), we can 

always obtain a proposition stating an inclusion (namely "p.tCa") which is 

equivalent to a given proposition stating membership of a clnss (namely 

*5121. h . ,r^€ a — i*x 

Dem. 

h . *2233 35 .Dh/ta-j'/.a.xca. x^e i*x. 

[*3 27] D.xr*-'ti,x 

h . (1). Transp . *51 16 . D b . Prop 

*51211. h : x*>-€ a . = . i*x r\ a •= A 

Dem. 

h . *24-39 . D h f«r a a - A . 

[*51*1 o] = :y = : 

[*13 191] rSX'vfo:. DK Prop 

*5122. h:flfw'/ = A.av i‘x =0. = .xc&.a = fi — t‘x 

Deni. 

h . *24-47 . D 

O51*2] Prop 

*51 221. h : xca . = . (a - i‘x) v i‘.r = a 

Dem. 

h.*51-2.Dh:x(a. = .f‘xCa. 
[*22 G2] = . i‘x \j a = a . 

[*22 91 ] = . (a — i*x) vj‘ic = fl:DK Prop 
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0) 

<->> 

W 

*51222. h :.r~ea. = . a-i‘.r = a [«5l *211 .*24*313] 

*5123. 

Dem. 

h . *2031 .*5115.D 

H I'ar - ity. s s * «ar y ; 

[*13*183] = : x = y : 

[*3115] = z x € l*y : 

[(1).*13 16] = : y e i*x 

*"•(!)• (2) • (3). D K . Prop 

*51*231. h : t'arn py = A . = .x + y 

Dem. 

h. *24311 OI-i.i'ini‘,= A . = : i‘xC-i‘«s 

[*51-15] 3,!, + ,: 
[*13-191] 3 (-.ft,* 

*51-232. [*22 34 .*5115] 

This proposition states that a member of i‘x u t‘,j must be either x or » 

and vice vena. i.e. that i'x v,i, the class whose only members are « and V 

*51 233. h a = i‘xu ^ «o. B : r — x. v . * — « 
[*51-232. *1011. *2018] 

*51 234. h :: a -t‘x w *«y. D..,e«. d,. ^ : = . ^^ 
Dem. 

[*4*771233.:>h!:'Hp.:>::*t“.:>'.^:f ■■■‘ = x.*.z-y:3r.t*:. 

[.10-22] ■ 3.*3.*.. 
[♦13-1911 - *. * - a . D,. <f>z : g-y. D,. 0*... 
L*ldl91J DK Prop 
*51235. h::i.t««wt‘y.DSl(!JI)#<€a.#liB<i^iVt. 

Dem. 

K *51-233. D 

h :: Wp. D (ge) •t€a.<t>2. = i (g*): * — x. v . * = y i <f>t: 

f*4’4] = : (a*) '.z = x.<t>z . v ,z = u .d>2: 

[*13195] = ! (a,) • (3*) ■ * - y • : L*i.» 19o] aifr.v.^yiOKProp 

*51236. h:.*et‘xw£. = :* = *.v.*c/3 [*22.34 . *51 15] 

*51237. !;::«= «** w ^ . D (r)xf * . = : r = x. v . r e/3 
[*51-236. *1011. *2018] 

•“JJJ ►«««-»*#*»*. 

[*10*221 - z — x. D . <f>z : zf (3. D.02:. 

[*13191] ~ * = * * * tf * * € ^ ‘ D* ’ ^ 
J = :.*x:*e£.D,.<^::.:>f-.Prop 
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*51 239. h :: a = t‘x\j 0 . D (gx). z ( a . <f>z . = : <£x . v . (gx) . z e 0. <f>z 

Dem. 

K *51*237.3 

I-:: Hp. 3 . z € a . <f>z . = : (%z): z = x. v . z € 0 : <f>z : 

[*++] =:(g z)zz =x.<f>z .v ,z€& ,<f>z: 

[* 10 42] = : (a z).z = x.<f>z .v. (gx). z c 0 . <f>z : 

[*13-195] = : <f>x. v . (gx). z e 0. <f>2 :: D b . Prop 

*5124. b /* y C i‘j- 'J0. = :y = x.v.y€0 

Dem. 

K*51*236.3 

1-:: i*y C i*x sj 0. = :. z e i*y. 0,: z = x. v . z e 0 •, 

[*5115] sr.x-y.D, :z = x.v.z€0:. 

[*13191] =:.y = j-.v.yc/9::DI-. Prop 

*51 25. h : a C i‘xv0 . a . 3 . a C £ [*51211 . *2+49] 

*513. b z y € a . y * a-. = . y < a - r‘x [*51 15. *22 33 35] 

*5131. F:g!a Af‘x.i.i‘xCo.*.aM‘x*t‘j.».xta 

Dem, 

b . *22 33 . *51*15 . 3 b :g ! a n t'x . = . (gy). y e a . y « x. 

[*13*195] s.xca. (1) 

[*512] 3.1‘xCa. (2) 

[*22-621 ] s . i‘x - t*a- r\ a (3) 

h . (1). (2) • (3) .DP. Prop 

*5134. h:xfa. = .-aC-i‘x [*512. *2281] 

*5136. h : ar ~ e a . = . i‘x C — a [*512 . *22 35] 

*5136. hi'vfa.z.aC-j'i [*51*35 .*22*811] 

*51*36 is frecpiently used. 

*5137. Ka = J((‘iCd) [*512 . *2033] 

*514. b : g ! a . a C i‘x. = . a = i*x 

Dem. 

h . *24*5 . *51*15 . 3 b :. g ! a . a C i‘x. = : (gy) . y c a : y e a . y = x: 

[*1+122] =:yea.=v.y = xz 

[*51*11.*20-33] =:a = i‘x:.Dh. Prop 

*51 401. b :. a C i‘x. = : a = A . v . a = i*x 

Dem. 

b. *51’4. *56. DI-:.aCt(x.D:a = A.v.a = i‘x (1) 

b . *2+12 . *22-42 . 3 I-:. a = A . v . a = i‘x : 3 . a C i‘x (2) 

b. (1) • (2) .31-. Prop 

This proposition shows that unit classes are the smallest existent classes. 
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*51 41. h ; t*.c yj i‘,j = t*,v yj I*- , = ,y = s 

Deni. 

[*13T6.*4'41] v.*-y: 

[*13172.*2-621] 3.'!" 

*" • (1) • (2) . 3 h . Prop <2> 

The two following propositions are lemmas for *51*43. 

*5142. 

Dem. 

K *51*232. D 

t«»i] —.—- ,, 
.. 

Similarly I-: t‘« v t«y . ., _ „. ;> *. J = ” JJJ 

h . (1). (2) . (3) . Dh. Prop 7 ( J) 

*61421. H..*-*.y-u,.v.x-u>.y-..O.l<4:wt«y_t«4ut,w [.5141] 

*6143. 

[*51-42 421] * 

The following propositions are concerned with 7. U with the relation of 

the only n,ember of a unit Cass to that Cass. If « is „ unit cla8s, is its 

*51 51. h : a = t‘x. = . x . = a x7a 

Dem. 

V ■ *51131 • *3111.3 I- : a = ,«*. = . *7 a 

(■ • (1) .3h:xia.yta. D. a = i‘x. a= i‘u. 
fu<n t .do . 
[*51*23**20 57*2] D-X = y 

(1) 

(2) 

(" • (1) • (3). D h . Prop -:x-(‘a (3) 
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*51511. b . l*l*.r=x [*51-51 '^.*20-2^ 

£*51-51 '\*1+**2M8~J *5152. h : E ! i‘a . = . a = 1*1*0 

v v 

*51 53. hEli'a.s.i'ofo [*51*52 16 . *14 21*18] 
v 

*51 54. h : E 8 i*a . = .<3.r) . a = / ‘a [*51*51 . *14*204] 

*51 55. h ! E ! i*a . = . E ! (i.r) (j < a) 

Dem. 

I" . *51*54*14 • D V E ! i*a . = : (3.**): y e a . =v . y * a:: 

[*14*11] s : E!(i/)(x€0> D h . Prop 

*51 56. b :6«f*$(<t>y). = .y <<£//) = /‘5 . = . 6 = (i.r)(<£.r) 

Dan. 

b . *51 *51 . D4:.6»i‘5(</>»/). 

[*20*15. *51*11 ] 

[*14202] 

h . (1). (2). D h • Prop 

-i‘b: 

H • s„. y - b s 
b = (lx) (<f>.r) 

*51 57. h : E ! f‘//(0y). = . i‘y (<*>y) = (i.c)(<*u). = . E ! (?.r)(0.r) 
Dem. 

(1) 

(2) 

(1) b . *14*204 . *51*56. D H : E ! i*y (<f>y). = . E!(ix)(^r) 

b . *14 205 . D 1- :(ix)(4>x) = 7‘#(<*>y). = .(g5). 6 = (ix)(<f>x). b = T^(0y). 

[*51 *56.*4 71 ] = . (36). b = (ix)(<f>x) . 

[*14*204*13] = . E ! (?.r) {<f>x) (2) 

b . (1). (2) . D h . Prop 

*51 58. b : E ! i*a . = ,7‘a -(ix) (x « a) [*51 *57 . *20 3 . *14*272] 

*51 59. b : yfr \i*2(<f>2)\. = . >lr(tx)(4>x) [*51*56 . *14*205] 



*52 THE CARDINAL NUMBER I 

Summary of *52. 

of «!i unit d'.'irt,,e car<ii,,ai ** ^ 
relevant at ! f t 1 “ <le'i,"“<l is 11 ««K««I number is not 
has boon HPfi V“ rn"0t °f C0,,rse be P""* nntil "caHinal number ' 

the PrC^t' tl,eref0re- 1 is * * Wed simply as 

-t for "me J UU,t C,M~ bein* SUch «*«•• « -e of the Ln 

L.ke A and V. 1 is ambiguous ns to type: it means “all unit classes of 

TZzxziZ ss;v»? ir-; 

jssks. s "v - *•*«« * 

ca„lerrieS °f i l° ^ ?r,Ved in the Preseut "«"*W are what we may 
St lJS ; «ri</imeti'oul properties, they are not concerned 

1 but with he? ? Hper“t,,0ns (add,t,o“- etc.) Which can be performed with 

1 will be considered later,°in P^t 11?'““^ ^ nrith,,,etical Pities of 

followingPr°POSiti0nS °f th° PreSCnt numbcr which ■» most used are the 

*52’16. f1!. afl.sj>ijjfl.;ry(a 3 j. __ 

identical." “ Unit C,aSS if' “nd '*'* if'*‘ is null, and all its members are 

*52 22. I*. i*x€ 1 

*52 4. s.af 1 u(*A =• x y ( a ^ ^ _ 

h :a! a • 1 - ■ (ax. »>•«*.. • *+y 

each^r^t^ fr0m •** * transposition, by negating 

*5246. = a!(on)9) 

* — 

«02*01. 1 = 3 {(gar) . o = t‘x} Df 

*521. hafl. = . (g*)[#20.3 # (*52 0!)] 
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*5211. h a 6 1 . = :(gx): yea. =y.y = x [*52*1 . *5114] 

*5212. h :U<J>2)* 1 . = . E !(ix)(</>., ) 

Dent. 

K . *52’11 . D H z (<f>z)€ 1 . = : (gx) :y ez (<f>2). =y. y = x: 

[*20 3] = : (gx): </>y . =y. y = x: 

[*1411] = : E ! (ix)(0.r)D 1-. Prop 

*52 13. K . 1 = DO 

Dem. 

H . *51'131 . D H : a = i*x. = . aix: 

[*10 11 281] D 1- :(gx) . a = f‘x. = . (gx). ai.r : 

[*52*1] D H : a € 1 . = . (gx) . oix 

[*3313] s . o € DO : D K . Prop 

*52 14. h . 1 -«“ V [*52 13 . *37 28] 

*5215. \- : a e 1 . = . E ! /‘a [*5154 . *52*1 J 

*52 16. h :. a e 1 . = : g ! a ix. yea. D,.„.x = y [*5215 . *51*55 . *14*203] 

*5217. H : at 1 . = . i*a = (ix)(x<a) [*51*58.*52*15] 

*52 171. I-: ae 1 . = . E! (ix)(xca) 

*52172. h : ac 1. ■ . To>« a 

*52173. 1- : a f 1 . = ,l‘ae a 

[*51*55. *52*15] 

[*51*52. *52 15] 

[*51*53. *52*16] 

*52 18. h a « 1 . s : (gx): .r e a : y e a . 0,,. y = x 

Dem. 

V . *51*141 . D 1-:. (gx) . a = i‘x. = : (gx): x € a : y « a . D,,. y = x (1) 

I-. (1). *521 .Dh. Prop 

*52181. H :. 1 . = : xt a . D, . (gy). y e a . y+ x [*52*18 . *10 51] 

*52 2. h.lC CIs 

Dem. 

1*. *52*1 

[*5111] 

[*20*54] 

[*10-5] 

[*20-4] 

D h : a € 1 . D . (gx). a = i‘x. 

D . (gx). a = z (z = x). 

D.(gx.*>.3(*!*> = 2<*»*).« = 2<*!*) 

D.(g<*>).a = 2(<*>!*)- 

D . a € CIs : D h . Prop 

*52 21. h.A~*l 

Dem. 
h . *5216 .Dhat l.D,.g!a: 

[*24 63] Dh:A~el 

*52 22. KiOel [*51 12 . *14*28 . *10*24 . *52*1] 
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(1) 

(->) 

*52 23. — i 

Dem. 

b. *52-22.,1024. 3h.(a.r).,.rfl. 

[*20-54] 3 H. (ax. 

C*10-S] 3H.(aa).«6l 

h • *52-21 . *22-35 . D b . A e — 1 . 

[*10-24] DK(a«,.a<_, 

*- *(i;.(2). 

*52 24 Kl + AftCl..l + VAC.s [*52-23 . *24-54 . *2417 . Tninsp] 
*52 3. h . t“Q Cl 1 J 

Dem. 

K .52-22. *2-02. : 
[*5112.*1011.*37-61] D K . £“a c 1 

*5231. HuCl.s. (ga). * = i**c 

Dem. 

. *52-14 OhifCl.3.^C/,,V 

[*:17 (iG.,51 J2] =. <a«). a cv. 

[*->4 11] B • (3«) . k = i“o OH. Pr0p 
*524. h of 1 u / ‘a =*•<*. „.n * . _ . x, // e a. j, v . x « y 

Dem. 

*■ • *52 10 .*24 54 . D 

f.4'171 ^ = :« + A:*,y,«. 

[.5-63] • * •«“ A : s ;. a — A ;. v:. a + A : «a. X.» .*»}!, 

H • *24-51. .10-53 . ,11 62 . D h (,) 
I- .(1).(2).*4-72 X.„.* = y (2) 

b • (*). .51 -286 . ' Sl:!p'p <3> 

l‘AT,thU3rtheSith0n U frC‘|UC"t,>’ useful- W« «»>all define the number 0 a« 

when, and only th“l “ f^ 01,6 “en,ber or uone 
1,. "’“'. ?CmberS “re ,dent,cal- 11 wi» be .seen that 

a having no members. ° ‘m|> y 3 ! and thercfore “"<>w8 «-bc possibility of 

*6241. b : a ! a . , . 3 . (a*„y).x.y««.* + y 
Dem. 

b . *24 54 • D b :. g ! o . o ~e ! . = 

349 

[*4 56] 

[*51-236] 

[*52-4.Transp] 
[*11'52] 

<* + A . a1 ; 

~|ael.v.o = A|: 

« f 1 w «‘A) : 

~|x,y€a. Dx tl.x = y] 

(3^y).x.y€a.a: + y:. D^-.Prop 
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*52 42 l-:.flfl.D:g!an^.5.anjSc 1 

Dem. 

H . *31-31 . Dh.g!f‘x^. = . t*.c a 0 = t'x:. 

[*20*53] Dh.a = /‘x.D:g!an^. = .on^= i‘.r 

1*10 11*28] D b :.(a-r). a = «‘j*. D : (ax) :3!an^. = .aA^ = i‘i: 

[ * 10 37 ] D : 3 ! a n £. D . (ax). a a £ = / ‘x (1) 

1- . (1). *52 1 .Df-:.a6l.D:g!an/9.D.aA^el (2) 

h. *52‘16. Dh:aA/S<l.D.g!«A/j (3) 

h.(2).(3). Ob . Prop 

*52 43. h:a«l.g!oft/3.3.afl.an^«l [*52*42 . *5 32] 

*52 44. 1*a e 1 .D:g ant3. = .aCfi. = .ar\{3 = a 

Dent. 

I-. *51*31. DI-:g!/‘jr\^. = ./‘.rC/9: 

[* 13* 13. Exp] 0 b a = /‘x .D:g!anj9, = .aC/3:. 

[*1011*23] D K (ax) .a = /‘x.D:a!aA/3. = .aC/3:. 

[*521] Dh.flf l.D:g!an^. = .flC^ (1) 

h.(l >.*22-621 .Ob. Prop 

*52 45. b :: a.&el .D:.aC/iu7. = :a»/9. v.aC^ 

Dent. 

K*51*236 ^£2.3 

b x e t*i/ sj y . s : x — y . v . x e y 

[*51-2*23] D h f'xC i*y v y . = : i*x **i‘y . v . i*xCy:. 

[*13-21] 0 b i‘x . £ = i‘y . D :. a C /9 u 7 . = : a = /S . v . a C 7 :: 

[*11*11 *35] D h ::(a^.y).a=i‘x.^»i‘y.D:. aCfivy. =: a=0.v .aCy (1) 

H . (1). *521 .D b . Prop 

*52 46. H :• a, £ e 1 .D:aC/9. = .a = /9. = .g!(oA/9) 

Dent. 

1-. *51-2-23 . D h : i*x C <‘y . * . t'x mi‘y (1) 

l-.(l). *13-21 . Dh.a = i‘/.^ = <‘y.D:aC^. = .a = ^(2) 

I-. (2). *11*11-35 . *52 1 . 0 b a. >9 € 1 . D : a C 0 . = . a = 0 (3) 

h . (3) . *52-44 . Db. Prop 

*526. h.at 1 . D : x e a . = . i*x = a . = . x = l‘a 

Dem. 

1*. *51*23. Dl-zxe I*//. = . t‘x = i‘y z 

[*13'13.Exp] 0 b :. a = f*y. 0 :xea. = . i*x = a :. 

[*1011-23.*521 ] 0 1- s. a e 1. D : xe a . = . *‘x = a . (D 

[*51-51] =.x=i‘a (2) 

h.(l).(2).DKProp 
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*S2601. hs: at 1.3 3 :.r«a. 3,. : s : (a,). 

** . *5215 . Dh. Hp . D : E ! 7‘a : 

[*30 4] 3:,-7a.J.,. = 7‘a. 

f-. (1). *30-33 . 3 

*52 602. I-2 (*,) .1.3:* (,x) ,*,). s . 3, *x. a . ^^ 

(*52 12 . *14-26] 

*5261. h:.„1.3:t‘a«^.B.aC>9. = .a!(an/9) L52-601 **-*) 

*6262. h:.a,/9«1.3:a-/9.s.:.a.r*/9 ^ J 
Dem. 

UMi.3h:,.p.3jla,^.i = I(0iil=;,S; 

U2-46] ::x< «3vrf: 

*52 63. t-:a,/9el.a + ^.D.an^>A [.32-40 Mvansp] 

*52 64. H:a€l.D.an^fl w £<A 

Dem. 

K *52-43 . 3h:Hp.a!an/9.3.an^«l, 

[*6-6.*24-64]3l-:.Hp.3:an/3.A.v.anj8,l! 

[*o 1-236] 3:on£el u «‘A :. 3 I-. Prop 

*527. h:.fi-a<i.„cf.fC/9.3:f-a.v.f„a 
Dem. 

Mr1- 3 h : Hp .fCa.3.f = a 

l ' *«o 5° " •" :~(f Ca). 3.3 ! f — a 2 

r*isai<8>' ;;; 
■ *J 2 ; 3 : Hp . 3 . (3.x). 0 — a — t‘x 

^ . (1). (6) .Dh. Prop ’* ; (6) 



*53 MISCELLANEOUS PROPOSITIONS 

INVOLVING UNIT CLASSES 

Suwmart/ of f53. 

'I'he propositions to be given in this number are mostly such as would 

have come more naturally at an earlier stage, but could not be given sooner 

because they involved unit classes. It is to be observed that /‘.ru i*y is the 

class consisting of the members x and y. while t‘x\ i‘y is the relation which 

holds only between .r and y. If a and fS are classes, f‘aut'£ is a class of 

classes, its members being a and Q. If R and .S’ are relations, i* R f t*S is a 

relation of relations; and so on. 

'I'he present number begins by connecting products and sums //*, s'/c, 

//X. a‘X. in cases where the members of * or X are specified, with the products 

or sums a r\ a v R r% S, R o .S'. We have 

*53 01. Ih ./>‘«'a-a 

*531. I- v ll&) = a n £ 

*5314. I-./>*(* v l*a) = p*tc r\ a 

with similar propositions for s, j> and s. 

We have next a set of propositions on sums and products of classes of unit 

classes. The most iuqiortunt of these is 

*53 22 h.s‘i“a = a 

We have next a proposition showing that the sum of k is null when, and 

only when, k is either null or has the null-class for its only member, i.e. 

*53 24. = = = CIs . v . k - i* A 

(Here we write "A n CIs.” to show that- the “A" in question is of the next 

type above that of the other two As.) 

We have next various propositions on the relations of R*x and R‘x and 

Rtla in various cases, first for a general relation R, and then for the particular 

relation s defined in *40. Three of these propositions are very frequently 

used, namely: 

*53 3. hsEI/ftr.s.Jftrcl 

*53 301. h . R“itx = R*x 

*53 31. V : E ! R*x . D . Rltitx = i'R*.c = R*x 

The remaining propositions of this number are of less importance, and are 

seldom referred to. 
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*5301. \-.ptitx = a 

Dem. 

*5302. h 

Dem. 

h. *401 . 0 h:.e p‘,‘a . s : 0 ( i ‘a . 0„ . .r « a : 

J*51'15! s: 0~a.O,.*e/3: 

t*13 l91l Dh. Prop 
S*l‘a 

h . *4011 . D I- : x e s‘<‘a . = . <3/9). (3 ( 

s-(a>3)./9-a.At^. 
[•13*195] =.*(«:Dh. Prop 

*53 03. h .pU‘R = R [Proof as in *53 01] 

*5304. I-,i‘i‘R = R [Proof as in .5302] 

*531. H ^ £‘/9) = a n/? 

Dem. 

t- . *4018 .Oh . p‘(i‘a u <‘/3) = />• I‘a n pU'B 

[*5301] ~t.nff.0h. Prop 

Ihis proposition can be extended to i'o e 1‘g «,<», etc It shows the 

srsfi~£ 
*5311. l-.i,(t,aw[^)BoWi9 

Dem. 

h . *40171.31-. s‘(t‘a o i‘/3) = s‘i‘a w s'l'B 

c. f*53 02] ■«ufl.3K Prop 
Similar remarks apply to this proposition as to *53 1. 

*5312. h.p‘(i ‘Rui‘S)-R*S [*41-18. *53 03] 

This proposition shows the connection between the product for a class 

*6313. H.i‘(i‘.ftul‘lS) = rt0S [*41-171. •53-04] 

Similar remarks apply to this proposition as to •5312. 

*5314. h.p‘(*ut‘«) = /><«„„ 
Dem. 

^ • *40" 1S . 3 h , p*(fc u 1*0) = p*k a p*t‘a 

[*5301] ~P‘xna 
*63 is. i-.,*(* u t.a)=,.,ua tProof M in „53.1+J 

*5316. H.p‘(AUJ.rt)=^XA/f (Proofas in *33-14] 

*5317. = [Proofas in *5314] 

23 



PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 
354 

*5318. H.5*(a-«‘A) = «<a 

Dent. 

f-. *51 *221 .Dh:Ata. D. (a — t‘A) v c‘A = a. 

[* >315] _ D . s*(a - i*A) \j A = s‘a . 

[★-24 2+] D . 5*(a — / ‘A) = 6*‘a (1) 

• *51 22*2 . D h : A ^ f a . D . a — t*A = a . 

[*30 37] D .s*(a -t‘A) = $‘a (2) 

h.(1).(2). D h . Prop 

*53181. K.v‘(\-*‘A) = .y‘\ [Proof as in *5318] 

*53-2. I- : k € 1 . D . / ‘k = p*K = 5*/f 

This proposition requires, for significance, that * should be a class of 

classes. It is used in *SN 47. in the number on the existence of selections 
and the multiplicative axiom. 

Dem. 

I-. *52 <>01 • D h s: Hp. 3 t. x c c : a : a c«. D. . *«a: ■ s (ga). a e * . * e a (1) 

Ml).*40 1-11 . DK Prop 

*5321. h : X « 1 />‘X «.v‘X [Similar proof] 

This proposition requires, for significance, that X should be a class of 
relations. 

*53 22. Ks‘i“a-a 

Dem. 

H . *40'11 .Dh:xf sitila . = . (37) . 7 c ltfa . x ty • 

[*37*64.*51 12] = .(3y).y<a.x« f*y. 

[★51*15] s. (ay), yea. a:-y. 

[*13*195] = .a*c a : D h . Prop 

*63 221. h . w t‘y) = iVx v c‘t‘y 

Dem. 

V . *371 . D h a e v «‘y). 5 : (3*). x f (t‘x u t‘y). a t z: 

[*51131] = : (3*).; e (t‘x v c*y). a » c*£ 8 

[*51*235] =za = i,x.v.a = iiyi 

[*51*232] =:adtTxv«‘('y):.DK Prop 

*53 222. h : * = i“a. D. a = 1l"k 

Dem. 

h. *13*12 . *20 2 . D h : Hp. D . 7"sc = T“i“« 

[*51 *511 .*14*21 .*37 *67 ] =5 [(3y) .yea.x = tTy| 

[*51*511 ] =5 J(ay). y e a . x = y) 

[*13*195] = a Oh. Prop 
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(1) 

(2) 

(1) 

(2) 

*5323. h/cCl 

Dem. 

(•.*52-31 . D (•: Hp. = . (jja). „ — ,*<0 

I-. *53-22.31- :k = i“cl. 3..s‘* = a 

1*53-2221 = :..K 

I-. (1). (2). *10-11-23. Oh. Prop 

*53 231. (•:. Xe a . 3,. x = y : s : a - A . V . a = t«« 

Dem. 

^ . *51'141 . D h a !o:x(o, • x = y • = • a = / ‘/ 

(". *10-53 . 

K2j 
*"•(!)• (2) . *4-42-39 .31-. Prop 

*53 24. I-:. s‘* = A . s : * = A n CIs. v . * = j«A 
Dem. 

H . *24 15 . *40 11 . D 

h :.$<* = A . = s(ar)s^|(aa).««/c.areo| s 

[*10'51] = : (a:, a) : x e a . D . a ^ e k • 

[*11 2..10-23] ■ : (g*) .« * « . 3. .« ~ ! 

[*24-54J =!*+A.D«.a~€«: 

[Transp] s:oe*.3. .a = A: 

[*53-231] s : * - A « Cls . v . « - t'A :. 3 (- . Prop 

we write*"* **",*«,tho *ost line of the proof of the above proposition, 

next above That of the TLX1“ 2" ^ thiS A mUSt ^ °f tl,e 

The following proposition is used in the theory of selections (*837:11). 

*63 26 (• :. n t‘\ Cl*. v . x n X — j‘A 
Dem. 

K*40 181.DK:. Hp. D : 8*(k nX) = A: 

[*53 24J D:<f>\«An Cls . v . k r\\ = t‘A DH. Prop 

*53 3. b : E! € i 

Dem. 

h * *30'2 * D h E ! R'x • = : (H&) : yrt*. = ,. y = l: 

[*3218.*51 15] 

[*20 31] 

[*521] 

The above proposition is very frequently used. 

(3&) : ye R‘x .=„.ye i‘b : 

(36). Ji‘ar-i‘6: 

^**€1 DK Prop 

23—2 
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*53*301. h . R“i*.r = R*.r 

Dem. 

• *:i~ 1 •*51-15. D h :ye R“i*x. = .(qz). z— x. yRz . 

[*13-195] m.yMr. 

[*32*18] ^ ^ = . y *Rlx : D h. Prop 

*53*302. I-. • \j i*!/) = R*x \j R‘,/ [*37*22 . *53 301] 

The abovc proposition is used in the cardinal theory of exponentiation 
(*11671). 

*53 31. h : E! R‘x. D . R»u*x = t'lPx - /?.r 

I he above proposition is one of which the subsequent use is frequent. 

Dem. 

h . *51-11 . *14*18 .DhsHp.D. i*R,x =.f)(y = R‘x) 

[*30*4] -$(yRx) 

[*32*13] JTi<x (1) 

Ml). *53*301. D V . Prop 

*53 32 H : E! R*s. E! R*y. D . i‘y)- i<R*r sj t‘R‘y 

Dem. 

I-. *37*22 .Dh. 7i“(f‘x v i‘y) = w /e“c«y (1) 

Ml).*53-81 -3**- Prop 

*63 33. H . *“f‘* = iV# £*53*31 ^j 

*53 34. h . #"(«** w i‘\) = itstK w/V\ £*53*32 ^ | 

*53 35. h w «‘X) —\js*\ = s‘(* v \) 

Dem. 

h . *53*34 . D h . sts,t(i,K kj i*\) = *«((«,«« v/ iVX) 

[*5311] — 

[*40* 171] = *•(* u\).DK Prop 

'1‘he above proposition may also be proved as follows: 

H . *42*1 . D h . ststl(itK ui‘\) = v/1‘\) 

[*5311] = *«(*vX) 

[*40*171] =s‘«ws«\.Dh. Prop 

*53*4. • H : x = . = . R*j fl Rly . = . i*x = R‘y. = .x= i*Riy 

Dem. 

H . *14*21 .*4*71 .31-sx~R‘y.s. E ! R‘y. x = R*y . 

[*30*4.*5*32] =.ElR‘y.xRy. 

[*53*3.*32*18] = . € 1 ,xeR‘y. 

[*52*6.*5*32] = . e1 . l'«-2Z*y. 

(1) 
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= . tU = R‘y. 

= . .r = / ‘ 

(2) 

(«) 

[*52*22] 

[*51-51] 

*■■(!)■ (2). (3). D K Prop 

*53 5. K : a ! a . = . a e CIs — t‘A 
Bern. 

LtfJ' ■3 h: 3! * (*2> • £ ■ f ' CIs . a ! 3 (0.-). 

T ,, L ' J = • J (4>z)« CIs — I'A OI-. Prop 

*53 51. h : a ! R . s . ft « Rel - ,<A [Proof „s in *53 5] 

*53 52 h«(«.3!a.E.a<,-1.A 
Bern. 

54'3 h 8 “ * *"3 ! “ • s • “ * * • “ + A • 
*■ ='«f<“(‘A:DK Prop 

*53 53. h : ft e A . a ! ft . s . ft f X - i‘\ [Proof M in .53.52] 

l-he follow,ng propositions arc inserted because of their connection with 

the definition of a-./Sin *70. . ft»d‘ft and R..V nre both ^ 

*536. h : ft-A .3 !a . 3 . ft“« - «‘A . ft“« - t«A 
Bern. 

H • *33 15 241 . *24 13 . D h : Hp . 0 . ~R‘x — A 

I". (1) . *37 7.3h:Hp.D.f?‘a = £ ,(3*). x « a . /9 — Aj 

[*,035] -*ta...*-A) 

t*47*! -^ce = A) 
1*51*11] — I‘A 

Similarly I- : Hp . D .*R"a - t*A 

•-•(2).(3).3H.Prop 

*53601. h:a!«-aoa‘A = A.3.^‘a=,-A 
Bern. 

*33"41 . Z>K-Hp.x«a. :>./?'* = A (J. 

.*_Aj 

[*10-351 i . 
f*473 *51-111 =/3{a!a./9 = A} 
l*4 73.*51 11] = *‘A OK Prop 

*63 602. H : a ! a.« « D-JI _ A. D. *wA [Proof „ in *S3.60I] 

*53 603. : 3 - U'Jl. 3. ft“(— G‘ft) =«.A [.24 21. .53 601] 

0) 

(2) 

(8) 
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*53 604. H : a ! - D‘R . D . /?“(- D*R) = f‘A [*24 *21 . *53 602] 

*53 61. b + D . 7?‘a = v /‘A 

l)em. 

K*22<)2. D h : Hp. D. o = <l‘/i w (a — d‘iJ) (1) 

t-.*24G. D I-: Hp. D .g ! a — (l‘R . 

[*24-21.*53«01] D .~R“ (a — G‘if) = i‘A (2) 

I-. (1). *37-22 . D h : Hp. D . /?‘o =7f“(I‘/f u li“{a - d‘R) 

[(2)] = li“d‘R v i‘A : D h . Prop 

*53 611. b : V,RCa.D,R*a.O.*R“a = *R“lVR w i*A [Proof as in *5361] 

*53 612. b : d'R + V . 3 ,~R“V = Jt“d'R \j i‘A [*53 61 . *2411] 

*53613. h:D‘«+ V. D. 7?‘V - w i*A [*53 611 . *2411] 

.53 614 I-. li,,Q,R —7f“V — i‘A 

Detn. 

1* . *53 612 . *22-68 . *24 21 . D 

*■ : CI‘/e * V . D . li“V - i‘A - 7?‘(I‘7e - i‘A (1) 

H .*22 481 .Dh:<l*R~V -i<A = R“a‘R-l‘A (2) 

f-. *37-772 . *51 36 . *22 621 .Db. R“(I‘R - ,‘A = 7?‘CI‘7? (3) 

b . (1). (2). (3). DK Prop 

*53 615. h . 7£“I)*7? = 7f“V — i*A [Proof as in *53G14] 

The two following propositions arc used in *70 12. 

*53 62. b : li“a*R C7. = .rVC7v;i‘A 

Dem. 

h. *53-614. D b :W‘/{C7. = .rV-t‘AC7. 

[*24*43] =.rVC7u[‘AOf-. Prop 

*63 621. b : Ii“D‘R C y. = . 11“V C7ut‘A [Proof as iu *5362] 

*53 63. b : a*R * V . D . D‘/e - Il“<l‘R w i‘A [*37 78 . *53 612] 

*53 631. H:D‘7**V.D.D‘!ft = ^‘‘D‘7?w‘A [*37 781 .*53613] 

*53 64. b : d‘R = V . D . D‘7?= R“a*R [*37 78] 

*53 641. H:D‘« = V.D.D?fl=^“D‘iJ [*37-781] 



*54. CARDINAL COUPLES 

Summary of* 54. 

Couples are of two kinds, namely (1) «'xw‘y. in which there is no enter 

as between * and .j, and (2) *«* | <‘y. in which there is an order. We may 

^nceTasw 11 heSehtW° C°UP'eS “ C“"liDal and 0rdi™' '-spectively 
(Wheri ir \ Sh0Wn '‘e,e“fltr> tlle «='■«» of ••‘II couples of the form u Jy 

form ,‘a “l " T'lbCr 2' While the C'aSS ofaU ““P'-* of the 

dulctll ' 6 ^ 18 6 0rdinal "U,nber 2' ,C which- foe the sake of 
ds mctmn. we ass.gn the symbol ■•2," where the suffix "r" stands for 

the f H ’ eCa'r °,dini11 2 U “ ClaSS °f ri'lat>ons. In the present and 

o^dile °W,D1 nUI CrS'.We Sha" dcfine 2 and 2' “» the classes of cardinal an,I 

so define°|,p 8 rCSpeCt'.Ve lcnvin« !t 10 a later stage to show that 2 and 2,. 
so defined are respect.vely a cardinal and an ordinal number. An ordinal 

couple with len C“"ed 7 C°UP'e °r 8 C°'‘pU wM Se"se Th,,s « couple with sense ,s a couple of wh.ch one comes first and the other second. 

i a a introduce here the cardinal number 0, defined as i*A That 0 so 

defined ,s a cardmal number, will be proved at a later stage: for the preset 

^postpone the proof that 0 so defined has the arithmetical properties of 

thanCnwi|n“! C°UP,|CS T mUCh le9S imPottant, even in cardinal arithmetic 

(.55 lud T56?U£!s Wi" C°nSi,‘e,ed in the tw° followinl? numbers 

convenience of reference. The definitions of 0 and 2 are P 

*54 01. 0 = £<A Df 

*54 02. 2 = 5 !(a*, y) . a: =f y .a=-£‘xvi‘yj Df 

*54 26. h s t*y «2 . = .ar + y 

*64-3. h.2-a((a 

.6463, t-:««2.x.y«a.,r*y.3.a«i<x«t‘y 

.6466. .+ 
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*54 01. 0 = e‘A Df 

*54 02. 2 = a |(gx, y) . x+y. a = i*x w #‘y| Df 

*541. = [(*5401)] 

*54 101. h : a e 2 . a . (gx,y). a: * y. o = i‘x v *‘y [(*54 02)] 

*54102. H : a e 0 . = . a = A |"*541] 

The two following propositions have already occurred in *51, but are here 

repeated, because they belong to the subject of the present number. 

*5421. 

*54 22. 

*54 25. 

\-:i*xu t‘y = i*x sj t*x. 5 .y = t [*51-41] 

hM^u^y-^wi^.ijjr-i.y-w.v.flj-to.y-i [*5143] 

b : l*X\J l*y < 1 . = . x = y 

Deni. 

h . *52*46'1 . *22 58 . D b : i‘x w f ‘y € 1 . D . / ‘a: u i‘y 

[*20-23] D.i‘x=/‘y 

b .*22*56. D 1* : (‘a; a t‘y , D . (‘j; v t‘y = i‘j . 

[*•’>2-22] D.t‘xvi‘y€l 

b .(1) .(2). D h s i'x w |‘y c 1.3 . C*X« <*y. 

[*51-23] =.x = y:Db. Prop 

*54 26. b : i‘x v i*y e 2 . = .x + y 

(1) 

(2) 

Dem. 

b . *54101 . D b :: i*x wi'y? 2 . 

= :. (gx. iv). x<f w. ('su ('y a ((2 u e‘ii; 

[*5422] = (gx, w):x=J=?e:x = x.y = «/.v.x = u/.y = x:. 

[*4 4.*1141] = :. (gx. w) . x 4= w. x = x . y = u;. v . (g*|M/) . x=f w • * = w.y = x :. 

[*13*22] sr.x + y.v.y + x:. 

[*1316] = i.x + y :: D b . Prop 

*54 27. b . i‘x v 1*1/ € 1 U2 [*54-25*26J 

*54 271. b . 1 \j 2 = a f(ga% y) . a = f *x v; f'yj 

Dem. 

b . *4 42 . D * 

b :. a = i ‘a u t ‘y . = : <T = y . a = / ‘a u i ‘y . v . x + y. a = I ‘x w i‘y (1) 

b . (1) . *11 11*341*41 . D b (gx.y) . a = i*x \j l*y. 

= : <rAx’ y) • x = y • a = t*x v i*y .v , (gx, y). x+y. a = ilx u i*y : 

[*13195] -* = : (gx). a = i*x wt'x.v, (gx, y).x + y.a = t‘x w/ t*y : 

[*22*56] = : (gx) . a = i*x. v . (gx.y). x + y. a = i‘x yj i*y: 

[*521.*54T01] = : a € 1 . v . a € 2 : 

[*22 34] =:ael v2:.Db. Prop 
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*54*3. I-. 2 = a |(3*) .xca. a-1‘xel\ 

Dem. 

>-.*52 1 .*10-35. D 

H : (3*) ..Tea. a- i‘x «1. = . (3*, y). .r * a . a - i‘a = i*,j . 

I *5i 22 * «y* °1 L' ~~ a,/3 J 
[*51-231.*54I01] =.H(2:DK Prop 

*544. .*-*«, .v .0-t‘xvi‘y 
Dem. 

h . *51-2 . Dhx,y€/3.D.(‘xwt‘yC/9: 
[Fact] 

l*2241J 3.0-Sxsji‘u (,) 

H . *51-25.3 h :./3C u (*y. y^t /9.3 : /3 C <‘x: 

[*51 401] 3:£-A.v.£-t‘* (2) 

Similarly I- :./9C <<* « «‘y .*~« ff. 3 . ff . A . v . 0-t‘u (;i) 
I- • (2). (3). *3-48.3 9 W 

f’:-/9C‘‘*»‘‘y.~(*.y»/3).3!>9-A.w./3-(‘iB.v./s_I<„ (4) 

Ml).(4)..34-8.3 

K^tC12*^^^ (5> 

td?:£•,, w 

n0|Srrli:n|,h0"S *hat a clftss “"“‘ined in a couple is either the 
“So . un,t class or the couple itself, whence it will follow that 0 and 

1 are the only numbers which arc less than 2. 

*5441. h::ae2.D :.£C® . D :0-A . v . 0. l . y . *« 2 
Dem. 

*52*1 . Dhs./9 = i^.v.^«t-yo./9€i 

h . *.>4-2G . D I- i.x^y . i &~ i*x \j i*y .0 . ft c 2 
b • (1) * (2) . *54*4 . D 

l-::x + y . D :. £ C t‘x w‘y. D : £ = A . v . £e 1 .v./?f 2:: 

[n3n23^D::a = ‘‘"U‘‘y'x+y-3:-/3Ca-3:^ = A-v-/9sl-v^'2:: 

'•:-(a*.y).«-«‘*wl«y.a: + y.3:.^Ce:/9»A.v./9ei.v./9e2 (3) 
h. (3). *54101. Dh. Prop ' 

*54-411. h:.af2.D:5Ca.D.^f0ulu2 [*5441 102J 

(1) 

(2) 
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*54 42. h::ae2.D:./9Ca.a!/S./3+a.=./3«l«a 
Dem. 

^ . *54*4 . D h :: a = i*x \j t*y . D 

, /Ca-3!^5:^A.v.4 = 1‘x.v.^,«y.v.i9 = a:a!/i: 

[*-4o3 ;>6.*ol*161] = z0=i*x. v . £ = i‘y . v . £ = a (j) 

h • *54 25 * Transp . *52*22 + + 
[*13*12] Dho = (‘/U|‘/,.i-^y.3.fl + /rria:|1^ (2) 

•■.(l).(2).Dh:a = i‘xu f‘y .x + y. D 

0 = t*x. v .0 = 1*1/: 

(g z). 2 € a. 0 = 1*2 z 

£e/“a (3) 

0 C a . 3 ! 0 . £ * a . = 
[*>1*235] 

[*37 6] _ 

K (3). *11*11*35. *54101 . DK Prop 

*54 43. h:.a^fl.D:fln^ = A. = .au^f2 

Dem. 

K*54-20.DH:.a = ,^./$=^D:au£t2.s.x*y. 
[*51*231] 

[*1312] 

K(1).*11*11*35. D 

** v'£c2. = .an£=A (2) 
h • (2) • *11*54 • *52*1 . D H . Prop 

From this proposition it will follow, when arithmetical addition has been 
defined, that 1 + 1=2. 

= .l*x c\ i*y = A . 

*.an£-A (1) 

*54 44. H z.wtt'x u «‘y. D,.„.</>(*, «>):= • 4> {-r, x). <p (x, y). <p (y, x). <p(y,y) 

Dem. 

h . *51*234 .*11 *62 .Dh.r.wf i*x sj i*y . D,iir. </, (z, w) z = : 

sel*xxj i*y .Dz.<f>(z,x).<f> (zty) • 

[*51 -234.* 10 29] = : <f> (x, x). <f> (x, y) . <f> (y, x) . <f> (y, y)z.Dh. Prop 

*64 441. h :s *. w e i*x w i*y. **u/. . <f> (z, w) : = :.x=y: v : <f> (x, y) . <f> (y, x) 

Dem. 

h . *5-6 . D I- ss z, w c i*x u i*y. z + w. „. <f> (z, w)z = z. 

z, w e i*x w i*y . D,„: z = w. v . 0 (z, w) z. 

[*54-44] = : x = x. v . <f> (x, x) z x = y. v . <f> (x,y) z 

y = x. v . <f* (y, x) z y = y. v . <p (y, y) s 

[*1315] = zx = y. v . <f>(x,y) zy = x. v . <f>(y,x)z 

[*13'16.*4*41] = zx = y . v. <f>(x,y). <f>(y, x) 

This proposition is used in *163'42, in the theory of relations of mutually 
exclusive relations. 

*54 442. h :: x+y .Dz. z,w e i*x v i*y. .3z,u.<t> (z, w)z = .<f> (x, y) . <f> (y, x) 

[*54-441] 
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*54-443. **:: .* + y : «£ (ar,y). = . £(i/tx): D 

*■ w e #‘<t v /‘y . 2 + w. D, ^ (*f . s . ^ |V»4-442] 

*54-45. P (g*. w) ,;,»t /«.,• u /‘y . </> (*, „.). 

= z <f> (•*". *)• V , <f> (.r, y) .V . <ft (y, ,v) . V . 0 (y, y) [*51-235] 

*54-451. f- ::~^(.r,.r).^0(y,y). } (g*. w»). *, W€/** w t‘y. <£(*, w). 

= :<Hx,i/). v.(/,(y,.r) [*5445] 
*54-452. I-:: - 0 (x. a). - 0 (y, y); <*> {x> tJ). = . $ <r). D . 

(a*,*).*I*«ll*we‘y^(i|W).s^(r|^ [*54-451] 

* 4-46. \-z(Z2,u^.t.wei'xu I'y.g + w.s.x^y [*54-452. *131516] 

*54 5. H :. a € 2 . D : a C i‘z v «' w . a = /*z yj t*iv 
Bern. 

h . *54 4 . D 

k ” tf.f* ” ‘*w • 3 : a - A . v . a - t‘t. v . a - iV. v . a - i‘t w i‘w 
I". *54'3 . *2454. 3K:Hp.D.« + A 

K*54'26^-*13'15- 3 s Hp. 3. a +1‘» 

M3)?. D h : Hp. D . a + t*w 

O) 
(2) 

(3) 

<*) 

4 * ^ oo’i? ^ ^ ' *4) ‘ *2 53 * ^ h f,!> ^:aC«‘:w i*w .D.a-t(iw (5) 
H • *22-42 . 

^ • (5) • (6) .DP. Prop 

*54 51. >-:.a<2./3elu2.D:aC£. = .a = £ 
Bern. 

V . *54-5 .Dh.a«2.^ = t‘«u l‘w .Z>:aC/9. = .<* = # 
P . (1). *11’11-35-45 . D 

h:-af2: (3*. w)- (3= i'zv i‘w :D:aC fl.s.a* 8 
K(2).*54-271 . Dh. Prop 

*54 52. ^:.o,/962.D:aC/9. = .a*^.s#/3Ca [*5451] 

*54-53. H : a c 2 . a:, y c a . a- =f: y. D . a ■= «‘x w «‘y 
Bern. 

K »ol-2. 3 H : Hp. 3. t‘x C a . i‘y C a . 

[*22-59] 3 . i‘x u i'y C a 

h . *54-26 . 3 h : Hp. 3 . l‘x U(‘wf2 

M1)-(2) . *54\52 . D K Prop 

*54-531. h a e2.D:x ,yf«.i + y. = .a = t^u(‘y 
Bern. 

p.‘^g-Exp-^l;!-a‘2-3:*.y*«.*+y.3.«»t«xwt*y (l) 

kS:*: IX(4> 

(«) 

(0 

(2) 

(1) 
(2) 
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*54*54. b:.ae2. = :x,y€a.x4=y. 3x>y.a = t*x u i*y : (gx.y). x,y ea.x^y 

Dem. 

b . *54*531 . *11*11*3 . 3b:.a*2 . 3 : x,y « a . x=^y . 3X#?/. a = t‘x v «‘y (1) 

H . *51*16 . *54*101 . 3 b : a e 2 . 3 . (gx.y). x,y e a . x4=y (2) 

f-. *53 . *3*27 . Dhr.ar, y€a.x4sy.3.a = t‘xu i*y z 3 : 

x, y € a . x 4= y . 3 . x + y . a = £*x w t‘y :. 

[*1111 *32*34] 3 I- s. x,y c a . x + y. 3XtW. a — i*x sj i*y s 3 : 

^3^' .V) • a*, y e a . x 4= y . 3 . (g.r, y) . a: 4= y . a = t‘x w/ i*y (3) 

I- .(3). Imp . *34101 ,3b:.x, y«a.x4=y. 3xy.a = i<xv t*y : 

K,1).W.(«. DKP„.„ — » (*> 

In the above proposition, ** x. y e a . x 4s y. 3x.y. a - e‘x v /‘y" secures that 

a has not more than two members, while "(gx, y). x, y € a . x 4= y" secures 

that a has not feiuei• than two members. 

*54 55. KOwl v* 2 = 5 j.r,y « a .x4=y. 3,.„. a - i'x \j i‘y| 

Dem. 

H . *4 42 . 3 b ::x,y * a .x4=y . 3X §(, .a = t‘/ui‘y: = j. 

x,yca .x4sy. 3X,„. a = e*x vi'y:~ (gx, y). x, y € a . x 4= y 

v x,y « a . x + y. 3x>y. « » i*x v t*y: (gx, y). x, y c a . x + y (1) 

b.*11 63.3 b :• ^(g r.y) ,.r,y«a . .r + y. 3 :x,y«a . x + y. 3X>|/. a = i‘xv i‘y 

[*4 71] 3 b :..r,yca . x4=y . 3Xi„. a = £‘.r v £*y : ~(g.r,y) . x.y e a . x4=y : s : 

~(gA-,y).x.y«a.x4-y: 

[*11*521] = :x,y«a.3Xt(,.x = y: 

[*52*4] =:a«0ul (2) 

b . (1).(2). *54*54.3 

H:.x, yca.x4:y. 3x>f/. a = i‘x w c‘y :a:ae0vl.v.ac2t 

[♦22-34] =:a£0ulu2:.3h. Prop 

*54*56. h:a<v£0ul \j 2. = . (gx, y, z). a*, y, a € a . x + y . x 4= *. y 4*2 

Dem. 

b. *54*55. *11 *52.3 

b :. a ~ e 0 u 1 w 2 . = : (gx, y). x, y € a . x + y. a +1‘x u i‘y: 

| *51 *2.*22*59] = : (gx, y) . i*x vAt<yCa.x4=y.a + *‘x w t‘y : 

[*24*6] = : (gx, y).i‘xwt‘yCa.x4y.g !a-(t‘x w i*y): 

[*51 *232.Transp] = : (gx, y) : t‘x v i‘y C a . x 4= y : (g*) .zea.z^x.z^yi 

[*51*2.*22*59] = : (gx. y,z).x.y,^ca.x4=y.x4=z.y4=A:. 3b. Prop 

In virtue of this proposition, a class which is neither null nor a unit class 

nor a couple contains at least three distinct members. Hence it will follow 

that any cardinal number other than 0 or 1 or 2 is equal to or greater than 3. 

The above proposition is used in *104*43, which is an existence-theorem of 

considerable importance in cardinal arithmetic. 
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*54 6. H a « £ = A . .r, x * a . y,y e/3. D : 

ZW ‘^^ = »Vu,y.5., = ^// = y. 

r*o*Sioi ’3 h‘'■Hp ‘ ?' *1* c " • 1‘* C a ■<,y C # • *y C 0 ■ a n 0 = A : 
D:i -**jr-i‘*w*y.».,.,_(V.l.y_(y. [*2448] 

[*5,123^ ■ 3 k Prop 
Ihe above propos.t.on .s useful in dealing with sets of couples formed of 

one member of a class a and one member of n class 0. where a and 0 have no 

(*113148)" COmm°n‘ U ^ USe<l ^ thC thC°ry °f ca,dinal multiplication 



*55. ORDINAL COUPLES 

Suminnry of *55. 

Ordinal couples, which are now to be considered, are much more important, 

even in cardinal arithmetic, than cardinal couples. Their properties are in 

part analogous to those of cardinal couples, but in part also to those of unit 

classes; for they arc the smallest existent relations, just as unit classes are the 

smallest existent classes. The properties which are analogous to those of unit 

classes do not demand that the two terms of the couple should be distinct, 

i>. they hold for i*x | t*x as well as for i*.r f i‘y (where x + y); on the other 

hand, the properties which are analogous to those of cardinal couples do in 

general demand that the two terms of the ordinal couple should be distinct. 

The notation is cumbrous, and does not readily enable us to 

exhibit the couple as a descriptive function of .r for the argument y, or vice 

versa. We therefore introduce a new symbol, " x ^ y," for the couple. In a 

couple .r l y. we shall call x the referent of the couple, and y the relatum. In 

virtue of the definitions in *38, this gives rise to two relations and ^ y; 

hence we obtain the notations xi \ y“a, a 1 y, a 1 “8 and so on, which 

will be much used in the sequel. It should be observed that.rl“/9 means 

the class of ordinal couples in which .r is referent and a member of /9 is relatum, 

while l ylta or a l y denotes the chiss of couples having y as relatum and a 

member of a as referent; a J, denotes all such classes of couples as l y“a. 

where y is any member of /9; ami in virtue of *40 7, s*a X denotes all 

ordinal couples of which the referent is a member of a, while the relatum is 

a member of /9. This is a very important class, which will be used to define 

the product of two cardinal numbers; for it is evident that the number of 

members of s‘a J, is the product of the number of members of a and the 

number of members of /9. 

The first few propositions of the present number are immediate consequences 

of the definition of x ^ y and the notations introduced in *38. We then pro¬ 

ceed to various elementary properties of the relation x \y, of which the most 

used are the following: 

*5513. h : z {x l y) ru . = . z = x. w = y 

*5515. H . D‘(* l y) = i‘x. (I‘(a: | y) = i‘y. C‘(x l y) = i‘x v i*y 

*5516. H : D‘R = i*x. (Pi* = i‘y . = . R = x l y 

*65202. \-:xly = zlw. = .x = z.y = w. = .ylx = iulz 
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30 7 

This proposition should be contrasted with *54 22 is <rivin<r 

virtyue^fntheC0Zl,S a,e m°'C "Sef"1 “ri,h'"etic than cardinal couiWeTln 

referents ZtSSESt ** 

We proceed next to various properties of the relations a? I md l mm 

sir s,*r; r v^- ■■ - srsr ,/r sr 

•55232. = 

This proposition is frequently useful. 

are Ull.^loThe p^rt^’o} »jf “LT^ °' *-A» Whioh 

of these properties are the following: g n,0re ,n,Port“‘ 

*66’3 ht*fiy-»-*iyea.».ai(*,iy)A* 
This is the analogue of *51-31. 

*8534. I-■■alR.RG*ly.5.li=xl!/ 

This is the analogue of *514. 

*555. h:.i4C*iy0,lw. = . 

Th. . ,R = A'v-R=xiy-v-K=‘i”-''-R-*i!,»ziw 
I his is the analogue of *54 4 * 

*5B 61. h : E! *.. E! . 3 . <«„ S).(l | w) _ (ft.,) j 
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*55 01. x\,y = itxJ\ity Df 

*55 02. R‘s = R‘(x l y) Df 

This definition serves merely for the avoidance of brackets. 

*55 1. b . x i y = (f‘x) | (i‘y) [(*55*01)] 

*5511. b l y‘* = x l y = i*xJ\ i‘y [*38*11 .*55*1] 

*5512. b. Elxl‘y [*55*11. *14*21] 

*55 121. h.E!|,y‘x 

*55122. b : R(x l)y . = . R =x l y [*5511] 

*55123 b:R(ly)x. = .R-xly [*5511] 

*5513. l-:2(/|y)w. = .:=/.w = j/ 

Dem. 

h . *35 103. *55 1 .Db : z(x l y)w. = . z c i*x .we i‘y. 

[*51*15] = .* = .r.w = y:3K Prop 

*55132. Kx(x|y)y [*5513] 

*55 134. h.g!(x4,y) [*55*132] 

*5514. b . x i y = Cnv'y l x [*55*13. *31*131] 

*55*15. b . D‘x i y - i‘x. CI*r 1 y = i‘y. C*‘x | y - i*x w i‘y 

[*35*85*86. *51 *161] 

*5516. b : WR = i*x. (l*/£ ■= i‘y. ■. R - x ^y 

Dem. 

b .*33*13131 .*51 15.3 

b :: WR = i *x. (I 'R = i‘y. = :. (gw). zRw. =z. z = x: (gz).zRw. =IP. w = y :• 

[*14122] = :.(g*, w). zRw :(gw). zRw. 3,. * = x: 

(gw, 2) . zRu): (gx). *7fw. 3*. w = y:. 

[*11 *23.*4*711 = :.(g*, w). zRw: (gw). zRw. 3,. *= x: (g*). zRtv.D,0• w= y 

= (gz, w). r77w: zRw . 3,<IP. * = x: zRw. 3X.,P. w = y :. 

= :. (gj, w). *77w : *7?w. 3,.,P. z = x. w * y:. 

= :. zTfw . =,.IP . z = x. w = y :. 

= :.*/fw.=,.IP.*(x,ly) w:. 

= :. 7? = xly::3h. Prop 

[*10*23] 

[*11*31)1] 

[*14*123] 

[*5513] 

[*21*43] 

The above proposition is important, and will be frequently used. 

*65161. 

Dem. 

b . X l y =7‘/e (D*R = f‘x. (I‘T? = i‘y) 

h. *55*16. *2015.3 

h . R (D‘/e = i‘x. CI‘77 = *‘y) = R (R = * l y) 

[*51*11] -«‘(*ly) 

K(l). *51*51.31*. Prop 

(1) 
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*5517. h..,ly = r‘(lT‘/Vntr‘#^) [*55-161 .*33<i<il| 

*55 2. l-:ar|y = .rj2. = .y = * 

Dem. 

K *30-37. *5.Vii,2.DH:y=i.D..rl ; 

K *3037. *33121 . D 

: i- i ^ . D . Q*..- i = U'.,. I z . 

[*5315] 0.i‘;/ = i‘s. 

[*51-23] D.y-2 

*■•(!).(2).DI-. Prop 

*55 201. I- „ 

*65 202 H : • 1i . s . = ..,, . ,, | . 

Dan. 

f-. *55-2-201 . D 

[*1.317] 

K *.30-37. *.3812121 . D 

!" : x\,y-liw.D. DV I y - DV | *. (IV1 y - <J‘* I «.. 
[*5515] 

[*51-2.3] 

*--(l).(2).D 

h * a; i y | m; . = . x = i . // « w 

Similarly 

*■ • . (4) . D I- . prop 

'I’ho above proposition is important. 

*55-21. h . Q'x i = V . G‘ i x - V [*33 432 . *55 12 121] 

*55 22 I-. !)<*;-ft |(ay) . ft = x i yj [*55-122] 

*55 221. H.n‘ix = fl[(ay)./e = yix| [,53.,23] 

*55 222. h : ft f D‘x i . = . D'ft - . Cl'ft ( 1 
Dem. 

h . *55-22 16 . D I-ft «D*«|. B: (g,,). V.R , («x. a</i = t, . 

! : : D‘ft = : ,3y). a-ft = t'(/: 

1* ’2 1 ] = : D'ft = t‘x. a-ft »1 3 K Pro| 

*65 223. hfi(D‘|j,=, a‘ft = e'x. D'ft . 1 [Proof as in *56-222] 

*55 224. l-.D‘xir,D‘].y = (<(xi„, 
Dem. 

I-. *55-222-223 . D 

b : R € DV i n D‘,[y . = . D‘/£ = t'*. Q‘]{ f 1 . CE‘/* = l*v . D‘.K e 1 
R 4c w i ^ 
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[*52 22.*4 71] = . D*R = i*x. d‘R = i‘y . 

[*•”>5*16] =. R = x l 1/ . 

[*5115] = . R e i\x l y) : D I-. Prop 

*55 23. b . x l “a = R {(gy). y * a . R = x i yj [*3813] 

*55 231. b . I u “a = R {(gy) . y e a . R = y | x\ [*38131 ] 

*55 232. b : g ! I./“a n J, . = . x-. y . g larsfi 

Deni. 

b . *55*231 . *11*55 . D 

H g ! 1 xua r\ j y“0 . = : (g/f): (g*. w) . z € a . R = z l x. w c £. R = w | y : 

[*13195] = : (g», w). z € a . w e (3 . z l x = w ^ y i 

[*55*202] = : (gz, w). z € a . w e ft. x = y . z = w : 

[*13*195] s : (g*). z *a r> 0 . x = y : 

[*10*35] =:g!aA/9.j-=sy:. Dh. Prop 

*55 233. b : * + y. D . I .r"a n i //“£ = A [*55*232 . Transp] 

The above two propositions are frequently useful in arithmetic. 

*55 24. b . l “a-iVrfa 

Dent. 

b. *41*11 . D 

h 5 (ttc 1 “a) . = . (gR) • ft c « 4 “a. zRw. 

[*55*23] = . (g/t,y).y ca, R = x l y. zRw. 

[*13*195] = . (gy). y € a. z (x | y) w. 

[*55*13] = .(g y).yea.z = x.w-y. 

[*13*195] =. z = x .w e a. 

[*51 * 15.*35* 103] s . z (i‘x f a) wD H . Prop 

*56*241. b . *"a - a |[Proof as in *55*24] 

*66*26. h : g ! a. D. D“a: | “a = f‘«‘x 

Deni. 

b . *37*07 . *33*12 . *55*12 . D 

h : £ e D“x l“a . = . (gy). y e a . >9 = D‘ar ^ y. 

[*55*15] = .(gy).yca = 

[*10*35] =.g!a./9 = £‘x (1) 

b .(1). D b Hp. D : 0e D“r J “a . = . £ = t‘.c. 

[*51*15] = . /9 e tVxD h . Prop 

*55*251. h : g ! a . D . (1“ i x“a = i*i‘x [Proof as in *55*25] 

This proposition is used in the theory of cardinal multiplication (*113*142). 

*55*26. b . d“x J, “a = i“a [*55*15 . *37*35] 

*55*261. b . D“ l x“a = /“a [*55*15 . *37*35] 

*55*262. b : l x“a = | y“/9 .D.a = f3 [*55*261 . *53*22] 
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*55 27. h . C« i x“a = C“, V‘a^ {(3y)., « « .* = „ ,y] [*55-15] 

*55-28. h : d-x J y = d‘x | ,. s .y = , . s ., j = , , . 

[*5515 .*51-23. *55 2] 

*55281. = 

*55-282. hC‘xl^C'4^.^,.3.,^..,^ 

[*5515-2. *5421] 

*55-283. t-:&l,l — C‘,l*.m.9-,m3m9ljcm,ii 

*55-29, K a | (*],) = i [*55-15 . *34-42) 

*55 291. h . I>m «)_ , [*55 15 . *34-42[ 

*56-292. K . C|(x 4.) = C; (|,x) - 3?(a = i«.r M ,‘y) [*55 15 . *34-41] 

The following propositions, down to .55 51 inclusive, give properties of 
ordinal couples winch arc analogous to the properties of unU cJJ 

*563 Hxfty.s.xiyCA.s.al^i^A^ [»l3-21 -22 . *55 13] 

I he first half of this proposition is the analogue of *51 2- like that 

propusitio"st0 thc *>"» 

*55 31. = = 

I his proposition is the analogue of *51*23. 
Deni. 

[.SMS1]" •3 *•!* 1» - ■‘i• ■• ■ • n**! s - .•«. a-x i y - t v 

[*5123] 

[*55 13] 

[(l).*1310j 

[*5513] 

I" • (1). (2). (3). D h . Prop 

*5532. h:.x,ly,S,4u,=!A. = :*+*.v.y* 
Deni. 

H . *55 3. D b :g Ixiy * z ± w. s .x(s 1 w)y. 
[*55131 _ „ J J J = .x = Z .y r=iu 

. ^ • (1) • Transp . D H . Prop 

*65 33. \--.xR!/. = .xiyf.R = xiy [*55-3. *23621] 

*6534. ha!fi.fiGxi,. = .fl,,u 
Deni. 

w™-*hu*'*-****'--'M.**'*.^m. 

[*5513] :: „ •=--■-* = *; •» - y« 
- . Ztiw . =,. «, . z (x X y) w D I-. Prop 

24—2 

~ . x r= z . y = w . 

s.x(z l w)y. 

3 . z =* x. tv =* y . 

= . z (x l y) w 

w 

(1) 
(2) 

(3) 

0) 

X . W mm y : 
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*55 341. t-:./eeaiJ. = :i? = A.v.R = x|y 

Dent. 

h +42 ■ 3 h : • H G *1 'J . = : R G 1 y ■ 1< = A . v . if C x | y . R * A : 

[*2.5-54] = : if C*iy . R = A . v . RQX\,y .g ! R: 

[*55-34] = = 

[*2512] e:/f — A.v.iJ-t.r^y:. Prop 

*55 35. >':R*sl!/-A.Rvxl!/-S.s.xS!/.R=S 

Deni. 

h . *25 47 . D 

h:/fr,.riy=A.«c;*|y = .Sf. = .a:4,J,CS.i{-S^a;|y. 

t*55'3) Prop 

*55 36. I-. = .(Itx l i/)sy.T X i/= It 

Deni. 

h . *55*3 . D h : xRy . = .x l yd R. 

[*23(52] = .xly*R = R. 

[*23 91] = Prop 

*55 37. ^:xfo.yc/9. = .x|yGa|/9 

Deni. 

K . *35‘103 .Dh:;rca.(yf/9. = ..r(a:J‘/9)y. 

t*55*3] =-xlyQa\R:^\-.Vrop 

'1’he following proposition is the Analogue of *51232. 

*55 4. *-:-(i\xl!/vzlw\b. = :(i = x.b = !/.v.a = z.b = w 

[*55*13. *23*34] 

*56 41. h:/e=.r|yuziw.D:. aRb . Dfl. *. <f> (a, b): = . <f> (x, y) . <f> (z, w) 

Deni. 

H . *55 4. D h Hp. D :: aRb . Da b. 0 (a, 5): = 

a « a:. 6 - y. v . a = r . b - w: Da> 6 . <f> (a, 6):. 

[*4-77] s (a, b)a * *. b = y. D . <f> (a, 6): a - *. 6 « w. D. <f> (a, b) 

[*ll-31]=s.(a.6):a-ar.5-y.D.^(a,6):.(«,6):a = ^.6»w.D.^(a, 6):. 

[*13 21] = <fj(x,y) . <f>(z,tu) D h . Prop 

The above proposition is the analogue of *51 234. The following pro¬ 

position (*55-42) is the analogue of *51235. 

*55 42. h: R = xlysvzlw.3 :.(y«,b) .. <£(«, b) . = : <£0r,y): v . <f>(z,w) 

Deni. 

h . *55-4.3 1-::. Hp . D :: (go, b). ci/M . <f> (a, b). = 

(a«. b) a = X. 6 = y. v . a = z . b = w : <f> (a, b) 

[*4 4] = (ya, b) : a = x. b = y. $ (a, b): v : a = z. b = w. <f> (a, b) 

[*11 *41 ] = (ya, b) . a = x. b = y. 0 (a, 5). v . (ya, b). a = z. b = w. <f> (a,b) :• 

[*1322] = <f>(x,y) .v.^(j,ti»)::.Dh. Prop 
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*55 43. H : , I „ c i n. = , J y „ r i,/. s . . = r . =. a . . ^ =; f/ 

I his proposition is the analogue of *51 41. 

Deni. 

H . *55202 .Dhzrrc.j^f/.D.:! Wsf if/t 

H*2*2iH8 3(- | 3 • * I .* «* * i «• - l .'/vr 1,1 , |, 
• 08 ' 3 h i "-.rijor 1./. D : 

r*55-3 X3 ■> ^ M'Ge A * I ‘ D' C.-i y o * J : 

Si? 3—=,-v.,=c.»-rf:c-«.rf.y.v.t..e.—rf, 

tl3 721 3-*-'.—jr.e-*.rf-y.v.,.e. „.rfl 
L*lo 172J D:*=»c./p = rf 

h. (3). *55-202. Dh. Prop ( {> 

*55 431. h.a'^c/:jw=iaj^c|f/|D; 

Deni. *-a.y-6.,_e.w_d.v.x_c y = (/ fi-(( w_& 

*554. D hs: Hp. a :.«-«.,..y.v. 

r*ii ll v . « =c. v =*<!:. 
1 1J 3:.ar-*.*-*. 

[*13-15] 3,,-a.,.5.v.^ri-V-X'C-y-'i!;i) 

[*55 43] 3*Hp.3.«1*w,il,_oAtl8,eArf> 

-- <;> 
h-(l)-(3).(4). D h . Pr.,pP' 'y“ = 

*6644. l-:.*4,yK/*iw = ai4K,c.i(/ 

=:*««.y-4. .x-c. v .«-e .y = ,/ . j , 

Oem. = = 

K.5S-M. 

«-* <*> 

H. (1). (2). *55-431-202.3 I-. prop 3 - * i y « * i '" = « | 6 c c 4, d (2) 

The above proposition is the analogue of *5143 
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*55 5. H :. RGx^ywz^tv. 

= : R = A . v . I{ = j l y . v . R = * l w. v . R = .r l y v z l w 
I)ein. 

h.*25 12.*23 5K-42.D 

h R = A . v . R = .r ^ y. v . R — z ^ w. v . R = x X y c; z ^ w: 

'Z.RGxlysjzlw (1) 

I- . *25 49 . D I- :./{ G x l y v z l w. I{ r\.r l y = A . 0 : It G z l ir : 

[*55-341] Di/?-A.v./?-*4w (2) 

f- . *25 43 . D h C r ^ y \j z ,[ /#•. D : R — x ^ y G z j, w : 

[*55-341 ] D : /U x X y = A . v . R ± xJ, y = z | w: 

[*2524.*23-551 ] D : (/f — *Ay)V'.*iy-x,J,y.v. 

(3) 

h. *55*3*3(3.0 l (R * x l y) • 0 • (R — x l y) v .c l y = R (4) 

H . (3). (4). D H It G x ^ y c/ j | 10. y ! {R r\ j| y). D ; 

R =** i y.v . R = xj y v z X w (5) 
h.(2).(5). D h:. 

R = A.y.R-xly.y.R = zlw.y/.R^xlysjzlw (0) 

K(l).<6). DK Prop 

The above proposition is the analogue of *54*4. 

*55 51. I-R G * Xy ci S. D s xRy .v.RGS 

Dem. 
h . *55*3 . D V : y ! (R A .r | y). D . xRy (1) 

h. *25-49. Dh: Hp.-g ! (i* A.r i y). D . RQS (2) 

h . (1) . (2) . D h . Prop 

In the remainder of the present number, we arc concerned with properties 

of ordinal couples which have no analogues for unit classes. 

*55 62. h = wvylzvylw [*35*82-413] 

*65521. \-:x*y. = .xlyGJ [*553 . *50 11 ] 

*65 63. I-x *y. D : C*R - i‘x u i‘y. R Q J. s . 3 ! R. R G* J y vy J, a: 

Dem. 

V . *555 .Dh:.g!,ft.7?Gx,lyciy|x. = : 

R = xXy.v. R = yXx. v . R = x l yw y l* (1) 

. h. *5515. D h . C'xiy = v i‘y. 1 x=i‘a-v (2) 

h . (2). *33 262 . D h . C‘(x | y c; y A x) = t‘x w‘y (3) 

H. *55521 . Dh:x + y.D.xiyG/.y|xC/. (4) 

[*2359] D .x Xyv y (5) 

h.(l).(2).(3).(4).(5).Dh:. 

x4=y.D:g!i2.#G^Ay^yi^-3- o*R = i‘x v i*y. r a J (C) 

1-. *35-91 . D 1-: C‘R = i‘xv i‘y .0 . RG (t‘x v <‘y) t(«‘xv i‘y) . 

[*55-52] D./?Gx|xc;x|yc;y|xc;y|y (7) 
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t-. *50 24 . D 1-: ft C J. 3 . ~ (xHx). ~ (y7ty). 

[*55'3.Tr,insp] lK. 

*55-54. h :: ,r +. D :. C-ft-,** u ,«„..R A 5 - A . ■ , A - , * y. y . * j , 
JJem. 

H.*60-40.*471.Dh:HAS-A.«.i8cy.ilAji-A (1) 

h * (1) ‘ *55’53 • ^ *■ :s ar + y. D :. C‘/e - i‘.r sJi*y.RAR~\. 

= : g! i* . R Qx 1 y v y | x. ]{ * R * A : 

ri4]: ^ r ^'v; ^'y 1 * • v ^ 1 y 0 ^ ^ ! ^ ^ -A <2> K . *55 32.Dh:.tf + y.D:x|y*y4,a:«=A: 

[*5514] 3:ii = a-iy.3./enA-A: 

ft“yi*-3-ftAft-A /3) 

K*5614.*31-15-33.3l-:iJ-x|y«,y|,o.*-fl. 

[*235] 3,/(n« = fl. 

[*55;134] D . 3 ! ft A ft (4) 

H .(3). (4). *4-71 .*5-71 . D ' 

^::* + y.3:.ft-;tiy.v.ft = y|x.v./, = a.iyl;,yi;r:/f(SJJ_A: 

K(2).(5). 3 K Prop = : ft-*4y.v. ft-y;* (5, 

*55 67. H . ft |(x 1 y) = ft‘x f ,-y [*37 81 . .551 . .53301 ] 

*66 571. h .(*iy)|ft-«‘xtft‘y 

*56672. l-.ft|(x4,y),V_lJ<z|S‘y [*55-571 ..37-81] 

*66-573. h . ft|(* l y)|S = ft«x fs<y [*5'572 ® j 

*6668. t-:E!ft‘x.D.ft!(x4.y, = (ft^)iy (.55-57 . .53.31 ..551] 

*55 681. I- : E! S‘y. 3 . (* ; y)|,S' = * (5<y) 

*65-682. hE!fi.I.E,^y.3.Ji|(liy)|S = wl(J,y) [.55-58-581] 

*66-583. h s Elft'x. Elft*y. 3 . ft|(*iy)|5=(ft‘*)^(S‘y) [.55 5821] 

The above propositions are frequently useful in arithmetic. Their use 

thHektion ft8' 8* V’.8 te Cla8SeS °f Which ° 13 “Elated with y by 
the relation ft, and 0 with 8 by the relation S. Then if 7. y ,-S, the 
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couple consisting of the correlate of x ami the correlate of y is (R‘x) A (S‘y), 

i.e., by the above. It (x l y) S, i.e. (R || S)‘(x A y). Thus the relation rt||S 

correlates the couples, in a ami composed of the correlates of terms in 

7 and $. The most useful form, in practice, of *55 583, is that given below 

in *55*61. 
w * * 

*55 6 b.(R S,U: A tu)= R'z^S'w [*55*573 . *43112] 

*55 61. b : K! It*:. Ml S*,n .D .(R S)*<: l w) - (R‘z) A (S‘u>) 

[#55*5X3. *43* 112] 

*65 62. biz^m. S = x l .s4* = r. S*w - y 

Dom. 

I-. *55 13. Dhs: Hp.D:. uSz . = : u m .#•. t — z. v . u — y. z — w (l) 

I-. (I). *13* 15 . D V s. Hp . D : uSz . = .h = x (2) 

Similarly I*:. Hp.D: uSiv. =. u = y (3) 

b . (2). (3). *30*3. Db. Prop 

*55 621. b : x 4= y . ,S' »= x A z kj y \ w . D . 5‘.c = 2 . S*y = w 

[Proof as in *55 62] 

I he four following propositions belong to *43, but are inserted here because 

the proof uses *55*13. 

*5663. b 

Dent. 

'AlQ*8.P\\Q-R\S.,Z.l>mR 

b . *43*112 . D b s: Hp . D I* (y l 2) Q— R\(y A j)| 6’ 

[*341 ] D (gii, v). xPt .u(yl*)v. vQw. =XttP. 

(gw, v). xRu . «(y |:) w. vSw 

[*55*13.#13*22] D xPy. zQw. =Xi,r. xlty. zSw 

[*4*73] D zQw. 2Sw. D,c : xPy . =* . a: Tty (1) 

h . (1). *10*11 . *11*35 . D h Hp . D :xPy . =x.*7ty (2) 

b. (2). *10*11*21. DK Prop 

*65 631. H:g!7,n.R./,||Q=.7?||S.D.Q = £ [Proof as in *55*63] 

*56 632. hjPUQ-^H^.gSP.gJC.D.glPA/f.glQA^ 

Dem. 

b . *55*13 . D b : *7ty. . D. x (P | (y A *) | Q] w. 

[*43112] =>.^l(/^||<2)'(i/4,^)J(1) 

h . (1) . D H :• Hp . D : a*7ty . zQw .D.x {(7? || S)*(y A z)\ w . 

[*43*112] 3 .*(/2|(y A *)jS) w. 

[*34*1] *3 . (gw, v). .s(yir)t>. ySw. 

[*55*13.*13*22] D . */ty. zSw. 

[*4*7] D ,x(P r\R)y . z(Q r\ S) w D h . Prop 

*65 64. h:.g!P.g!g.v.g!/e.g!S: DzP\\Q = R\\S. = .P = R.Q = S 

[*55*63*631 632] 



*56. THE ORDINAL NUMBER 2, . 

Summary of *56. 

In this number, we have to consider the class of those relations which are 

“ , { “ S‘,“gle CO,,pl'‘- 1,1 CnsC the tl''° of this couple 
a.e not identical the class ol such relations is (as will be shown Inter) the 

rdinal number 2, which, to distinguish it from the cardinal number 2 we 

c,reA r • Hcre the S,lttix is i,,tL'"de'1 suggest “relational.") The 
Cl^s of all relations consisting of a single couple, without the restriction that 

the two members of the couple are to be distinct, will be denoted by 

number11! Z b° ob8er ved t,lnt there is no ordinal 
number 1, because ordinal numbers apply to series, and series must have 

fuUv when °nC '"em '1,r,they havc a"y This will appear more 
fully when we come to deal with series. 1 * 

of 2T«r*PrP°rtie8rf 4 “re larply annlo8ous to those of 1, while the properties 
Of zr are more analogous to those of 2. 11 

in the'r'TT °f th° ,,,eSCnt nu,nbel' nre sc,dom '•‘■•ferred to 

pronos, , ' : ,h 8" rerereT8 “ OCCUr nrc imP°rtant. The most useful 
propositions in the present number are the following: 

*56 111. h : R « 2,. = . D<li, (1‘Hc 1 . D‘R = A 

*56 112. K : R « 2r. ■ . D*R, (l'R e1 . C‘R e 2 

*66113. K2r«2nC“2 

Observe that »C“2” means “relations whose fields have two terms " 

•56T3. h.2-2, = ^((aa).fi = „ia) 

*6637. b: Re 2r. = . C‘Re 2 . R * R = A 

JZ 2r is the class of asymmetrical relations whose fields have two terms 

*66 381. h : C‘R = i‘x . = . R = x l x 

*66 39. h.2-2r=C“l 

idemL|the r.uati°?8 Which are COUple8 wl,ose rcferent and relatum are 
dentical are the relations whose fields consist of a single term. 

.66 01. 2 = “Df 

.6602. 2r = ^((3a;>y).a. + J,_R = ;t.iyl Df 

*66 03. 0r=,‘A Df 

.661. h:ii«2. = .(air,y).ii = a:Aj, [.203. (.56 01)] 
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*66101. = <Kft«l 

Dem. 

b . *55 16 .*11 11*341 . D 

- (3*. y) • R = x J, y . = : (g*. y). D‘ft = i*x. (Fft = i*y s 

t*11541 s : (gx) . D‘ft = £‘.r: (gy). a*/? = t‘y : 

[*521] = : D‘ft, d*R e 1 (1) 

K(l).*56l . DK Prop 

*66102. h.2=Duud"l 

Dem. 

b. *56101 . *37*106 . D 

H : Re 2. = . ftcD“l . ft«(J“l . 

[*22-33] = . R c D“1 a CI“1 :DK Prop 

*56103. Hft€2.I>.g!ft 

Dem. 

b . *56101 . D b : R e 2 . D . D‘ft € 1 . 

[*5216] D.glD ‘ft. 

[*33-24] D . g ! R : D I-. Prop 

*66104. b:R€0r. = .R = A [(*56 03)) 

*6611. b : R c 2r. s . (g*. y).x + y./i=x|y [*203 . (*5602)) 

*56111. h : R e 2r. s . D‘ft, d‘ft c 1 . D‘ft a CI‘ft . A 

Dem. 

b .*51-231 .*55 16. D 

b z x + y . .ft = x l y. = . i*x r\ i‘y = A . D‘R « i‘x. d‘ft = e«y . 

[*13193] = . D‘ft a d‘ft - A . D‘ft = . d‘ft - t‘y (1) 

b .(1). *5611 .*1111-341 .D 

b:.Re 2r. = : (g*. y) . D‘ft a d‘ft = A . D‘R = . d'ft - i‘y: 

[*11-45] = : D‘ft a a*R = A : (g*. y) . D‘ft = t*x . d‘ft - i‘y : 

[*11-54] = : D‘ft r\ d‘ft = A : (g*) . D‘ft = t‘x : (gy) . d‘ft - i‘y : 

[*521] = : D‘ft a d‘ft = A . D*R, d‘ft cl:. Dh. Prop 

*56-112. b : R e 2r . = . D‘ft, d‘ft e 1 . C*R e 2 

Dem. 

b . *56*111. *64-43. D 

H : ft e 2r . = . D‘ft, d‘ft c 1 . D‘R u a*/? c 2 . 

[*3316] s . D‘ft, d‘R e 1 . C‘R c2:Dh. Prop 

*66 113. h . 2r = 2 a C“2 

Dem. 

I-. *56112101 .Ob:Re2r. = .ReZ.C‘Re2. 

[*37 106.*33-122] = . R e 2 . R e C“2 . 

[*22-33] . = . ft € 2 a C“2:Db. Prop • 



SECTION a] 
THE ORDINAL NUMRRR 2r 

*56114. h.2,-D“| nU“! n cut'2 [*50-113-102] 

*56 12. h : R € 2r. = . R € i>. R Q J 

Dem. 

K*553. *50 11 . 3hu'+j, = .3. lyCJ: 

[Fact] D Irt = .,■,[ yf y . = ./{ = I i/.x l yG J. 

[*13193] il.jiV!/ <i, 
H .(1).*11-11-341.3 

'•-(a*.}'). K = x iy.x^y. = i(^x,y).R = xly.RG.J- 

5*11'45! 
t*56'1] s-.Rti.RCJ (2) 
h. (2). *5611.3 h. Prop 

*56121. K2,C2 [*56113] 

*56122. h:/f«2r.3.3l« [*56121 103] 

*5613. b.2-2r-Ji|(aa)./i_0|a) 
Dem. 

K. *561 l.*l 1-52. Transp.D 

H:JJ~f2r. =:rt-*.J,y.3 *-y ,,, 

Ml). *36-1.3 

H:.JJ«S-2,.B:(aa,i)./J-ai6: ^-«4,y.3^ a: = y: 

[*1145] ^■■O<‘.b):R.alb:R.xly.0I,u,x = y: 
[*13-193] = : (3a, 6):Ji-al6:o|6-*|y.3jr..«-V! 

[*55 202] s:(3a,6)s« = a|6:a_x.6 = y.3I' .x = y: 

[*13-21] 3:(a«,ft)./e = ai6.a = 5: 

[*13'195] =:(3a). « = a|a:.3l-.Prop 

2-2 might be defined as the ordinal number 1, since it is what we shall 
call a relation number (cf.,153). But we wish our ordinal numbers to be 

classes of serial relations, and such relations have the property of being con- 

tamed in diversity Hence if we were to define 2 - 2r as the ordinal number 

1. we should introduce a tiresome exception, from which trivial complications 

this coursl lnt° °rdina‘ arithmetic' We have- therefore, not adopted 

*6614. h . D‘(x = 2 n DVx 

Dem. 

h-*336.3h:D,R=,‘x. = .ReD‘i‘x 
*" • (1) • *561.3 (1) 

J"!^ " D ‘1 •3 8 (3*. y) • A - r l y r D‘« = r«x : 

. rl!,J 3 ! (a*’») • D‘fl - • a‘R = I‘y: D‘R = «‘X: 
L*i i 45 j = . (a* y). D,R = t<2. d‘R = t‘y. D‘A = i‘x: 
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[•13*193] =:<a*,y). D'R = i'z.(l‘R = i‘y.i‘z = i‘x-. 

r*51 2.*] = : (3*.,/). D«/f = /•*. a*/e = ,‘,J.Z = .r: 

[•13*195] = : (gy). iYR = »«*. a*/? = »‘.y : 

[•55 10] =:(ay). /? = ,r|y: 

[•55*22] s : R e D‘(x J, )D h . Prop 

*56141. 1*. D‘|.r = 2nfT‘/‘x [Proof ns in •56*14] 

+56*15. h . !><(.. |)-iV]j*)-i«Wj* 

Dew. 

t* .*55*22*16. Dh R « ;I)<(.,• 4, )J - ;•(.<* ,[.r). 

* !(3^)• H‘/t = t‘x.Q‘Ii = f‘.y:~(D‘/?=l‘.r.Q‘J?=l‘ir): 

[*10*35.*4*51 .*5*61 ] = : (3//). IYR = l‘.r. <l‘li = i‘y .~((VR = i‘x) : 

[•13*193] s : (a.y). D‘/f = t‘x AVR = Yy.~(»‘y = i‘x): 

[•51*23] 3 ■.(ny).Wli=t‘x.C\,l< = i,'/.x$y: 

[*131D5.*51*23] = : (32. ,j). z * y. \YR = . a‘R - i‘y. i‘z - I’w t 

[*13*103] = : (a*,y). z + y. iYR - t‘z. CI'/f - i‘y . D‘Vi = l‘x: 

[•11*45] = :(3*,y).i + y. 1VR = i‘z .Q‘R = t‘i/: D‘R = l‘.e: 

[*55*16.*33 0] 3 •Aqz,y).z$y. R = z l y: ReD‘t‘x: 

[*50 11 .*22*3.3] s : R « 2, « W'r:. 3 1*. Prop 

*66181. h.D'(ix)-i‘(.Tix)=2rn<(i*(‘x [Proof ns in •56*15] 

*56*16. \-.xiyti 

Dew. 

h.*21-2.Dh.xly = x|y. 

[★11*36] DP.(gr.tt/).:r,[y=*,[i</. 

[★.>6*1] DP.*iy«2.DP. Prop 

*66*17. P s x l y «2r. = . y ^ x c 2r . = . .r + y 

Dew. 

P .*56*11. D 

h x l y € 2r. = : (g*, to). z + w . x | y = z w : 

[*55*202] = : (gz, w) . z ^ w . x = z . y = iu : 

[*13*22] = :**y (1) 

Similarly 

P:y4,*€2r. = .x*y (2) 

P.(1).(2).DP. Prop 

*66 18. hjx-fa.E.i .[“a C 2r. = . I x“a C 2r 

Dem. 

P . *13*196 . D P :. a . = : y € a . Dy . y =$= x : 

[*56*17] = :y€a.D„.x^ye2r: 

[*37*61.#38*12*11] = :x,l“aC2r (1) 

Similarly h:a:^fa. = .|x“aC2r (2) 

P . (1). (2) .DP. Prop 
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*5619. : Re 2r.x« D‘Ji. = . (gy)..*4y. R = x^ y. = . Hex - «.'*■ 
Deni. 

K •SG;11 . .11 45.3 h , * * 2,., . D‘«. s. <aj, ,)., + *. « = vi ,. ,.e D. 

*5,1° » ■= <3*.*) ■!) * * • R = y l *. *«: 

Si-JS1 ■: (a*) •■* + *• * — i*« (1) 

f 38131 = :R(xl“-i‘x in 

*56 191. J-: R .2,. * « Q‘R. = . (gy). *+y. y< . , j ^. s . * , ; _ t<t 

[Proof as in *5619] 

*56 2. h Jl €$. = : (gar, ,,) : ZRW. ={ to. 2 = x. w = y [#55-13 . *561 ] 

t'.Reb.s :g! /* •xRy.zRw.^St9ttw.xtms. y- ur [*562.*14124] 

*56 22. K A 2 [*56103 . *25 53] 

*56 24. K 3 ! 2.3 ! - 2 [*56-22-16. *10 24] 

*56 25. h . 2 + A n Rel. 2 + V /> Rol [*56 24 . *24 54-17] 

*56-26; Hs./*«-WA 

Ihis proposition is the analogue of *52 4. 

Dem. 

^ . *51 236 . D b :: R € 2 \j i*A . 

a:.R«2. v ./*-A 

[*25-51 ] s 7i i . v . ^3 » 7? 

fSS}1 s *2 ": TJ ■tRv> ■3-'- — y-«-v, ~g IR , 

h .11 ir T Vl‘ * •«-*•*-«.*.-SIA (!) 
r.2 2 n ■ run*p •3 h~ a ! "•3 •-<-%) • ~ i'Hu,): 

[*3 47] ?.! XRv ■ ^ * V : tRw ■ 3 • '■> =w = 

tasss. 8 
*66 261. f-::«62.D:.,S-Gft. = :a = A.v.S=7i 

Dem. 

K*55-341.Dl::ie_a,ly3:.lSC/e._:iV=A y s=/e 

^.(1).*11H-35.*56 1. Dh. Prop 

*66 262. K Re 2 . D : SC /* . 3 ! S. = . s = /* 

Dem. 

K.5C-22.3K:.A.i.3:«_/i.3.S + A (1) 
h - (1) • *5-75. *56-261 . D ( ' 

H. (2). *25-54. DH. prop 
(2) 
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*56 27. b:. P € 2.3 : g ! R*S. = .R*Se2 

Dent. 

h . *55 34 . *23-43 . 3 

h:.R = xl>/.D:Zl R*S. =.R*S=R. 

[*5G1G] D.RnSe 2 (1) 

b. *56 103. 5b: RnSe'2. 3 . a ! 7? a S (2) 

h.(l).(2). >i-i-R = xl2/-0:alR*S. = .RrsSe$ (3) 

H . (3). *11 11-35 . *56 1 . 3 b . Prop 

*56 28. Pc2.3:a!7fA;s,. = .7?G6'. = .PnS=P 

Dem. 

K.*55 3.3H:. /? = x | y . D : y ! i? n 5. = . PGS. (1) 

[*23*621] =. R r\S = R (2) 

K(l). (2). *11 11-35. *56 1 . 3 h. Prop 

*56 281. h:. 7te 2, .DsgSRA&.s..tfn&a/Z. = ./?*&€ 2r 

Dem. 

b. *56*121 .3h:. Hp.3:P«2: 

[*56-28] 3:&!PAS.«.PGtf.a.PAS-P (1) 

b . *13*13 . 3 h Hp . 3 : P A 5 = R . 3 . R A £ € 2r: 

[(1)] Dz&lRfiS.D.RnSc 2r (2) 

b . *56*122. 3 H : P a S « 2r . 3.3 ! P A S (3) 

H . (2). (3). 3 »■ s. Hp. 3; a ! R * 8. s . R A 8* 2r (4) 

h . (1) . (4) . 3 H . Prop 

*5629. bzzP, QefcOs.PGQoP.ssP-Q.v.PGP 

Dem. 

b. *55*51 .3 

h:.x|yG2iwc;7?.D:x(ziM;)y.v.iriyG/f: 

[*55-31] D:xJ,y-^li(;.v.xiyG^ (1) 

h .(1).*13*12 . 3 

b P = x l >/ z: Q = z l w .0 PG<?oP.3:P = <2.v.PGP (2) 

h. (2). *11*11*35. *56*1. 3 

h::.P*2.3::Q = *.l.M'.3:.PGQc/P.3:P = Q.v.PGP • (3) 

b • (3). *11*11*3*35 .*56*1. 3 

h::.P*2.3::Q€2.3:.PGQc/P.3:P=Q.v.PGP (4) 

b . *23-58 61.31-:. P = <?.v.PGP:3.PGQuP • (5) 

h . (4) . Imp . (5). 3 b . Prop 

*56 3. h:.P, Qe2.3:PGQ. = .P=Q. = .a!/JnQ 

Dem. 

b. *55-3-31.3 

b z x i y G r l w. = . x l i/ = z l w . = . a ! (x i y) a (z X w) (1) 
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*13-12.3 

h p = l!/ • Q = i l m: P <-Q. =. P = Q. = .* • p f> Q 
-(2).*11 11-35.*56 1.3H. Prop 

383 

(2) 

*5fr2\r?fc from,(2) t0 rhC C°nclusio,‘ »«■ analogous to those from (2) of 

S'i merely ^ —*« pUrfs 

*56 31. I-*.P.Q'i.l:Pi.Q.a.p/tQmA [*56-3 . Tmnsp] 

*56 32. f- : P e 2 . D . JJ r\Qei \j 

Deni. 

h . *56 27 .DH:. Hp.3:g!i>AQ.3.7->AQ«2: 

[*2'54.*25'34J 3 : PAQ = A.v.PaO,i • 

[*ol-236] 5 : P nQtiu (‘A 3 h. Prop 

*5633. 

H.*55-5.*13l2.3H::P,iriy.Q = ilWi;): 

0) 

*6634 ^.P.Qti.P+Q^;.RePoQ^RR+pvtQsR^pvit^ 

Dein. 

K*56-33103.*5 75.*25-54. D 

[*o®3] 31-■■■P,Q'i.l:P = PaQ.s.p^Q; 

[ Transp] 3 : P* Q. D . P * p „ Q ■ 

* qV 3h'?'e<2-'' + «-3:fl^.3.«V0Q 

K(2>?Vq- 3h!--P-e^-/, + e.3:« = «.D.ft + plaQ 

^: «>: s;: ^?v°.-c -3 -K - ^ • ’ ■«- o==« 
*5635. l-:C'‘l?e2.flAfi = A.D.«t2, 

Deni. 

H . *55-54. D 

*■. (1). *1111-35 .*54101 . D I-. Prop 

(1) 

(2) 

(3) 

(4) 

(1) 
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*56 36 K : ft € 2r. D . C*R * 2.7? A ft = A 

Deni. 

H . *55 54 . D 

y . R = x l y y . CUR = l*x \j i‘y . ft A ft = A (1) 

h.(l).*llll-34.*5611.D 

h /?€ 2r. D :(gpr, y). .r% y ,C*R = i‘xvj . ft A ft = A : 

[*54101.*11-45] D : f7‘ft e 2 . ft A ft = A Dh. Prop 

The following proposition, in addition to being used in *5G\38, is used in 

the elementary theory of series (*204*463). 

*56 37. h : R € 2r. = . C‘R € 2 . R A ft = A [*56-35 36] 

*5638. h.2r-C“2nft(ftAft«A> 

Deni. 

H . *37 106. *33-122 . D h : (7* ft * 2 . n . ft e C“2 (1) 

H . *20-3 . D h : ft A ft - A . s . ft e ft(ft A ft - A) (2) 

h . (1). (2). *56-37 . D h : ft € 2,. = . ft c C“2 . ft e ft (ft A ft - A) . 

[*22*83] = . ft eC“2 nft(ftAft = A):DK Prop 

This proposition is important jus establishing the connection between the 

cardinal and ordinal 2. It shows that the ordinal 2 consists of those asym¬ 

metrical relations whose fields have (cardinal) 2 terms. It is used in the 

theory of well-ordered scries (*250 44). 

The following proposition, in addition to being used in *56 39, is used in 

relatiou-ari thine tic (*16538) and in the theory of series (*2054). 

*56 381. I-: 6“ ft =i'.r. = .^xj.r 

Deni. 
H . *33-24 161 .*51-161. D h : C‘R = i‘.c. D . g ! D‘ft . D'ft C l‘x. 

[*51*4] D . D*ft = l<x (i) 

Similarly h : ClR = i*.r. D . G‘ft = ilx (2) 

h . (1) • (2). *55*16 . Dh:C‘ft=t‘.r.D.ft = .rl.r (3) 

h . *5515 . Dh:ft«=-/*(|.r.D. C*R = l‘.c (4) 

\-. (3) . (4). D h . Prop 

*6639. K2 —2r=C“l 

Dem. 

~ K*5G-381.Dh:C‘ft€l. = .(a*).ft = *i«. 

[*5613] = . ft e 2 — 2r (1) 

h.(l). *37106. DK Prop 
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,, ,Ti"S >>,'oposjtio,i' establishes the connection between 2-2, and l.showine 

“ 7 ‘.S th« class of those relations whose fields consist of a single term. 

(*153 301) m d‘SCUSsio" of an<l ~r as relation-numbers 

*564. 

Dem. 

>■ . *41-11 . D h Hp . D : *(«*,.)*•■• lg »).««$. /f ,M. 

i*55- i'll a • (a*, w). * j, »•«^(, i ,,,. 
| = • (3i, w). s l w « „ . t = x. w - y. 

oXnll:::,P7OSiti0n;Sth0 ana,og"° of *S3'23- II » «*«l in the number on 
exponentiation in relation-arithmetic (*176*10). 

h&w i 

25 



SECTION B 

srB-OLASSES, .Sl'B-RELATIONS, AND RELATIVE TYPES 

Summary of Section It. 

In this section, we consider Hist the classes contained in a given class and 

the relations contained in a given relation. If a is any class, the classes con¬ 

tained in a are the members of @(0Ca); those are also called the sub-classes 

of a, or (sometimes) the " part* " of a. in this last usage, they arc called 

"proper parts" when they are not coextensive with a, this phrase being formed 

on the analogy of “proper fractions.” The sub-classes of a are all the classes 

that can be formed from members of a; they are the same thing as the 

"combinations" of members of a taken any number at a time. If n is the 

number of members of a, 2“ is the number of sub-classes of a, whether n be 

finite or inHnitc. The number of sub-classes of a is always greater than the 

number of members of a. On account of these and other propositions, the 

class of sub-classes of a given class is an important function of the class. If 

the class is ct, we denote the class of its sub-classes by "CPa.” This is a 

descriptive function, derived from the relation "Cl,” defined as follows: 

CI = *a[« = /§(/9Ca)| Df. 

The sub-relations of a given relation are all the relations contained in the 

given relation, i.e. all relations which imply the given relation for all possible 

arguments. That is, if l* is the given relation, li is a sub-relation of P if 

It G P. Thus denoting the class of sub-relations of P by "RPP,” we are to 

have 

Wl> = tHRGl>): 

hence we take ns the definition of "Rl” the following: 

R1 = \P \ \ = R (R Q P)) Df. 

Sub-relations have properties analogous to those of sub-classes, but they are 

of somewhat less importance. It should, however, be observed that when one 

series is contained in another, i.e. is obtained by selecting some of the terms 

of the other series without changing their order, then the generating relation 

of the one series is a sub-relation of the generating relation of the other series. 

(It is not the case that a sub-relation of the generating relation of a series 

must genemte a contained series, for its field may fall apart into detached 

portions, or otherwise fail of being serial.) 
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We shall also consider in this section (*62) tin- relation of membership of 

a class, j.e. the relation which a- has to o when «». This relation bears the 

same relation to V(a» as ••/" bears to -,r = y." Strictly speaking, we ought 

to introduce a new notation for it, putting (say) 

A =.?$(*€ a) Df. 

But as e, unlike is a letter, and capable of being conveniently used 

alone, it seems more desirable, from the point of view of avoiding unnecessary 
duplication of symbols, to put J 

e = j-a (x € a) Df. 

®t"Ct,!y sPeaking-this is faulty, since it gives two different meanings 

e. But practically this does not matter, since the above definition gives 

b :€ a . xea, 

where the first e has the meaning just defined, while the second has (he old 

meaning. 1 hus all that is really required of the above definition, namely to 

give a meaning to formulae in which r occurs without referent or relatuin. is 

effected without the danger of any confusion that could load to errors. 

The ch,ef ‘“Poitance of e as a relation arises from the fact that relations 

contained ... r play a very important part in arithmetic. Take, for example, 

the problem of selecting one term out of each member of a class of classes: 

in this case we require a selecting relation Ii which is such that whenever 

rr;*18* me,“ber ®f •• s"ch (This condition is only part of 
the definition of a selecting relation; the complete definition is given in *80.) 

Three numbers in this section (*f.:i, .6+, *G5) are devoted to the discussion 

of relative types. Given a variable x, we often want to define the relative 

types of other variables, or of ambiguous symbols, occurring in the same con- 

text, that n>, we wish to express the types of these other symbols in terms of 

tained Th ‘ * f°r thc of *• ** type in which « is con- 
ta ned. Then fa = a w - «, f* - t‘x w -1«, _ and t‘a = tfCl‘a - Cl'tfa. 

Also we introduce a notation (.65) for giving typical definiteness, relatively 

to x, to typically ambiguous symbols. This notation is very useful in cardinal 

and ordinal arithmetic, since numbers arc typically ambiguous, and the failure 

take account of this fact has led to the contradictions concerning the greatest 
cardinal and the greatest ordinal. 

25—2 



*60. TUB SUB-CLASSES OF A GIVEN CLASS 

Sunt mini/ o/‘* »>0. 

(,ur definitions in this number are as follows: 

*60 01. Cl = *«(*'»/§(£<:«)! Df 

Thi8 dofi,,es tllv re,nfio” to a class a of the class of all its sub-classes. 

*60 02. Cl ex ■£(*!* = ,3 <£ C a . g ! £)| Df 

This'defines the relation to a class a of the class of all its existent sub¬ 

classes of all its sub-classes except A. This is often required, as, for 

example, in the statement of Zerinclos axiom: “Given any class a, there is 

a relation It such that, if £ is any existent sub-class of a. R*Q is a member 
»f ft? i.c. 

"<3 « Cl cx‘a . . R'0 e 0* 

Tins axiom, or its equivalent the multiplicative axiom, plays (as will appear 

hereafter) an important part as the hypothesis to many propositions in 
cardinal arithmetic. 

*60 03. CIs3 = Cl‘CIs Df 

A CIs3 is a class whose members are classes. 

*60 04. CIs3* Cl‘CIs3 Df 

A CIs3 is a class whose members are classes whose members arc classes, 

i.c. a CIs1 is a class of classes of classes. 

Apart from propositions which merely embody the definitions, the most 

useful propositions in this number arc the following: 

*60 3. I-. A € Cl‘tt 

*60 32. h.CI*A-i<A 

*60 34. KacCI'a 

*60 362. I-. Cl‘t‘ar= t‘A sj i*ilx 

I.e. A and i*x are the only sub classes of a unit class i*a\ 

*60 6. f". s‘CI‘a = a 

*60 57. h.K CClV* 

*60-6. h : x e a . D . i*x * Cl ex‘a 

The propositions of this number are chiefly useful in cardinal and ordinal 

arithmetic, but uses also occur in the theory of series; hardly any uses occur 

before cardinal arithmetic. 
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*60 01. 

*6002. 

*6003. 

*60 04. 

*601. 

*6011. 

*6012. 

*6013. 

*6014. 

*6015. 

*602. 

*6021. 

*6022. 

*6023. 

*6024. 

*603. 

*6031. 

*6032. 

Dem. 

Cl = «« [* = /3(0Ca)| 

Cl ex = ;S {* = /§ (jg c a . 3 ! tf)| 

Cls- = CI‘CIs 

Cls' = Cl'Cls5 

h:*Cla. = .* = /5(/3Ca) 

H : k Cl ex a, =. K s 

. Cl‘a = c a) 

*■•01 ox<a = 4(^Ca.5I!/9) 

KE'Cl'a 

I". E! Cl ex'a 

: & e Cl‘a . = ,/JCo 

H:/3eCI ex‘a.s./9Ca.y!^ 

t-:£eClex<«. = .£eCI‘a.a !£ 

l-:/9€Cl ex‘a. = . /9 « Cl*a — £'A 

h-Cl ex'a-Cl'a-i'A 

K AcCl'a 

Kg! Cl‘a 

*■ . C1‘A = t‘A 

Df 

Df 

Dl 

Df 

[*21-3. (*0001)] 

fii <£ C a. g ! £) [*21 3 . (*00 02)] 

1*303. *00-1] 

[*30-3. *60-11] 

1*6012. *14 21] 

[*6013. *14-21] 

[*0012. *20-33] 

[*0013. *20 33] 

[♦GO-2-21] 

[*60-22. *53*52] 

[*00 23. *20-43] 

[*2412. *60-2] 
[*60-3. *10-24] 

*60 321. H 

Dem. 

1". *602 . *2413.3 f-: a < Cl‘A. s . a ~ A. 

C*51'15^ s . a c (‘A : D I-. Prop 

A. = . Cl' i‘a 

Bs^Ca.s,.^ 

3 : A C a. = . A s 
3 : A = a 

= a 

: a . 

O) 

(2) 

H . *6032 . Dha = A.D. Cl‘a =* ila 

I-. *60-2. *51*15.3 

H Cl‘a = t*a 
[*101] 
[*2412] 

Ml).(2). DK Prop 

*60-33. I-. Cl ex*A = A« CIs 

HigW S'o°;r,0?K - iDdi- *"* *• A ^ - 
Dem. 

h . *60 22 32. D I-: 0 * Cl e,‘A. S. ff e t«A. 3 ! 0. 

.5-16-.24-54] .-/9-A./+A 
1-. (X) .*3-24. D h ./9~eClex‘A 

K (2). *1011. *2415.3 K Prop 

0> 

(2) 
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*60*34. l-.at Cl‘a [*22*42 . *00 2] 

*60 35. h : g ! a . D . a * Cl ox‘a [*60 2234] 

*60*36. h : 51 ! a . D . h ! Cl ox*a [*00 33 . *10*24] 

*60 361. I-: g ! a . = . g ! Cl ox‘a [*60*36-33] 

*60 362. h .CI</V=/‘A u/V/ [*3I 401 .*60*2] 

*60 37. h .dexV/r/'r'/ 

l h-m. 

h . *I»0'2I . D h :/3 « Cl ex‘«‘.r. . ,i C ,‘x. 3 ! 0. 

[*•141 = ./3-,‘x. 

[•51’15] m •/3n‘i'x:D h. Prop 

*60371. H : o« 1 . D.CI‘oCOu I 

/><■ III. 

t-.»51 401 .DK::a = ('.r. D :./9Ca. = :/9- A. v. 

[•54-102.*5222] 3:£«0.v./9«l:. 

[*60-2.*22-34] D :./3 ( Cl‘«. D . /3 « 0 w 1 (1) 
I-. (1). *10-11 23 . *52-1.31-. Prop 

*60 38. H : a « 1 . = . Cl ex‘a = 1 ‘a 

Dem. 

V . *00-37 . 31-: a - t‘x. D. Cl ox‘a - t‘a: 

[*1011-231 3 I-: <3-r). a - i‘x. 0 . Cl ex‘a = / ‘a: 

[*52 1] 3H:««1.3.C1 ex‘a = i‘a (1) 

*-• *00-361 .*51-101. D h : Cl ex'a = <‘a. D . g ! a (2) 

h. *60-21 . *10-1 . 3 I-:. Cl cx‘a = ,‘a . D : <‘.c C a . 3 I = . l‘x = a : 

[*51161] 3 : C a. ■. i‘x— a: 

[*5I-2J 0:x'a. = .i‘x=a (3) 
H . (3). *1011-21-281 . D h:. Cl ex‘a = l‘a. D :g 1 a . 3 . (gx). «‘.r= a . 

[*521] g.ad: 

[(2)] Z> : a e 1 (4) 
h . (1). (4). D I-. Prop 

*60 39. 1-. Cl‘(,‘x = t‘A «U i‘i‘y \J I‘{i‘x u I‘y) [*54 4. *60 2] 

*60*391. hae2.D.CI‘oC0wlu2 [*54411 .*60*2] 

This proposition is used in the theory of the continuity of functions 

(*234-202). 

*60 4. h : £ € Cl‘a . y C /9 . D . y e Cl ‘a [*602 . *22*44] 

*60 41. h : ^ e Cl‘a . D ./9 n 7€CI‘a [*60 4 . *22*43] 

The following proposition is used in the theory of well-ordered series 

(*250*14). 

*60 42. h : /9 c Cl‘a .yCiS.gly.D.yeCl ex‘a [*60*422] 
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*6043. h:0,yt C'I'a - = •£<-> 7 e Cl'a [*22T.!». *6»-2j 

*60 44. h : /}« O'a. yt Cl vx‘a. 0.0 « yf Cl cx‘« [*60-43 . **4-r,(i. *«o-22 

, 17TAe->°"°Wi"8 pr0p0sition is »> the theory «.f "first difi'ei-onces' 
v*i i U ba). 

*60 45. V : p e Cl‘(a *- yS). = . (g7, S). y t Cl'n. S < CI7J. p = 7 u S 
Dem. 

^ . *60*2 . *22 (J21G8 . D 

h ; ? e C,‘(® ” ^ - p = (p * a) \j (p n 0) ,, , 

h ■ *60'2 • *2243.3Kpn«« Cl‘a . p « /3 e Cl'fl ,, 
*" • (1) • (2). *10 24 . D 

h : p « Cl‘(a o £). D . (g7, £). y e Cl‘a . 5 < CI‘/9. p = 7 v 5 (3) 
K *602.3 ' ' 

r oo51,7' S)'7<CI‘°-SfCI‘/3-',”'''«S.3.(a7.S)-7Ca.SCi8.p = 7U«. 
L*22-72] O.pCav/3. 

*60'21 3. p« Cl'(««£) 
h • (3). (1) . D K Prop 

*60 5. I-. s‘Cl‘o = a 

Dem. 

H .*4011 . *60'2 . 3 H :a:es‘CI‘a . s . (g/9). BCa.xe fj. 

[*22'44] ] 3.*ea 

H . *2242 . DHs«ca.D.aC«.ar<a. 

[*\°:24J • (3^) • /3 C a . x e0 . 

L(,)J l.X€s‘C\‘a 

^ • (2) . (3) .Dh. Prop 

*60 501. Ks‘Clex‘a = a 

Dem. 

f • t*?,1.' • *60'21 • 3 h : ' **CI ex‘a-s- <30> .0C«.a!0..r<<8. (1) 
L*^**ij D.arta 

K*2242. Dh:l(«.D.sCa.I[a. 

[*10’24.*24-5.*4-7] 3,.C.,3 

*‘°24) 3 • <30) ./8C«.:.|!/9.x*,3. 
L<1>j 3. x es‘Cl ex‘a 
K(2).(3). 3 I-.Prop 

(*nr5hi°7)abOVC pr0p08iti0n is uscd the lhcor>' of cardinal multiplication 

*60 61. l-.p‘Cl‘a = A [*40-22. *603] 

infin^ “ U9e<l in the «“*“■> th*ory of finite and 

*60 62. H:«‘*C/9. = .*CC1‘£ [*40 151 . *60*2] 

(1) 

(2) 

(3) 

(2) 

(3) 
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*60 53. h ;jj C,,‘k . j ./3« ,,‘CI‘V 

Dem. 
. *40 15 . *00 2 . D h /3 C/>‘**. = : y€K. Dv. CP7 : 

[*40*41.*00*l-S] = z/3*p<C\“*c D f-. Prop 

*60 54. h . CT/>‘* = />‘CI“* [*00*53*2] 

*60 55. I-: CPa = Cl*,3. = . a = /3 

Dcm. 
h . *30-37 . *00 U.DI-:a-£.D. CPa = CP/3 

I-. *30 37 . 3 H : CPa =*OP£. D . 6*‘CPa = s‘CP£ . 
[*60-5] D.a = /3 

K(D.(2).DH. Prop 

*60 56 H : Cl ex‘a = Cl cx‘/3. = . a = /3 [Proof as in *60*55] 

Hie following proposition is used frequently. 

*60 57. h.K C CIV* 

(1) 

(2) 

Dem. 
h . *40 13 . *00*2 . Dh:of<.D.of CIV* (1) 

h . (1). *10*11 .*22 1 . DK Prop 

*60 6. zxea.D. itxeC\cxta [*51*2*161 . *00*21] 

The following proposition is used in connection with cardinal multiplication 
and with greater and less (*115*17 and *117*66). 

*60 61. h./“aCClex‘a [*37*61 . *51 12 . *60*6] 

*60 62. h:a\yfa.D./<.rw‘y€Clex‘a [*G0*6*44] 

*60 7. KCTacCls* 

Dem. 

h . *60*2 . D h : /3 € CPa. = . /3 C a . 

[*22*1.*20* 1*3] = . (a</>. yfr) . a = ^(<f>l2).^ = ^(yJrlz).ylrlxDx<f>lx . 

[*10 5] D . (3^). >9 = 3 (yfr ! z) . 

[*20*4] D./3fCls (1) 

h . (1). *60*2 . (*60*03) . D h . Prop 

*60 71. I-. CIs* = CPCIs [(*60 03)] 

*60 72. h . CIs* = CPCIs* [(*60*04)] 



*61* 1HE SUB-RELATIONS OF A GIVEN RELATION 

Summary of *61. 

Tl.e propositions of this number (except that *61-371 -372373 imperfectly 

correspond to .60 371) are the analogues of those with the same decimal pan 

in *00. Proofs are omitted, as they are exactly analogous to those in *00. 

Ihcre are very few subsequent references to the propositions of this number. 

*6101. Rl=>x£ (X-/}(ftG/')i Df 

*6102. Rl ex *= \P {X = R(/i G /*. a ! /i>) ])f 

*6103. Rel*=Rl‘(RelfRel) D( 

*6104. ReP-RI'(Rel*fReP) Uf 

*611. h:XRI/>. = .\_^(/j<:/>) 

*6111. I-: X Rl ex P . = . \ = R (/< c P. a ! R) 

*6112. KRl‘P>/f(ftG.P) 

*6113. KRIex‘Z> = .£(/lGZ>.a!.R) 

*6114. 1-. E ! Rl‘/> 

*6115. I-. E ! Rl ex'P 

*612. h: /2 « RPR .s.HCP 

*6121. hRt'Rlex,P.n.RGP.£!R 

*6122. h:ReRlex‘/'. = .fltRl<p. gijj 

*6123. l-:ReRlex‘R. = ./itRp/>_,*A 

*6124. K Rlex‘/'=R|«P_4*A 

*61-3. KAe Rl1/' 

*6131. 1-. g ! Rl1/' 

*6132. 1-. RI-A = (‘A 

*61321. h : /’ = A . = . Rl1/* = t*/> 

*6133. I-. Rl cx‘A = A n Rel 

*6134. K/>eRp/> 

*6135. 1-: a 1 /*•D./'eRl ex1/* 

*61 36. h : a ! P. O . a ! Rl ex‘R 

*61 361. I-: a 1 P. s . a ! Rl ex‘R 

*61 362. I-. Rl‘(* | y) = ,<A „ ,«(x | y) 

*6137. h . Rl ex‘(x iy) = t‘(x | y) 

*61371. h : R e 2. D. RI‘R = t<A v t‘R 



PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 
304 

*61*372. \-zRei.D. Rl‘7* C 0, v 2 

*61 373. : R c 2, . D . Rl‘77 C0,u 2, 

*61*38. b : 7? € 2. = . Rl ex‘7? = t*/i 

*61 39. K . Rl‘(.r lyvzl w) = i‘A ^ i‘(* | y) ^ ,‘(* | w) w | y ^ ^ w) 

*61 391. I-: P, Q e 2 . D . RI‘(P vQ) = i*\ u /*/» ui‘(Jw /‘(T* vy Q) 

*61 4. h : Qc RI‘P. R G Q . D . R € Rl‘7' 

*61 41. t-: Q c RI*/>. D . Q r\ H t R1 «/> 

*61 42. h : V c R1‘7'. 7f G <?. g ! 7? . D . 7f e Rl ex‘7> 

*61 43 h : V. 7.* e Rl-P . = . <? <y 7? « RI‘7J 

*61 44. h : y € Rl‘7*. /f < Rl ex‘7*. D . Q o 7? € Rl ex‘7' 

*615. h . i'RI'P . 7> 

*61501. h . #*RI ex‘7> = P 

*6151. H . /Yli[‘P = A 

*61 52. I- : GQ.s.XC RI‘Q 

*61 63. H : Q G . Q €/>‘R|“X 

*6154. h . Rl-yVX-p‘R|“x 

*61 55. h . Rl4/* - Rl *Q . = . P=Q 

*61 66. b . Rl cx‘7J - Rl ex‘Q . = . P . Q 

*61 6. h : xPy . D . x | i/ e Rl ex‘P 

I he analogue ol *60 01 is not given, because we have no suitable notation 

for expressing it. 

*61 62. h : xPy . zPw -D.*,[yvy*jM/€R| Cx*P 

*617. b . Rl‘73 « CRRel 



*62. THE RELATION OK MEMBERSHIP OK A CLASS 

Summary of *62. 

When "x e a" was defined, in *20. it was defined as a propositional 

unction; and this mode of definition was necessary, because we had to treat 

of this function before treating of relations. But for many purposes it is 

desirable to regard cos a relation, so that «M becomes an instance of the 

notation “uRvThis requires, strictly speaking, a change in the meaning of 

. x € *• ^ut 's a change which does not falsify any of the previous propositions 

in which a" occurs; for if we call the new meaning «' a.*’ i.e. if we put 

e' - ua (x c a) I)f, 

wehave b:*«'*. = 

Hence it is unnecessary in practice to have a new notation for the new 
meaning, and we put simply 

Df. 

This definition, though strictly incorrect, is recommended by its convenience. 

and by the fact that it cannot lead to any harmful confusions. The new 

meaning of * may be taken as replacing the old throughout the remainder of 
this work. 

Ihe uses of the propositions of the present number occur almost ex- 

c usively in the theory of selections from a class of classes (*83, *84, *85 and 

*«8). Such selections are effected by means of selective relations, part of 

w ose definition is that they are contained in *. Hence the uses of the present 

number. If a: is the class of classes from which a selection is to be made, a 

selective relation will in fact be contained in e f *; hence the properties of * f * 

become important. Some of these properties arc given in *62 4 ff. 

The most important propositions of the present number arc the following: 

*62 2. b . e ‘a = a 

*62 231. b : * C d‘« . = . A ~ e « 

*62 26. b.ft = «|*ft 

*62 3. b . t“K = 8*< 

*62 42. b : * . D . Q'ef* = * 

*62 43. b.D‘«r 

*6265. b:*Cl.:>.er*=:rr* 
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*62 01. cs/a(*cft) Df 

*62 1. h/ta. = .xea [*213 . (*0 2 01)] 

In the above propositi,,,., the first t has the newly-defined meaning, while 

the second has the old meaning. In virtue of the above proposition, the new 

meaning may be substituted for the old in all propositions hitherto proved 

concerning c, and may take the place of the old meaning in all that follows. 

*62 2. h.t‘a = ct 

Deni. 

h . *3213 . D h ."?<* = .7 U € a) 

[*2042] -a.DK Prop 

*62 21. h . t V - a (x € c) [*32* 131] 

I Inis e*.r consists of the classes of which .»■ is a member. 

*62 22. K 1)‘€= V 

Dem. 

H. *24104. Dh. (x). xc V. 

[* 10*24] D h ; (x): (go). .r c a : 

[*3313] D »-.<*).*« D‘«: 

[*2414] DKD‘«-V 

*62 23. h . (Pc =* Cls — i*A 

Dem. 

h . *53*5 .Dh:af Cls - i* A . s . g ! a . 

[*33*131] = .aeCI'f : D h . Prop 

*62 231. huCd'e.B.A-vt* [*24 63 . *33*131] 

*62 24. h . e T= V 

Dem. 

I-. *24104. *11*57 .Dh.(*,y).xcV.y€V. 

[*31*11] D h .(a*,y).x€ V . Vey. 

[*10 24] D h :(4r,y):(ga).x«a.aey : 

[*341] ^ h : (x.y) :xc| ey : 

[*25*14] DK*|€= V 

*62 26. H . e | € = a/9 |g ! (a n >S)| 

Dem. 

h . *341 .*31*11 . D h : a(c|e)£. = . (gx) . xe o . xc/9. 

[*2233] -3!(an^):DK Prop 
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*62 26. h . ]{ = * i; 

Vein. 

^ . D I- : jrfiy . = . .c e lt*y . 

[*30-33.*3212] = . (gra). a-€ «. . 

m.*{€ li)y:Db. [Vo,. 

*62 3. h .€“/f = 6-V 

Deni. 

^ #*371 • ^ • *“* = -^!<aa>. at k ..tea| 

[(*4002)] =s<K.Dh. Prop 

*62 31. h .7<*-«'* 

Note that, since c is not a homogeneous relation, i.e. not one in which 

referent and relatnm belong to the same type. is strictly meaningless 

or.f we have ««.«», the two «■« have different meanings, and do not 

therefore properly give ««=«. But it is convenient to allow e», on the under¬ 

standing that the ambiguity of , is to be differently determined for the two 

■actors in the product r|c, namely the second e must make both referent ami 

for the'first""^ *° ^ 116X1 tyl“ nb°V0 tl,nt 10 "'l,ich ^ey respectively belong 

Dc III, 

h . *32-13. D h. «y* . £ (x «• k) 

[*34 5] m^!(a«)- xta.atK] 

[(*4002)] -*«* 

*62 32. h . s = «, [*30-41 . *02-3-31 . *37 11J 

*62 33. h.T./f* CIs 

Deni. 

K *022. *30-8.31-: >9 ?a . . 0 = a. 

[*20 41] • j8 = a .« « Cl*. 

[•6° I'*35'101] =, . 0(1 f CIs)a : D I-. Prop 

The use of *20 41 in the above proof depends upon the fact that a is 

merely an abbreviation for an expression of the form 2(^2). 

*62-34. !-./•« = sg‘(/' j () 

Dem. 

h . *37 101 . (*37 01) . D H aPtfi 

[*341] 
[*321-23] 

a=* Kay) *y<? &**Py\ 

= 2\x(P <)£} z 

a \*&(P I e» >3D h . Prop 
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*62 4. h . <?[** a .ra(j:€a . a ex) [*21*2 . (#3502)] 

The relation e [ k is very important in cardinal arithmetic, in connection 

with the problem of selection from the members of k, i.e. of extracting one 

term out of each of the members of *. A relation which is to effect this 

selection must be contained in ef *. 

*6241. h.a<«r«-«-*cA 

Dem. 
h .*3.VI01 . D 1- zx(€[«)a . = .are a . a e « : 

[*1011*281] D h (g.r) . ar(e [“*)<*. = : (gjr) .xe a . a e k : 

[*10*35] =:(g/)..rfa:af<: 

[*24 5] = : g l a . a e k : 

[*53*52] szaex-i* A (l) 

h . (1). *33*131 . Dh.Pn.p 

*62 42. hsA~<*.D.U'cF*-* 

Dent. 

h . *31 *30 .DhHp.D./rC-i'A. 

[*22 (521] O.k-k-i* A. 

[*(52*41 ] D . CI‘e [**-*: D h. Prop 

*62 43. KD‘« [**-*«* 

Dem. 

h . *3311.3 h . D'c T « « £ |(ga). .r (c p *) a| 

[*35*101] =.^|(ga). j*€a . ae/r| 

[(*40*02)] — «**. D h . Prop 

*62 44. h : R G e . = . (a) . 7?a C a 

Dem. 

. *23*1 . D h C € . = : xRa . Dx>. . .r e a : 

[*32*18] = : ac R*a . Dx>« . xc a : 

[*11*2.*22 1] = : (a). 7?a C a D h . Prop 

*62 45. z. li Ge. Ell R'WR. = : a * (T7* . D„. /*‘a e a 

Dem. 

h . *14*21 . *4*71 . D H R‘a e a . = : E! R‘a . R‘a c a : 

[*30*33.*5*32] = : E ! 7?‘a : xRa .Ox.xe a (1) 

H . (1). *10*413 . D h :: a e (I‘R . D* . R‘a eer: = 

a € Q‘R . Da : E ! R‘a : xRa . Dx . x e a 

[*10 29.*11 *62] = a e O'R . Z>a . E ! R‘a : a e (I‘R . xRa . D.,,. x € a z. 

[*33*14.*4*71 ] = :. a c d'R . D.. E ! R*a z xRa . Dm>x.xeaz. 

[*37*104.*11*2] = :. E !! R“(l‘R .fiCe:OK Prop 

This proposition is useful in the theory of selections. It is used in the 

proof of *83*27, and thence of *83*28. 
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*62 5. I-. / G € 

Dem. I-. *33 21 . *52*13.31". (1*7 — 1 . 

[*52 173] 3 b : ae(J‘f. 3. . Paea: 

[*62 45] 3 h.7g * 

*62 51. b : E ! 7*a . 3 . 7‘a = Pa 

-Dem. h . *5215 172. 3 h Hp . 3 : PPa -a: 

[*5115] 3 Pa. =x.a-fa : 

[*30 31 3 : Pa « Pa3 I-. Prop 

*62 52. 1-: E! e*a. a . a e 1 . s . E ! 7*a 

Dem. H.*80-2.3 h :.£!.*«•■ :(g6) :*€«.*,. 

[*5211] 3 : a e 1 : 

[*5215] = : E ! 7‘a 3 h . Prop 

*62 53. H : E ! Pa . 3 . Pa - Pa [*62-51-52] 

*62 54. h : a e 1.3 . Pa -Pa [*62 o 1 *52) 

*6255. l-:*Cl.3.«r*-7r* 

Dem. h. *62-54.3 b Hp. 3 :««*. 3.. Pa-Pa: 

[*35-71] 3 ^ =7^^ : 3 h . Prop 

*62 56. b . <[*p‘a- if* £“0 = 017 

Dem. 

•-. *52 3 . *62 55 . 3 h . f f* P‘a = 7f* P‘a 

H .*35101 .*37-6.3 b z.x(i[ i“a) P . = 
[*51-51] s 

[*10-35] 

[*13193] = 

[*51-23] 

[*13195] 

[*51-51] 

[*35*1] 

^ • (1) • (2). 3 h . Prop 

*62 57. b . 7=- e f 1 

Dem. 

<l> 
HW) • y € a • P = l*y i 

& = i*x: (yy). y e a. £ - py : 

(ay) • £ ■ P^. y « a. £ - py : 

(ay) • P = • y c a . I'x = I‘y : 

• (ay) ■ P = i*x. y c a . X = y : 
= : P = i‘x. x e a : 

w 
= : .xea: 

= :x(ap )0 (2) 

K *62-55.3H.fri=7r 1 

1*5213] =7r<T‘7 

[*35-452] = 7. 3 K Prop 



*63 RELATIVE TYPES OF CLASSES 

Sum mart/ o/ #63. 

I he notations introduced in this and the two following numbers serve to 

express the type of one variable in terms of the type of another. They are 

very useful in arithmetic, where it is necessary to take account of types in 

order to avoid con trad ict ions. The two chief notations are "tja? for the 

type in which a is contained, and for the type of which .r is a member. 

We put 

*63 02. t,*a = aw — a Df 

This defines "the type of members of a.” or "the type which is of the 

same type as a." The characteristic of a type is tlmt.if r is a type, we have 

(.r). xe r, 

and conversely, if (x) .xer, then r is a type. For in that case, “xtr” is true 

whenever it is significant, i.e. whenever .r belongs to the type which is the 

range of significance of a* in "xct." Consequently t is this range of signifi¬ 

cance, i.e. is a type. 

Since we have (x).xe(a v — a), it follows that a \j - a is a type. It is 

not "the type of a'' but "the type of the members of a." (In case a is null, 

"the type of the members of a” may be interpreted as meaning "the type to 

which x belongs when '.re a' is significant.'*) "The type of x," i.e. the type of 

which x is a member, is defined ns follows: 

*63 01. t‘x = i*x u - i‘x Df 

By what was said above, "/,‘iV is the type of the members of i*x, i.e. the 

type of x. By combining the definitions of t*x and t9a, we obtain 

V . t*x = t9‘l‘x. 

Thus b . a: * f‘.r and b : y + x. D . y e t*x. 

In short, t*x consists of everything either identical or not identical with x, 

that is, every y for which there is such a proposition, whether true or false, 

as " y = .r." We put "t‘x" here instead of because x need not be a class, 

and is in fact subject to no limitation whatever, whereas "t/tr” is not signi¬ 

ficant unless x is a class, and therefore we write rather than “tjx.” 

We put also 

*63 Oil. tux = t*x Df 

This definition serves merely to bring t*x notation ally into line with t9x 

and the types t:‘x, tux,... t/x, tjx,... defined below. 

In virtue of *20'8, we have 

I-: <pa v ~ <f>a . D , £ (<f>x v ^ <f>x) = t*a. 



SECTION B] 
RELATIVE TYPES OF CLASSES 101 

jf if ■ is significant, then the- n.ngc of significance of the function 0? is 

°f a UJ°1,0"S thi,t two ranges of significance which overlap are 
dentic.d, and two different ranges of significance have no member in common. 

(if jLW„i'l|be iS M"'ayS °f th0 next ‘JT» aW‘' of a', and .- V 
(11 * IS a class of classes) is of the next type below that of *. We put 

*63 03. Df 

TciaHS'i* thC 777 bcl°'V that in wllich * is contained. Thus if , is 
a class ot classes of individuals, t,‘K is the class of individuals. We put also 

*63 04. tr*x = t'tfx Df 

*63041. e‘x = V0‘x Df and so on 

*63 05. t,‘K = tx>tl‘K Df 

*63 051. (,«* - t,%‘K Df and so on 

Thus given any two objects which are members of any one of the follow- 

*ng: the type of x, the type of the classes to which x belongs, the type of the 

classes to which these classes belong, and so on, we can express the type of 

her of our two objects by means of its relation to the other object. 

The propositions of this and the two following numbers will hardly ever 

the firs, UUt, We C0m°JtO Cardinal arithmetic' They are used constantly in 

th! fi f ! ‘°n °n Card,nal ar,th,nelic' a"d fhey arc constantly relevant in 

cardinal and 7" ™lat,on-arith“*‘ic- Moreover they are usually required for 
cardinal and ordinal existence-theorems. 

folloting8 lhC m°St "SCf"1 Pr°P°sitions of the Present number are the 

*63103. h.x<t‘x 

*63 106. h .aC //ft 

*6311. h :aet9‘a.D.t‘xmma 

which''If either;i°r ’8 DOt a me,aber Of «, then the type of x is the type 
h contains a. This proposition uses *20 8. 

*6313. h : fa:. fa . D . y e t*x 

Of n !slZiS “* fUn?ti0n satis6cd hy «**■> * and y, then y is of the type 

ambiminn.f ?SSary l°Lthe use of th,s proposition that, if 02 is a typically 

for y For exan T’ “ "h,““ld T*"" the Same lfPical determination for x and 
these a! fafoef Pof6' hfaVe al"af * = *a"d y = y; but we must not regard 

ambiguous. On the°ofhl“hand ' '’ZF” ^ “ fUn0ti°n “ typica"y 
2=a because h^ro.k h hand, x = a and y = a are values of one function 

, because here the presence of a renders the function typically determinate. 

*6316. h. t0‘t‘x = t‘x 

*6319. 

R & w i 
26 
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*6316. b : .r e t*y . = . y € tlx. = . g ! t*x r\ t'y. = . t*x = t*y 

This proposition, which depends upon *6311, and thence upon *208 and 

*13'3, and thence upon *9*14*15, is vital to the whole theory of types. 

*63 32. I- .tl,/c = s‘t..,ic 

*63 371. bi0CtSa. = .0€tta 

*63 383 h.t'tSsc-tSK 

We shall have generally tm*tniK «■ tm+ntK, where we may count suffixes as 

negative indices, so that tm*tn*K — tm~ntK or according as m or >1 is the 

greater. 

*63 5. h : x < t,*a . = .£*€ tux. 3 . a C t*x. = . t*x « t0*a 

This proposition is used constantly. 

*63*51. b : a € U*k . = . a C . = . « C t‘a . = . t‘a = t0*K 

*63 52. b : a e f,«X . = . a C /,‘X . = . XCf»‘a . = . t*a -1,‘X. = . fs‘a - /0‘X 

*63 53. b : x c f„*a . = . = <‘a . = . * f/a 

The above lour propositions, together with four similarones(*63*54*55*56 57), 

give transformations which enable us to express any relation of type, as be¬ 

tween class and members or members of members or etc., that is likely to 

occur in practice. 

*6364. b .t*/3 = t0U**f3 

This proposition is often used in the first section on cardinal arithmetic. 

*6366. b . CIV* - tux 

*6301. t*x = t*.r u — i*x Df 

*63011. t'*x = t*x Df 

*63*02. to a = a yj — a Df 

*6303. U*K — t0istK Df 

*6304. Df 

*63 041. t3‘x=t*tux Df 

*6305. tfK — tftflC Df 

*63051. U*K = tftj* Df 

*631. h . (a:) . x € to*a [*2288] 

*63101. b ,t*x = ta‘l‘x = i‘x\j — l‘x [*20-2. (*63-01*02)] 

*63102. 1 [*631*101] 

*63103. h . X € t *x [*63*101 .*51*16] 

*63104. h : 4>x. ~ <t>y . D . yct*x [*63101. *13*14J 

*63105. b.a C to a [*22-58] 

*63106. h . t0*a = t0‘ — a [*22-8] 
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*63 107. h (a) . <f>.c : f(<f>y) : D . 

Dem. 

K *2*11 . *10 11 . (Ij 

*""(!)’ *1013'221 • D h :• (*) • <t>' - 3 : ./(<&/) v ~/( 4>y) : 

D:^* = -/(^y)v ~/(0y): 
*■* “■* ^ :/(<£y) • ^ • </>yD I-. Prop 

*63108. K:/(ye*‘a).D.y€*‘a [*63 107 102] 

*63109. h:/(y€^a).D.y€//« [*631071] 

*63'11. b : a c f0*a: . D . £‘a = a w — q = t^a 

Dem. 

. *22-34. (*6302). 31-:.Hp. 3 :#«a. v .*~«o: 

3:P(y««.v.y~eo) = ^(y = a-. v.» + a): 
[*22'3'31.*5ri5] ,n 

l-.(l). (*630102). Dh. Prop 

*6312. h :. 0* V~<£a:. D : <£y v~0y . s„.yel‘x 

Dem. 

h . *63 11 . ,20-8.3 h Up. D : <‘x- ?(*«) u _ ?(*,>. 

[*20'81 .*22391 '392] 3 : y «,<*. =„. *y v~ *yD I-. Prop 

*6313. I-: 4>x. <fty. D . y (t'x [*6812. Imp. Add] 

*6314. I-: (x) .xta.O. I.'a = a [*241417-24. (*63-02)] 

*6316. h.t^'fx-fx [*6314102] 

*63161. I-. t.'t.'a ■= t.'a [*63141] 

*63162. h.xe l.'fx [*6310315] 

*6316. hsxtfy.s.jItfx.s.^Ufxr.fy.m.t'x-Vu 
Dem. 

*63 101 .*51*2.3. Dh :x€t‘y. 3. y*t‘x 

h ' *6313 * ^ h '• (3^) . z € t*x. s f t*y . D . y € t‘x 

V • *63 103 . D V : y e t*x. D . y € *‘a. y * t‘y . 

[*1024] D.g!<‘an<‘y 

** • (2) . (3) . D b : y e t‘x . = . g ! t*x r\ t‘y 

h • *63 103 . D I- : t‘x = t*y . 6 . y € t‘x 

h . *6313 . 0 : y e t‘x. z € t*x. D . z e t‘y 

^ . *63*13 . ^ : x e t*y . z e t*y . "5 . z e t*x •. 

[(!)] 3 I- :y et'x.zct'y . D . zet'x 

• (6). (7) . D b :.y «t‘x. D : * e t*x. = . z e t‘y 

H . (5) . (8). D b :. y € **a. = . t‘x = t*y 

^ • (1) • (4). (9) . DK Prop 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

26—2 
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*6317. 1": y c P.r. * e Py. 3 . z e Px [*6316] 

*6318. K a ! Ca [*10-25. *631] 

*63181. h:«Cpj5.s 

Dem. 
. /3 C Ca . = . a ! //a a C/3. = . t„‘a = C/3 

K *63-105. 3 1- : C« = C/3.3 . a C C/3 a) 
H . *24 6. 3 1- :. a C C/3.3 : a = C/3 . v . g ! C/3 - a (2) 
K. *63151 . 3 h :a = C/3.3.C* = C/3 (3) 
H. *6311 . 3 H : x f C/3. x € - a . 3 . Px = C/3 . Px = C — a. 
[*63106] 3 . Ca = C0 W 
h.(2).(3).(4). 3 h : a C C/3.3 . /./a = C/9 (5) 
p-d).(o). 3h:aCC£.».Ca-C£ (6) 

K(6 )J|. 
a.p 

3 H : /9 C Ca . = . Ca = C/9 (7) 

H. *63-11 . 3 H : x e Ca n C/9.3 . Px = Ca . Px - C/9 • 
[*13171] 3.Ca = C/3 (8) 
K.*6318. 3h:Ca = C/3.3.a ! Ca n C/3 (0) 
»■•(«).(9). 3 H : g ! Ca ^ C/8 . = . Ca - C/3 (10) 

K(G).(7).(10).:>KProp 

*63182. 1* : a C C/3 . /3 C Cy . 3 . a C t.*y [*63181] 

*6319. h . PCa - Pa 

Dem. 
h . *63105 . *2242 .Dh.aC Ca . Ca C Ca . 

[*6313] Dh.a€t%‘a. 

[*6.316] 3 K • Prop 

*63191. h.CacPa [*6310.319] 

*63 2. h : x € //a . a c C* • 3 • P‘x = Pa = C* 

Dem. 

h . *6311 . 3 b : Hp. 3. P« = Ca • Pa = C* (1) 

h.(1). *63 19 . (*63 04). 3 I-: Hp. 3 . tux «= Pa = C* : D h . Prop 

*63-21. H : a C Par. = . t0‘a = Px 

Dem. 
H . *6318115.3 H:aCPx. = .Ca = CP* 
[*6315] = Px: 3 h . Prop 

*63*22. h : a C Px. = . x * Ca . = . Px = Ca 

Dem. 
h . *63103 . 3 H : P*- Ca. D. *cC« 
K(l). *63-11 .Dh:x€Ca. = .Px = Ca 

h. (2). *63-21 .Dh. Prop 

(1) 
(2) 
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*63-23. Y : a C t*x. * C t‘a. D. r*x = t‘a = [*63-2*22] 

P,‘°p0Sltl0ns of the same ki,ld «s the above can obviously be extended to 
l %V9 Cl»C. 

*633. Y :(a).a€K.D .(*)•**«<« 

Dem. 

b . *101 . D h : Hp ,D. Ye*. 

[*40-221] V. 

[*2414] D . (a) ..t€«V:Dh. Prop 

*63 31. 

Dem. 

. *40 171 . D ^ v -«). = ; X€8*K . v .*■«*« - 

h • (1) • *22 88 . *63-3 . 

K *22*88. D h : arc s‘*.v. #«-#«* 
h* (2). (3). *10-22113. D 

(1) 

(2) 
(3) 

p h:.arec‘*. v . arcs'arcs'*. v.arc 

l( ^ D I-. Prop 

th»,NOtVhat th\USC °f *10'221 in the above P*w>f Spends upon the fact 
that *cs * occurs both in (2) and in (3). so that these are both of the form 
J VA f 6' *). 

*63 32. Y . tt ‘* ~ s‘f0'* [*63-31 . (*63 02 03)] 

*63 321. I-. t,** - f/f.'* = W* 

Dem. 

Y . *2 0*2. (*63 03). Dh 

[*63-32] 
-W* (l) 

[*20-2.(*6303)J = W8*K 
[*63151] = f0V* 
[*20-2.(*6303)] = tt‘K (2) 
K(l).(2).DKProp 

*63 33. P : - f«‘X . D . <,'* = f,'\ [*30 37 . *03 32] 

*63 34. Y . txitta = f0‘« = 8*t‘a 

Dem. 

H . *63-32 . D Y . //*‘a = sV*‘« 

[*6315] **s*(*a 

[*63101] = 8*(i‘a v — i‘a) 
[*63 31] = s‘t*a yj _ siLta 

[*5302] =flu-a 

[(*6302)] = f0*a 

^ • (1) • (2) .DK Prop 

O) 

(2) 
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*63 35. b : t‘a = t‘$. D . t,‘a = [*30 37 . *63 34] 

*63 36. I-: t1* = t‘\ .D . ty*< = /,‘\ [*63-3533] 

*63 361. 1-: /.‘as f,‘0 - 3 • /‘a = /‘/3 [*30 37 . *6310] 

*63 37. h: /n‘a= /./£ . = . /‘a = (‘,3 [*6335-361] 

*63 371. h:£C/„'«. = .£«/‘a 

Dem. 

b . *63*181 . D 1-: ^ C /.‘a . = . /„‘a - /„<£. 

[*63-37] =.*‘a = *‘£. 

[*6316] = . /9 «/‘a : D H . Prop 

*63 38. haf //* . x * t.*a . D . f‘.r = tn*a = 

Dem. 

*■.*63-11 • >b: Hp.D.t'x-f#'a.f‘a~«,*« (1) 

f-. (1). *63-34 . D h : Hp. D. /0‘a = /,%'* 

[*63151-33] -t,<* (2) 

h .(1).(2). D h • Prop 

*63 381. 1- : .r e /,‘* . D . (‘.r = //* 

Dem. 

b . *6338105 . Dl-iflf /„** • x e a . D . /‘j- = t,‘/c: 

[*1011 23.*40-11] D H sx€. D . *‘.r - //* (1) 

K . (1). *63-32 .Db. Prop 

*63 382. b . g ! /,«* [*6318 . (*63 03)] 

*63 383. b. = /0‘* 

Don. 
b . *63-3818. *1011-23-35 .Db: a c/0‘* . . D . W* = W« 

[*6319] = t‘a 

[*6311] (i) 
1-. (1). *1011-23 . *6318 . D b . Prop 

*63-384. 1-: !/* - 1,‘X. D . /0‘* = tn‘\ . / V = [*63 383-37] 

*63-39. b : </* = /,‘A.. = . tf* = U*\. s . Vk - e'A. [*63-33-384-37] 

*63 391. 1-: *‘.r = t‘y . = . *3‘.r = *3'y 

Dem. 
b . *63-39 .Dh: (a<j «= (3‘y. = . t9‘t‘x = Ultly • 
[*6315] = . t*x = /‘y : D 1-. Prop 

*63-392. b : U*k = L‘\ . = . t*K = // X . = . u,€k = /0‘X 

Dem. 
V . *63-39. D h : </* = /,‘X. = . = /,%‘X. 

[*63-321] = (1) 
K(l). *63-39. Dh. Prop 
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*63 4. h : a € ta‘*c . * € tj\ . Z> . t0‘a = tf* = LS\ 

Dent. 

.*63-38-18.Dh: Hp.D.tja = £/*. = f,‘\ . 

[*30*37.(*63*05)] D . Va - ^. 

[*63 321] 3 . //a = /,**. = f5‘\ : D I-. Prop 

*63 41. = t,‘\ 

Deni. 

H . *63-4*18 . *10*11‘23*35 . D b : * * t.‘\ . D . <, 
[*63383] ' =t,K 

[*63-38-18.*10 11*23*35] 

K.(1).*6318. 3b. Prop 

*63 42. I-. = t,‘\ [*30-37 . *63 41 -383] 

*63 43. b . - t‘x [*63-3415] 

*63-44. I-. t/p'a = t.‘a [*63-43-34] 

It is obvious that the analogues of the above propositions will hol.l for 

arise, wl u CtC' l.Ve Shal‘ "0t pr0ve thcse annlo8»t'«. but if occasion 
IMS we shall assume them, referring to the corresponding propositions for 

*63 6. b: X c („<« . = .ae t“x .s.aCl'r.s. t‘x = („‘o 
Dem. 

h • *6315 . D h : a C . = . a C . 

[*63-371] -.««<«* 

l-.(l). *63-22.31-. Prop 

*63 51. I-:«« v*o C C t‘« .*.««« - 
Dem. 

I-. *4-2 . (*63-03). 3 t-: a C t‘K . = . « C I.‘s‘k . 

[*63-371-19] m.aetWx. 

[*4-2.(*6303)] *.«««,«*. 

[*63-383] = . a ((.«* 

l-.(l).*635 22.3b. Prop 

*63 62. b : a e t,‘\ . = . a C t,‘\. = . \ C Va. = . t‘a = t,‘\. s . <=<„ = 
Dem. 

(1) 

(1) 

H . *63-51 . (*63-03). D 

I-: a c 1,‘X . = . a C . 

[*63-321] s.aCaVX. 
[(*63 03 05)] s.aCVX 
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K. *63-321 . D 

H : a € //X . = . a e t+t/X . 

[*03*22] = .fa = A/f/X 

[*63-321] = /,‘X. (-2 

[*03-391 -11 -42] =. t-'a = //X. (2 

[*6315181] =.XC t0‘t»a. 

[*6315] = . X C tua (4 

K(l).(2).(3).(4).DKProp 

*63 53 1-: x t t„‘a . = . tux = t‘a . = . t*.c = tm‘a 

/Jem. 

h . *30 37 . D : P‘x = Pa . D . - *,‘Pa . 

[*63-43-34] D.Pa=A/a (1 

H . *63 19. D h : t'x - A/a . D . f*c = Pa (2 

K(l).(2). *035 . D H . Prop 

*63 54 h : a e A/* . = . A/a = f,Vr. = . Pa =■ /.V . = . P‘a = Vk 

Deni. 
*■ • *30-37 . D h : t‘a = A/* . D . tx‘t‘a - f, V* . 

[*03-34-321) (i; 

H . *30-37 . D h : A/a = A‘* . D . P//a * W* • 

[*03-19-383] D.Pa-A/* (2: 

H . (1). (2). *03-51-53 . D h . Prop 

*63 55. h : * * A/X . = . = A/X . = . A/* = t,‘X. = . P* - A/X . = . P‘* - PX 

(Proof as in *03 54] 

*63 56. H : a- € //* . = . Vx - A,** . s . P‘x «= A/* 

Dem. 

K . *G3 321 . Dh:xf /.V . = . .r e (/*,'* . 

[*63-53] ■ .*“«-***/« (i) 
[*03-383] (2) 

h . (1) . *03-53. Dh:x€t,g«. . s . tlx - A/A/* 

[*63-321] -</* (»> 
I- .(2). (3). D H . Prop 

*63 57. h : a e A/X . = . A,1 a = A/X . = . Pa = A/X . = . A»‘a = A/X 

[Proof as in *63-56] 

*63 61. (*6319101] 

*6362. K : a € f/« .D.i'xe t'a . A'Par = Pa 

Dem. 
. *03-53 .DI-: Hp. D . PAr = /‘a . 

[*63-61] D.PPar = Pa. 

[*6316] D . i*xet‘a : D I-. Prop 
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*63 621. h 

*6363. h 

Dem. 

*63 64. f-. 

Deni. 

*63 65. . 

*63 66. H. 

*63 661. h. 

*63 67. h. 

*63 68. h . 

RELATIVE TYPES OF CLASSES 10'J 

: .r € a . D . /‘.r < [*63*62 . *63105] 

: X€t,‘a . 3 . I't'xer'a . t'l'i*.,= /=‘Q 

*63101. = 

[*6362] DhHp.D./‘fl = W,. 

[*6319] 3.*s‘a = *Ve‘.r (l> 

Ml).*63-103.31-. Prop 
>t€0-t.‘i“0 

h.*51-16. *37-62.3 
h:a-€/9. 3 . x € i‘x. i‘xc t“0. 

[*63*105-38] 3 . jc< . f.V* = f, V‘/9. 
[*1313] 3 .**(,«<“£ (l) 
H.(1).*63*51.3 h. Prop 

Cl'l/a-f'a [*63*371 .*60-2] 

CIV* - I"* [*63*5 . *60 2] 

*‘Cl‘a = P'a [*60-34 . *63105-53] 

Cl [*63-51 .*60*2] 

ClV* = tx*K [*63-52 . *60-2] 



*64. RELATIVE TYPES OF RELATIONS 

Summary q/*(>4. 

In the present number, we introduce notations defining the type of a 

relation relatively to the types of its domain and converse domain, when 

these types arc given relatively to some fixed class a. If R is any relation, 

it is of the same type as D‘R t UWR. If U‘R and (I*/? are both of the 

same type as a. U is of the same type as t.,‘a t tja. which is of the same type 

as a | a. The type of Ca | tm*a we call U*a, and the type of tM‘a | tn‘a we call 

rnnta, and the type of tja | t./a we call tmn*a, and the type of t„,‘a 11"‘* we 

call and the type oftm,a | tn*a we call We thus have a means of 

expressing the type of any relation R in terms ot the type of a, provided the 

types of the domain and converse domain of R are given relatively to a. 

The most useful propositions of the present number are the following: 

*64 16. I- s R G t„*a f t.‘0 . = .R* £•<£.*« T UP) 

*64 201. h iRGS.D.Rc t‘S .t‘R = t'S 

*64-231. h : R e t*Q. D . D*R e VWQ. (I‘R t . CHR * t'&Q 
Here “ C‘R e t'C'Q" will only be significant if R and Q are homogeneous 

relations, which is not required by the rest of the proposition. When R and 

Q arc homogeneous relations we have 

*64 24. V : R e t‘Q. s . C*R e C&Q. a . tjC'R = WQ 

This proposition is useful in connecting ordinal and cardinal existence- 

theorems. 

*64 312. h . tnix = V'H'x = Ut-*x 

*64 6. H. RI‘(C« T UP) « t‘iU* T UP) -T 0) 
This proposition is frequently used. It states that the class of relations 

whose referents are of the type of members of a while their relata are of the 

type of members of fS (i.e. the class of all. relations contained in t0‘a f UP) 19 
the type of t0*a f t0‘fi and is also the type of a t fl. 

*64 65. K : C*P C t0‘a . = . P e tja 

*64 67. I-: C*P Q tfx . = • P e tutx 
The propositions of the present number arc mostly obvious, though forma 

proofs are sometimes not very easily found. The use of the propositions of this 

number occurs chiefly in the first section on relation-arithmetic and in the 

proofs of existence-theorems in ordinal arithmetic and the theory of ratio. 
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*6401. C‘o = tWa t Co) Df 

*64 011. t"‘x = t‘(t‘x 1* t‘.v) Df 

*64012. t'-‘x = t‘(t‘x T tr‘x) Df 

*64013 t'ux = t‘(t?'x t t‘x) Df 

*64014. t*‘x = t‘(Lux t t*x) 

etc. 

Df 

*64 02. C« = <‘(CatV«) Df 

*64 021. C« - t‘(t,‘a t C«) Df 

*64 022. 

etc. 

Df 

*64 03. C'a = <‘(C« T t*a) Df 

*64031. f1ua = W«'T^) 
etc. 

Df 

*64 04. *C«-1‘(^ tc«) Df 

*64 041. •C«- Wat Co) Df 

etc. 

*641. Ka|a< t<n‘a 

Dem. 

b . *212 . D h : a ■= Co .D.afa-C« | Co (1) 

1-. *35*9 . Dh:a|a= Co f Co . D . a = Ca : 

[Trnnsp] D I-: a + C«. 3 . a t « + Co T C« (2) 

1- • (1)• (2). D H :.a=Ca -v . a+Ca:3: af a«C« f Co.v.a | o+C« t Co (3) 

1-. (3). *5115 . *63101 101. D h : a t « - V« t Co C« T Co (4) 
h . (4). *51 15 . *63 101 . (*64 01). D b . Prop 

*64 11. h . C‘a = *‘(a f a) [*041 . *6316] 

*6412. b . a t /9 e *‘(C« T C/9) 

Dem. 

h . *35*85*86 . *63*18 . D b : a T /9 = Co | C/9. = . a = Co . /3 = C/9 (1) 

h . (1). Trnnsp. 3 h : a - t'a . £ - C/9. 3 . a T /9 = Co T C£ s 

o = Co . £ + C/9.3 . a T /9+ C« T C/9: 
[*63*101 .*51*15] D I-: a = Ca . D . a t /9 f l‘(C« T C/9) (2) 

Ml) • Transp . Dh:a*Co.3.aT/9* (Co T C/9) . 

[*63*101 .*51 * 15.Transp] D . a t£et*(C« T C/9) (3) 
b • (2) . (3) . D 1- . Prop 

*6413. h . t‘(t*‘a t C/9) = <‘(a f £) [*6412 . *63*16] 

*6414. 1-. (x, y) . * (C« t C/9) y [*63*1. *35103] 

*6416. b .(R).R G C« t C/9 [*6414 . *25 1411 ] 
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*64*16. 1-: R G tja t tjj . = - R e f‘(V« T C/9) 

I Jem. 

b . *211 . 3 b : R = C« t C/9. v . 7? + C« t Vi® s 

[*26*42] 3 b : R = V* T '-‘a? . rt G C* T Vi® . v . if * C« t C/9 (1) 

H.(l).*64*15.*10*221*13.3 

biRCfa T C/9 : if = c« t C£. R g c« T C/9 • v. /e + v« T Vi® (2) 

I- .(2). *5*1.3 

1-K C Ca t Vi®. = s /f = Ca | C/9. if G C« t Vi®. v . J? + C« T C/3 : 

[#23*42] s : R = //a | C/3. v . if * C« | C/9 :. 3 h . Prop 

l*y putting tj'a (where i and s are some index and suftix which have been 

defined) tor a and t/'a f«»r 0. the above propositions give results applicable 

fo any of the types defined at the beginning of this number, because of 

CC‘a = C‘a. 

#64 2. I-: a S R * S. 3 . Se t'R . t'R = t'S [*63*13*16] 

*64*201. b : R G S. 3 . R « t'S .t'R = t'S 

Dem. 
b . *2.5*6.3 I- s. Hp. 3 : R - S. v . 3 ! S±R: 

[* 13* 14] 3 : R -* .S'. v . It + S:. 3 b . Prop 

*64*21. h : .r/fy . 3.if c t'it'x | t'y) 

Dem. 
H . *63*103 . *35*103.3 b .x(t‘x t f‘y)y (1) 

h.(l). 3HsHp.3.a!/2A(^xtf<y) (2) 

I-. (2). *64*2 . 3 h. Prop 

*64*22. b . R « f‘(CD‘i? t CCI'i?) [*C4*1C . *63*105 . *35*83] 

*64 23. b .t'R~t's't'R 

h . *63*103 . *41*13.3 b . R G *‘f‘if (1) 

h . (1) . *64*201 . 3 h. Prop 

*64 231. b: Ret'Q.D. WRcl'D'Q Al'R c t'd'Q. C'R € t'C'Q 

Dem. 

b . *63*12.3 b Hp . 3 :: xRy . 3x>y.4%. v . ~(.rQy) :: 

[*10*28] 3 :: (ay) • x/fy. 3X (ay) .xQy.v. (ay). ~ (*Qy) :• 
[*5*63] 3X :• (ay) - xQy v - (ay) • *Qy: (3y) o~*Qy*o 

[*3*26] 3X (ay). xQy. v . - (ay) • W 

b . (1).*33*13.3 1-:. Hp . 3 : x€ D'R .Dx.xe D‘Q w - D'Q : 

[(*63 02)] 3 : D‘if C t9‘D'Q: 

[*63*371] DzD'liet'D'Q (2> 

Similarly b: Hp. 3.0 *R et'd'Q .C'Ret'C'Q <3> 

b • (2). (3) . 3 b . Prop 
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*64 24. h : R c t‘Q. = . C'R € t'C'Q. = . tjC'R = tJC'Q 

This proposition is only significant when R and Q are homogeneous 

relations. 

Dent. 

h . *64-22 . *63 181 . D h . R € t‘(tSC*R | . 

[*13'12] DI-: t.‘C‘R = t,‘C‘Q.O.Ret‘«SC‘Q1t'‘C"Q) (1) 

I-. *64-22 . *63 181 . 3 I-. Q e t‘(l0‘C‘Q f t.‘C‘Q) 

I-. (1). (2). *6316 .31-: tc‘CR = t.'C'Q .O.Rtt'Q 

I-. (3). *64-231 .*6316-37.3 

IRet‘Q. = . lc‘C‘R = t,‘C'Q. = . C'R e t‘C‘Q : 3 I-. Prop 

(2) 

(3) 

(1) 

(2) 

*64-3. I-: t„‘a = lm‘0. =. a e t‘0.a . t‘a = t‘&. a . t„‘a = C/3 

Dem. 

1-. *30-37 . (*64 01) . D h : t0‘a - tSfi. D . 

3l-:<.'« = 09.3.«T«f^. 

[*6416] 3 . a t o G C/3 | C/3. 

[*35-9-91] 3. a C C/3. 

[*63181] 3-C« = C/3 

h . (1). (2). *63 16-37.31-. Prop 

*64 31. t-. t"'x =■ tjt'x [*63 15. <*64-01 -Oil)] 

*64 311. h . t„‘a = tCC« [*63 321 . (*64 022 01)] 

*64 312. H . t”‘x = t"‘t‘x - tjfx [*6315 . (*6304). (*64014011 01)] 

*64 313. h . t„‘a = = („*Ca [*63-321 . (*63 05)] 

.64 32. t-: ta‘a - <C/3. = . «„«a = („‘/9. = . („‘a = C‘/9. s . ("‘a _ t„.0 . 

0en( a • l”‘a = <"‘/3 . = .att‘0.3.fa = t‘/3 

h . *64-313-3.3h.-y« = C‘/3. = . ft,‘a = f',‘$. 

[*63-41-39] e . <‘a = t'/3 

Similarly the other equivalences are proved. 

*64 33. I": a e Cm . = . t„‘a = („•/*. = . U»‘a = t„>. = . t"‘o - • 

Dem. Cm 

H.*64-311-313.31-: (,,‘a = C‘m- = . «CC«-C‘Cm• 

[*64'3] =. «‘C« = (‘Cm • 

[*63-383-41-55] = . <‘o = Cm (1) 

Similarly the other equivalences are proved. 

*64-34. 1-: a e Cm • a. („<« = £=>. = . (“‘a = <„‘m . = . . = . («o=Cm 
[Proof as in *64 33] 



Ill PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 

*64 5. H . RlV.'a T tJ0) = f‘(C« f t,‘0) = t‘(a f £) [*641316 . *612] 

*64 51. [*64 21 . *55 132] 

*64 52. h:xc tja . >/ c tJ0 . D . * i y € /‘(C« f C£) [*63-11 . *64 51] 

*64 53. K : x € //a . 5 C .<i‘x) l & c t‘(t‘a t 

I)em. 
h.*6451 . D h.(<V)i5e(1) 

h. *63-62. Dh: Hp. D. tU'x-Va (2) 

h. *63 181-37. Dh: Hp. D . t'S =<‘.8 (3) 

I-.(1).(2).(3). D 1-. Prop 

This proposition is used in connection with cardinal addition (*11018). 

*64 54. h . Rl Wa t Va) = tja - *‘(a | a) = f.*Rl*(a T «) 

[*64-5 . *61-34 . *63 105 11 . (*64 01)] 

*64 55. H : Cll> C f„‘a . = . I* e f...‘a 

Dcm. 
h . *35-91 .Dl-jCPCCa.s.PG Co T • 

[*64-54] s . P t tja : D K Prop 

*64 56. h. RI‘U‘.rT f‘.r) = P“.r 

Dcm. 
h . *64-5 . *63 15 . DK Rl V* t *‘.r) = f 

[(*64011 >] DH. Prop 

*64 67. hsC‘PCfj-.s.Ptfux [*64-56. *35-91 .*61 2] 

*646. 1-. t‘P - t f.'CI*/’) 

h . *35-83 . *63 105 .Oh. PC U‘D‘P T t.‘d‘P. 

[*64-201 ] D h . t‘P = t V<r.P> 

[*64-5] - R1‘(VD‘P T UWP) .31-. Prop 

*64 61. V : D'P * fa . (l‘P tt‘0 ■ O . t‘P = f(a t 0) 

I-. *63-16-35 .Oh : Hp. O . <„‘D ‘P = t.‘a . t.‘(l‘P = U‘0. 

[*64*6] O.fP = f(t.ta‘[l.,0) 
[*64 5] = f(a 10):Oh. Prop 

*64 62. I-: D‘P t t‘D‘Q. <I‘/> t fd'Q .m.PtfQ.m. t‘P = t'Q 

h . *64-61.31-: Hp . O . fP = l‘(D‘Q f d‘Q) 

[*64-5-22.*6316] = fQ <*> 

h . (1). *64-231.0 h . Prop 

*64-63. I-: D ‘P e fa . d‘P e t‘0. = . fP = P(a 10). = .Pe f(a 10) 

De‘"' h . *64-5 .Oh :fP = f(a f /9 ).O.PP = f(t.‘a T t.‘0). 

[*64 231.*35-85-86] O . T>‘P e Pt0‘a . d‘P e t%‘0 ■ 
[*6319] O .T>‘Pefa.d‘Pef0 (!) 

I-. (1). *64-61 . *63 16 . O h . Prop 



*65. ON THE TYPICAL DEFINITION OF AMBIGUOUS SYMBOLS 

Summary of* 65. 

In this number we are concerned with definitions and propositions in 

which an ambiguous symbol is determined as belonging to some assigned 

type. If “o' is an ambiguous symbol representing a class (such as A or V 

for example), “ax is to denote what a becomes when its members are deter¬ 

mined as belonging to the type of *, while “a(x)" denotes wlmt a becomes 

when its members are determined as belonging to the type of t‘x. Thus 

e'°: ". V| wil1 bc everything of the same type as .r, t.e. t*x\ V (*) will be t‘t‘x. 

Similarly if ‘ R" stands for a relation of ambiguous type, such as A or V, 

Rx will denote what R becomes when its domain is confined within the type 

of*; Rlxu) will denote what R becomes when its domain and converse domain 

are confined respectively within the types of a- and y; R(x,y) will have the 

domain and con verse domain confined respectively to the types of Vx and t*y; 

with analogous meanings for R (x) and R (x„). Throughout this number, 

R and a do not stand for proper variables, but for typically ambiguous symbols. 

i he notations of the present number are used in the elementary parts of 

the theory of cardinals and ordinals, i.e. in Part III, Section A, and in Part IV. 

Section A. The only proposition, however, which is much used, is 

*65 13. I-: a - 0X . s . a = t‘x rs £ . = . a C t€x. a = 0 

Here /9 is supposed to be a typically ambiguous symbol. The first 

equivalence. 0X. = 13," merely embodies the definition of (3X 

(*65 01). It is the second equivalence that is important. Let us, for the 

sake of illustration, put 1 in place of /9. Then we are to have 

a = t‘x r, 1 . = . a C t*x . a = 1. 

(Since 1 is a class of classes, we shall have to suppose that x is a class.) 

Considerye*. If a - a l, y e a . s. y et*x. y e 1. But we have (y) . y e t*x. 

Hence yea.s.ytl, whence a = 1. Also if of course a C t‘x. 

1 hus a = t‘xn l.D.aC<‘*.a*l. The converse implication follows from 

*22 621. The reason for the proposition is that a symbol such as “l,” if it 

occurs in such a proposition as a-l‘ain 1, must, for significance, be deter¬ 

mined as meaning that 1 which is of the same type as a, i.e. the class of all 

unit classes which are of the same type as members of a. And similarly, 

when we put a = 1, that does not mean that a is the class of all unit classes, 

but only that it is the class of all unit classes of the appropriate type, which, 
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il a C t*x, will be t*x r\ 1. The proposition *7*x r\ 1 = 1” is true whenever it 

is significant., but t*.rr\ 1 is typically definite when x is given, whereas 1 is 

typically ambiguous. The use of the above proposition lies in its enabling us 

to substitute typically definite symbols for such as are typically ambiguous. 

Another useful proposition is 

*65 2. K sg‘|/?„.„) = 7? (*») 

Here R is supposed to be a typically ambiguous symbol; the proposition 

states that if It is typically defined as going from objects of type x to objects 

of type y, then It must go from objects of type l*x to objects of type y. This 

proposition is only used twice (*102 3 and *1542), but both uses are of great 

importance, tin- one in cardinal and the other in ordinal arithmetic. 

The only other proposition of this number which is subsequently used is 

*65 3. I-. R$“p - (H'Vfe * rt‘V a t€0 

This proposition is used in *102*84. 

*6501. ar=* a r\ t*x Df 

*6502. a (x) = a n Wx Df 

*6503. Rx = (t*x)Ut Df 

*6504. R (x) - (fx) 1 R Df 

*651. Df 

*6511. Df 

*65 12. R (x, y) - (C-‘x) 1 R f (t"y) Df 

*65 13. I-: a - 0, •« . a - t*x* 0. ■ • a C tfx. a - 0 

f-. *4*2 . (*65 01) . Dh:a = /3x. = .a=f‘jn^ (i) 

b. *22 621 .*1313 . D H : a C t*x. a = 0.0 . a = t*x r\ 0 (2) 

b . *22 43. D b: a = t*x r\ 0. D.aCl‘x.aC/9. (3) 

[*6313) D.0et‘t‘x. 

[*63-371 15] O.0C t‘x. 

[*22-621] D . 0 = t*x n 0 (4) 

K(3).(4). D h : a = t*x n 0 . D . a C t*x. a = 0 (5) 

b . (1) • (2). (5) . D b . Prop 

*6514. b : a: e t0‘a . D . 7 (*) = 7- [*63 53 . (*65 01 02)] 

*65 15. b:xe t0fa . D . R (x) = i?. . R (*y) = R,..v) [*63 53.(*65 03 04 1 11)] 

*6516. b : X€t0‘a.y€to‘@.D.R(x,y)=R(xfi)=R*tfi, [*63 53 .(*6511112)] 
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*65-2. H . sg'iRir.y)} 

Dem. 

H. *32-1*23. (*65'1).D 

h : a [sg‘j/*(x,y)|]w . = . a = z . w et*y . 272m/] . 

[*22*39.*20*42] = . a = t*x r\z(we t‘y . zRw) . 

[*65*13] = . a C t‘x. a = z (iv c t*y . zRw) (1) 

I- . *20*33 .Dh:a = 3 (wet*y . zRiu) . = z ea . =t. w e tly. 2/2?*; 

[*63108] = z. w t t‘y z z e a . =t. w e t‘y . zRw :. 

[*4*73] = :. tu e t‘y z z e a . =t. zRw z. 

[*20*33.*32*1] m:.w€t‘y.<dlw (2) 

H . (1) . (2) . *63*5 .Dha [sg‘(/£(Xty,)] w . s . a c c . 

[*35*102.(*65*11)] = . a |/£(j;v)) w:Dh, Prop 

*66*21. h . Rlx,y) = |/*«.„,) tr,i/i 

Dem. 

K *21*2 . (*651). D h . {i2lx,y») u.y, = ^1 ft‘*1 -R [ t‘y\ f t‘y 

[*36*33 34] -t'xIRft'y 

[(*65*1)] -72,x.y).Dh.Prop 

*66 22. h . R (x, y) = (R (x, y)) (x, y ) 

This and the following three propositions are proved as *65*21 is proved. 

*65 23. V . R (xv) - (/* (x„)| (xv) 

*65 24. h. J*x = (/ex)x 

*65 26. !-..&<«)-{£<*)}<*') 

*65 3. h. /w = iR“rb = « f/3 

Dem. 
h . *37*1 . (*65*03). D h . Rfi“fj = £ |(gy) • y * n . xRy . # € t‘fij 

[*22*39.(*37*01)] 

[(*65*01)] 

h . (1) . (2) . D h . Prop 

R“p " tl& (1) 
(2) 

R «c w I 27 



SECTION C 

ONE-MANY. MANY-ONE, AND ONE-ONE RELATIONS 

Nummary of Section C. 

In tin* present section we have to consider three very important classes of 

relations, of which the use in arithmetic is constant. A one-many relation is 

a relation li such that, if y is any member of Cl*R, there is one, and only one, 

term x which has the relation li to y, i.e. IVy € 1. Thus the relation of father 

to son is one-many, because every son has one father and no more. The 

relation of husband to wife is one-many except in countries which practise 

polyandry. (It is one-many in monogamous as well as in polygamous countries, 

been use, according to the definition, nothing is fixed as to the number of relata 

for a given referent, and there may be only one relatum for each given referent 

without the relation ceasing to be one-many according to the definition.) The 

relation in algebra of x1 to ./• is one-many, but that of x to x* is not, because 

there are two different values of* that give the same value of .r=. 

When a relation li is one-many, IVy exists whenever yed'H, and vice 

versa; i.e. we have 

li € one-many . = : y e Cl*72 . Dy . E! IVy. 

Thus relations which give descriptive functions that are existent whenever 

their arguments belong to the converse domains of the relations in question 

are one-many relations. Hence Cnv, D, Q, C, R, R, sg, gs, Rt.p. s, />.s, I, i, i. 

Cl, Rl are all of them one-many relations. 

When R is a one-many relation, IVy is a one-valued function; conversely, 

every one-valued function is derivable from a one-many relation. A many- 

valued function of y is a member of R*y, where R‘y is not a unit class, and 

any one of its members is regarded as a value of the function for the argu¬ 

ment y\ but a one-valued function of y is the single term R‘y which is 

obtained when R is one-many. Thus for example the sine would, in our 

notation, appear as a relation, i.e. we should put 

sin = 3# [x = y — y73! + y*/5 •••! ®f, 

whence sin‘y = y — y*/3 ! + y*/5 ! — .... 

so that "sin‘y” has the usual meaning of sin y. Then instead of sin"1*, we 

should have sin'or, which would be the class of values of sin”1*; and instead 

of “y - sin“' x," which is a misleading notation because y = sin-,ar and 

3- sin-' x do not imply y = z, we should have yesin'x. Similar remarks 

would apply to any of the other functions that occur in analysis. 
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A relation R is called many-one when, if or is any member of 1)*R, there 

is one, and only one, term y to which a; has the relation R, i.e. R'xe 1. Thus 

many-one relations are the converses of one-many relations. When a relation 

R is many-one. R‘x exists whenever xe D‘R. 

A relation is called one-one when it is both one-many and many-one, or, 

what comes to the same, when both it anil its converse arc one-many. Of the 

one-many relations above enumerated, Cnv, sg, gs, /, i, 7. Cl, HI are one-one. 

1 wo classes a, ft are said to be similar when there is a one-one relation R 

such that D‘/£ = a . Cl472 = ft, i.e. when their terms can be connected one to 

one, so that no term of either is omitted or repeated. We write “asm ft" for 

“ a *8 similar to ft." When two classes are similar, the cardinal numbers of 

their terms are the same; it is this fact chiefly that makes one-one relations 

of fundamental importance in cardinal arithmetic. 

According to the above, a relation is one-many when 

y c (I* R . Dv . R*y e 1, 

i.e. when li“G‘ft Cl. 

Similarly a relation is many-one when 

R“D‘R C 1. 

and a relation is one-one when both conditions are fulfilled. The classes 

R“CltR, R^D'R, which appear here, are often important; some of their 

properties have already been given in *8777*771*772-773 and in *">:J*61 to 
*53*641. 

It is convenient to regard one-many, many-one and one-one relations as 

particular cases of relations which, for some given a and ft. have 

mR“a.‘RC«.4R“TyRC0. 

We put a-+ft=R\R“(l‘RCa.4R“D‘RCft\ Df. 

Hence, without a new definition. " 1 -> 1" becomes the class of one-one 

relations; also, as will be shown, “l-^Cls*’ becomes the class of one-many 

relations, and “Cls—► 1“ becomes the class of many-one relations. Although 

it is chiefly these three special values of a —► ft that are important, we shall 

begin by a general study of classes of relations of the form a-* ft. 

27—2 



*70. RELATIONS WHOSE CLASSES OF REFERENTS AND OF 

RELATA BELONG TO GIVEN CLASSES 

Summary of *70. 

If a and 0 are two given classes of classes, a relation R is said to belong 

to the class a-*/3 if R*yca whenever yeG‘/f. and R*xc0 whenever xeD*R. 

If only one of these conditions is to be imposed, this result is secured by re¬ 

placing the class involved in the other condition by "CIs," since " R‘ycC\s" 

always holds, and so does “ R‘x€ CIs.*' and therefore neither imposes any 

limitation on R. In the most important cases, a and 0 arc either both cardinal 

numbers, or one is a cardinal number while the other is CIs. 

In virtue of *37702703. the conditions above mentioned as imposed upon 

R by membership of a—>0 are equivalent to 

~7i“WRCa.*R“Y)tRC0. 

This form is used in the definition (*70-(>l). 

The propositions of the present number are hardly ever used except in *71. 

where a and 0 are both replaced by 1 or CIs. The most useful propositions are 

*701. h : /£ c a —► £ • s . ft C a. C £ 

(This merely embodies the definition.) 

h Re a -> 0. = : (y). ~R‘y * a » «‘A : (*) • « 0 ” «‘A 

K£-»a = Cn v“(a->£) 

h. a-> CIsC a) 

t-. CIs -» £ - R (R'WR c 0) 

h . a —* 0 = (a —* CIs) n (CIs —» 0) 

h: <KR n WS - A . R> S € a -¥ CIs . D. R v S e a CIs 

with similar propositions for CIs—> 0 and a—>0. 

*70 62. h : R e a -> CIs . D . R f y e a -» CIs 

with a similar proposition for CIs—> 0. 

*7013. 

*7022. 

*704. 

*7041. 

*7042. 

*7054. 

*70 01. a —* 0 = R (R“<1‘R C a . C 0) Df 

*70 1. h s R e a -> 0 . s .~R“<I‘R C a . R“D‘R C 0 

.70.1. h , J..—0. = ■.. a-*. * ■ . • - ■ . „0U 

[#203. (#7001)] 
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*7012. h : R€a-*0. = .Ii“VCasjttA.li“VC0sji‘A [*701 . *53-62*621] 

*7013. . R € a -+ f3 . = z (y) . R*y eawi'A: (.r). R€x i*A 

Deni. 

h . *37*702 .Dh.rVCaw t‘A .arycV. 3., . ~R*y eav i‘A : 

[*24104.*55] = :(y) .~R‘ycav l‘A (1) 

Similarly h J?“V C/3 w e'A . = : («) ./2‘«6/8 w/ i‘A (2) 

h . (1) . (2) . *70*12 .31-. Prop 

*70 14. h:: R e a —> f3 . = (y): e a .v.R*y = A :.(x)z R‘x e /3. v. = A 

[*7018. *51*236] 

*70 15. h:./eea-»/9. = :g! R‘y . 3V . ea:g! . 3X . 7?** c £ 

[*24 ol .*4-6. *70 14] 

*70 16. h :Rea->/3.= . D‘~RCa sj i‘A.D*RC/3vi‘A [*37*78*781 . *70*12] 

*70 17. h :: A « a . 3 R c a —»/9 . = : (y>. 72‘y € a : g ! . 3X . c # 

Dem. 

I-. *51*2 . *22-62 .Dh:Hp.D.a-av((A (1) 

Ml). *70*13.3 

K :: Hp . 3 R c a —»/9 . s : (y) . /i«y c a : (x). R‘xc /9 ^ t‘A (2) 

K . *51-236 .3 1-:. R*xe (3 \j i*A . = : R‘xt/3 . v . R*x = A : 

[*24-51. *4-6] ssaJ/^.D.S^e/S (3) 

H . (2) . (3) .31-. Prop 

*70171. Hs: A«/9.3 :. J* . a-*£. = : g 1^‘y . D„ . fl’*y«o : (®).S'ae/S 

[Proof as in *7017] 

*70 18. h :: A t a . A e 0 . D :. R ( a 0. = : (y) . c a : (x) . *R‘x 6 0 
[Proof as in *7017] 

*70 2. Ka-»^ = (ou i‘A) ->/9 = a -> (£ v, i*A) = (a w i‘A) -*(/?« t‘A) 

Dem. 

1-. *22-58-62 . DH.(awi‘A)wt,A=aui‘A.(/3v;t‘A)u(‘A=^ut‘A (1) 

1-. *7012.(1). 3t-:Aea—»£. = . V C(ow i‘A) w t‘A . 7?“V C £ u t‘A . 

[*70-12] A)-*0. (2) 

[*7012.(1)] = .‘fl“VC(awt‘A)ui‘A.K»VC(^ut‘A)ut‘A. 

[*70’12] =.R€(asji‘A)-+(0sji‘A). (3) 

[*7012.(1)] = #7?«V Caut'A. /*“V C (£ w i‘A) v t‘A . 

[*7012] = . R e a—*(/3 u i*A) (4) 

h.(2).(3).(4).3KProp 
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*70 21. = i‘ A) = (a - e‘A) -> (£ - i‘A) 

Deni. 

h . * 5 1 222 . D H : A € a . D . a - r‘A = a : A ~ e /9 . D . 0 - I‘ A = £ (1) 

K *51 221 . Dh: A«a.D.(a- /‘A)w‘A=a: A e£. D . </3 - PA)= £ (2) 

h.(l).D 

H : A~€O.D.(a-i‘A)-»/3 = a-»/3.<a-i*A)->(£-i‘A)=a->(£-i‘A) (3) 

K (2). *70*2.3 

K : A c a . 3 . (a — f*A) —= a —► #3. (a — PA) —► (£ — PA) — a —►(/? — PA) (4) 

h . (3). (4). *4 83 . 3 

h .(a — i‘A)—>{3 = a—>j3 .(a — PA )—*(£ — PA) = a —* (/9 — PA) (5) 

Similarly h . a -> (£ - PA) - a . (a - /‘A) ->(/3 - /‘A) = (a - PA) (0) 

h . (5).((»). D K . Prop 

*7022. h.(3->a = 

Dent. 

1-. *37 *6. *31*13.3 

H :.g*Cnv“(a-*/9> 

1*7012] 

1*32*24 241] 

[*13*103] 

[*32*23*231.*10*35] 

f*31*33.*10*24] 

[*70*12] 

P‘(a—►/$» 

: (gi?). R € a —► &. Q = Cnv‘/f : 

:(g/?).rVC«wi‘A ./?“ V C^w PA . Q - Cnv‘/f: 

: (a K). (gs'Cnv'/^p'V Coo PA . 

<sg‘Cnv‘/?)“V Cfiyj PA . Cnv‘7? : 

: (g/?).(gs‘(?)“V Caw p A . 

(sg‘Q)“ V C £ w; i*A . <? - Cnv*R : 

V“V Caw PA . Q*‘V C £ PA : (g/?). Q - Cnv'rt : 

Q“V Caw PA . <?‘V C/9wi‘A: 

Qe/3—>a:. D1-. Prop 

*70 3. l-.aC7./3CS.D.a—*/9C7— 

Deni. 

(-. *701 . D h : Hp . R e a 0 . O .~R“Q‘R C a .*R“D‘R C0. aCy.0 C S. 

[*22'44] 0.~R,,a,RCy.R"D,RCS. 

[*701] O.Re y-*B (1) 

t- .(1). Exp. *1011-21 . D h. Prop 

*70 31. h . (a -* 0) n (7 -♦ S) = (a r. 7) -»(/9 a S) 

Dern. 
h . *701 . D I-: R e(a—> 0) n (7—»S). = . 

7?“CI‘fl C a . ~R"a‘R C -y. J?“D‘R C 0. R“D‘R C S . 

[*22-45] = . R"C1‘R Cany. *R“X>‘R C0nS. 
[*701] = .Re(any)-*(0nS):O h . Prop 
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*7032. 

Deni. 

b . *701 

| *3 ‘26 27 

[*22-65J 

[*701] 

*704. 

Deni. 

*7041. 

*7042. 

*7043. 

*70431. 

*7044 

*70441. 

*7045. 

*70451. 

*7046. 

K(a-»^)u(7-»5)C(au7)-»(^uS) 

. D b s. R €(a —> w (y —> 3). s : 

R“a*R C a .R“l)*R C (3 . V .R“a'R C y .*R“DlR C 5 : 

•48] D : R“d‘R C a . v . R“(I‘R C y : *R“D'R Cg.v .*R“D*R C 5 : 

D : R“(\‘R Cau7 .C /3 w 8 : 

D:fi<(a w7)->(/9w8):.Db. Prop 

b . a -* Cls = R (R“a*R C a) 

b . *701 . D b : R e a -> Cls . = .~R“a*R C a .*R“Y)<R C Cls . 

[*37*761] = . Ca:Db. Prop 

K . Cls -► 0 = ft (Ji“l)‘R C 0) 

b . a —► /3 = (a —► Cls) (Cls —► /3) 

b e a —* Cls . s s y e Q*R . . 72‘y e a 

b : /e c a —► Cls . = . J«‘V Caw t'A 

b : /e e Cls /9 . = ./*“ V C £ w i‘A 

b : c a —► Cls . = . (y) . 7<4y caw PA 

b : R 6 Cls-> £.3 . <*) ./*‘xc£ w i‘A 

b 72 € a—>Cls . = : (y) : 7£‘y € a . v . 7£4y = A 

[Proof as in *70 4] 

[*70-4-41] 

[As in *7011] 

[As in *7011] 

[As in *7012] 

[As in *7012] 

[As in *7013] 

[As in *7013] 

[As in *7014] 

*70 461. b A e Cls —» £ • b : (a?) : R*x «£. v . R*x — A [As in *70 14] 

*70 47. b:. «ea-*Cls.2:a!J*‘y.D,./*‘yea [As in *70 1.5] 

*70 471. b :.ReC\s->/3.= ! %x . Dx.*R‘xe0 l As in *7015] 

*70 48. b : R c a -* Cls. s . D‘7?Caw i‘A [As in *7016] 

*70 481. b:/eeCls-*/9. = .D<4Sc/9wt‘A [As in *7016] 

*70 5. b . Cls -* a = Cnv“(a -* Cls) . a -► Cls = Cnv“(Cls -* a) [*70 22] 

*70 51. b s. £ v« a . « v e a w i‘A : D : .R, S e a-»Cls. D . R A S <? a->Cls 

Dein. 

b.*323.D b Hp . D : R4ye a . S4y ca . D . {sg‘(R A &))4y€ a w t‘A (1) 
b . *32-3 . *51 15 . *24-34 . D 

b : R‘y € a . 54y e i‘A . D . {sg‘(7* nS)]'y = A. 

D. {sg‘(72 *S)}‘t/ea\j i‘A (2) [*51-236] 
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I".(1).(2).*4*40 h i.HpOs/Pyca.S'ycavpAO. [sg<(Rf\S)\‘t/€a\Ji‘A (3) 

I-. *32 3 . *51 15 . *24 34 . *51*236 . D 

h : . D . {sg‘(/2 A S)]‘y eow i(\ (4) 

h . (3). (4). *4*4 . R*y, S*y ea w i‘A . D . (sg‘(/? A 5)}*^ ea u i* A : 

[*10 1121*27.*70*45] D : R, Sea—► Cls O.(y). jsg‘(7? A e a w t‘A . 

| *70*45.*32*23] D. R A 5 e a —* Cls :0 h . Prop 

*70 52. I-f. tj e 0. D,.,. £ a 17 e 0 ^ i‘A : D: rt.Se Cls->£. D. 2? A SeCls-*£ 

[Proof as in *70*51] 

*70 53. h :• £, 17 « a Of., • £ a ip ca v f*A : £. ip c /9 Of,, • £ a ip e/9 v PA : D : 

R,Se a-+ 0 ,D . R r* 8 c a—> 0 
Detn. 

h . *70*5-31 Oh:. HpO: /?. 5«a-*Cls. i?, 6* € Cls-► £ O . 

/e A.Sea->Cls. /e a5€CIs->/3 (1) 

h .(1).*70*42 Oh. Prop 

*70 54. h : d'R a CPS c= A . Rt S c a -> Cls O. R v S c a -» Cls 

Dcm. 

h . *24-15 . *22-33 . D 

h CP/* a (PS = A O : <y): ~ |y e (Prt . y c CPS}: 

[*33*41 ] 3 ! (y) s ~ la ! • a ! 5‘yi : 

[*4-51 .*24*51] D : (y): 7*‘y - A . v . S'y - A : 

[*24-36] D : (y): 7?y w~S‘y =~S‘y . v .li'y v&y = li*y (1) 

I-. *70 45 . D 

h R.Sea —*CU. D « (y). R‘y « a w PA : (y). S‘y € a sj i* A (2) 

h .(1).(2)0 h HpO :(y). R'yvS'yeav PA : 

[*32*32] D : (»/) . [sg‘(R o S))‘y e a v PA : 

[*70*45] D z RwSca—* Cls :OK Prop 

*70 65. h : D‘ ft n D‘S = A . R, S € Cls -> 0 O . ft c; S c Cls —> £ 

[Proof as in *70*54] 

*70 56. h : D‘ft n D‘S = A . CP ft a CPS = A. R.Sea-* 0.0 • Rv Sea-*0 

[*70*54*55*42] 

*70 57. h : C‘ft n C‘S = A . R,S € a—+ 0.0 . Rw S e a—+ 0 

Dem. 
h . *33*161 Oh. D‘ft n D‘S C C‘ft a C‘S. CPft a CPS C C‘ft a C‘S. 

[*24*13] D h : C‘ft aC‘S= A O. D‘ftaD‘S- A . (Pi* n CPS = A 

h .(1). *70*56 Oh. Prop 

(1) 
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*70 6. h : S e a —> CIs .K‘“oCow t‘A . D . R («S'e a —* Cls 

Dem. 

V . *37-31. D I-. (sg‘(.K, S))“V = («< jl?)“ V 

[*37-33] = R<*W‘V (1) 

h . (1) . *70 44 . D h : 5€ a —► Cls . D . {sg‘(tf | S)|“V C ^ t‘A) *2) 

h . *37-22 . D H . 7*«“(a v t<A)- /*«“a v, R(“i*A 

[*53-31] = RS'avi'RSA 

[(*37-04).*37*11*29] = «“‘a ^ l*A (3) 

h . (3) . *22-60 . D h : Cavt'A.D. i*«“(a u e«A) Cou i* A ^ t‘ A . 

[*22-56] D.^awt^Caut'A (4) 

H . (2) . (4). D h: Hp.D. (sg^/e 1S)}“ V Caw'A. 

[*70 44] D . R | Se a -► CIs : D h . Prop 

*70 61. h : ie e Cls C £ v, e‘A . D . R j S * Cls —» £ [As in *70 6] 

*70 62. f- : R e a -> Cls . D . R f 7 € a -> Cls 

Dem. 

V . *35-64. Transp . D 1-: y ~ € 7. D . y ~ f C1\R f* 7). 

[*33*41 .*24 51] D . {s%\R [ 7))‘y = A . 

[*51-236] D . (sg‘(.ft r 7)l‘y e a v, i‘A (1) 

H . *35-101 . *4 73.3 H y €7 . D : ar(/if*7)y . =x . ;r/ty : 

[*20*15.*3213'23] D : {sg‘(rt f^J'y -l?‘y (2) 

H. *70*45. D I- : Hp . D . R‘y € a w i‘A (3) 

h.(2).(3). D 1- Hp . D:yey.D. |sg‘(72 f* 7»‘y c a u t‘A (4) 

I- . (1) . (4) . *4*83 . D h : Hp. D . {sg‘(/J |* 7»‘y € a v <‘A (5) 

• (5). *1011-21 . *70-45 . D H . Prop 

*70 63. h : /e * Cls -> 0 . D . 5 ] R * Cls -♦ £ [As in *70 02] 



*71. ONE-MANY, MANY-ONE, AND ONE-ONE RELATIONS 

Summary o f *71. 

In this number we shall lx- concerned with the more elementary properties 

of one-many, many-one, and one-one relations. These properties are very 

numerous and very important. The properties of many-one relations (i.e. of 

relations belonging to the class CIs —> I) result from those of one-many rela¬ 

tions by means of *70 >. whence it follows that many-one relations are the 

converses of one-many relations. It is thus only necessary to interchange 

R and /J. D and Cl, R and li in order to obtain a property of a many-one 

relation from a property of a one-many relation. Or we may repeat the 

various steps of any proof, making the above interchanges at. every step, and 

tin- analogous proposition will result. For this reason, in what follows, we 

shall omit all proofs of properties of many-one relations, confining ourselves to 

proving the analogous properties of one-many relations. 

In virtue of *70 42, one-one relations (i.e. relations belonging to the class 

1 -> 1) are the relations which are both one-many and many-one; hence their 

properties result from combining the properties of oue-inauy and many-one 

relations. We shall omit the proofs when they consist merely in such 

combinations. 

A one-many relation gives rise* to a descriptive function which is existent 

whenever its argument belongs to the converse domain of the relation. That 

is. if li ( 1 —► CIs, we have E ! R*y whenever y « G‘7f. Conversely, if a descrip- 

tive function IV y exists for the argument y, then li is one-many so far as that 

argument is concerned, i.e. li*y € 1. Thus we find 

/fel->Cls.= .E!!/f“(I‘/e. 

The descriptive function R*y derived from a one-many relation R has thus 

a definite value whenever yeCl‘77, and not otherwise. Thus the class of 

arguments for which such a function exists is the converse domain of the 

relation which gives rise to the function, i.e. 

7? c 1 —* CIs. D . # (E ! R*y\ = G‘72, 

and the converse implication also holds. 

It often happens that a relation which is not in general one-many becomes 

so when its domain, converse domain, or field is subjected to some limitation. 

For example, let R be the relation of parent to child, a the class of males, and 

/3 the class of females. Then R is not one-many, but a R and £ 1 R are one- 

many, and in fact (a 1 R)*y = the father of y, (£ 1 R)(y = the mother of y. We 

shall often have occasion to deal with relations obtained by limitations imposed 

on D or G; thus a(D \ X) R. = . R belongs to the class \ and has a for its 
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domain. The class X may be so constituted that onty one relation R fulfils 

this condition; in that case. DfXeCls —* 1. Since D e 1 —> Cls, wo find 

D f* X 6 Cls—» 1 . = . D f X € 1 —► 1. This typo of condition, D f* X e 1—>1 or 

Cl T X e 1 —► 1 or Cf*Xt 1 —► 1, is one which frequently occurs in subsequent 

work. Another condition which often occurs is Ft* ^ € Cls —1► 1. When this 

condition is realized, a term x which belongs to the field of one relation of the 

class X does not belong to the field of any other relation of this class, i.e. the 

fields of relations of this class are mutually exclusive. 

For purposes of realizing imaginatively the properties of one-many 

relations, it is often convenient to picture their structure as in the accom¬ 

panying figure. Here xty, st ... form the domain of R, and all the points 

in the oval marked R*x are such that x has the relation R to each of them, 

with similar conditions for y and z. What characterizes R as a 1 —► Cls 

is the absence of overlapping in the ovals. For if R*x and R*y had a point 

in common, this would be a relatum both to x and y, and both x and y 
would be referents to it; whereas in a 1 —> Cls, no term has more than one 

referent. 

The above figure illustrates a very important property of one-many rela¬ 

tions, namely 

R e 1 Cls . = . R | R = I\iyR. 
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In the above figure, /[* is the relation of identity confined to x,y, z,.... 

If R were not a 1 —* Cls, we could sometimes go from x to some term of 
4— 4— w 

R'xr* R‘y by the relation R, and thence back to y by the relation R. But 

when R € 1 —♦Cls, R R must bring us back to the point from which we 

started. 

When R € 1 —* 1, each of the ovals R*x% R'y, R'z, ... in the above figure 
4— v/ 

shrinks to a single point, so that R*x = i* R'x. Thus when R is given as a 

I—>Cls, it will be a 1 —♦ 1 if R'y = R'z . - y = z. This proposition is 

constantly used, and so is the consequence that R[ fi is a 1 —> 1 if 

//, z eft. R‘y = R'z . D,/t.. y = z. (These propositions arc *71'54*55 below.) 

The hypothesis R « 1 —♦Cls is equivalent to the hypothesis 

xRz . yRz . Dx.y.,. x = y 

(ef. *7IT7, below), and the hypothesis eCls—► 1 is etpiivalent to 

rRy .xRz y = z. 

These arc for many purposes the most convenient hypotheses to use. 

The most useful propositions in the present number arc the following. 

(NVe omit here propositions concerning Cls—*1 or 1 —♦ 1 which are mere 

analogues of pro|>ositions concerning 1 —♦ Cls.) 

*7116. I- : R € 1 —♦ Cls . = . K !! R"U'R 

This gives the connection of one-many relations with descriptive functions. 

We have also 

*71163. h s. R e 1 -* Cls. s : y «<!•/* . s,. E! R'y 

For many of the constant relations defined from time to time, such as Cnv 

or 1). the following proposition is useful: 

*71166. h : (y) • E! R'y. D . /( e 1 -* Cls 

*7117. I-R € 1 -* Cls. = : xRz . yRz . -x = y 

This might have been taken as the definition of one-many relations, if we 

had not wished to derive them from the more general notion of a—>@. In 

proving that a relation is one-many, *7IT7 is more often employed than any 

other proposition. 

*7122. h : R e 1 -* Cls . 5 G R . D . S e 1 -♦ Cls 

*71 25. I-. R, Se 1 -► Cls. D . R | Se 1 —♦ Cls 

*7136. H i? € 1 —♦ Cls .D :x = R'y. = - xRy 

*71 381. h : R e Cls -♦ 1 . D . R"(a - £) = R"a - R"0 

(This proposition is more useful than the corresponding property of 

I Cls.) 
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*7155. h :: R e 1 —► Cls . D R f* /3el —* 1 . = : y, se/3 .R*y = Rlz . D„>; . y = z 

This proposition is constantly used. For example, putting Cl tor R, it 

gives 
V :. Cl \ 0 € 1 1 . = : P, Q e 0 . <3‘P = CFQ . D,. Q. P = Q. 

Most of the relations used to establish correlations in arithmetic are 

obtained from a one-many relation, such as Cl, by imposing some limitation 
on the converse domain which makes the relation one-one. 

*71571. h y e /9. D* . E ! R‘y z = ,R[fiel—> Cls . /3 C G‘R 

Here "y e /9 . Dv . E ! R*y " is E !! R“/3, which has already played a large 

part as a hypothesis, e.g. in *37 6 ft'. 

*717. h Qe 1 —> Cls . D : xP Qz. = .xP(Q‘z) 

Thus for example we shall have x(P Cnv) R . = . xP(Cnv‘R). 

*7101. 

*7102. 

*71 03. 

*7104. 

*711. 

i -»cis = it (*R"ci‘R c 1) [*70+] 

Cls -> 1 - St (R"D‘R C 1) [*70 41] 

1-»1 =R(R“Cl*RC 1 .R“D‘RC1) 1*20 2. (*70 01)] 

1 _>1 = (1 —» Cls) r\ (Cls—* 1) [*70-42] 

Re 1 Cls . = .R“<PR C 1 [*20-33 .*71 01] 

Re Cls -> 1 . = . r““D‘R C 1 [*20 33 . *71 02] 

R«i -*i.m . R“ci‘R c i. R“D‘Rc 1 1*20-33. *7103] 

R e 1 1 . = . R e 1 -> Cls . R e Cls 1 [*22 33 . *71 04] 

Re 1 Cls . = . R“V Clut'A [*70 44] 

Re Cls -> 1 . ■ . *R“V Clvt'A [*70441] 

Re 1 -► 1.9 ."R“V Clut'A . R“V Clv(‘A [*7012] 

R e 1 —> Cls . = . (y) . R*y flwt'A [*7045] 

R e Cls —>1. = . (x). R‘xe 1 w i‘A [*70*451] 

. R« 1 —*1 . =: (y) .“r*y e 1 u i‘A : (x).*R‘xe 1 ^ i‘A [*70 13] 

. R e 1 —► Cls . = : (y) : R‘y e 1 . v . R‘y = A [*70 40] 

R e Cls —► 1 . = : (x) : R*x e 1 . v = A [*70 461] 

: R e 1 —> 1 . = :. (y) : R‘y e 1 . v . R*y = A :. (x) : R*xe 1 . v . R‘x= A 

[*7014] 

R e 1 —* Cls. = : g ! R‘y. Dv . R‘y c 1 [*7047] 

:. ReCls—» 1 . = : a ! r"‘x. Dx . R*x e 1 [*70 471 ] 

R e 1 —► Cls . = . R“CI‘R C 1 

*71101. h : R e Cls 1 . = . R“D‘R C 1 

*71102. 

*71103. 

*7111. 

*71111. 

*71112. 

*7112. 

*71121. 

*71122. 

*7113. 

*71131. 

*71132 

*7114. 

*71141. 
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*71142. b:. Re\ -*1 . = :3!/?‘y.D¥.7?‘y€l : 3 ! iT‘.r. Dz .*R*xe 1 [*7015] 

*7115. b : R € 1 -> CIs . = . I)‘7?C 1 u i*\ [*7048] 

*71151. b : 2?eCls-» 1 . = . D‘/? C 1 ^ i*A [*70481] 

*71152. b : Re 1 -* 1 . = . D‘7?C 1 we«A.DfJ7C 1 ui‘A [*7016] 

*7116. b : 7f € 1 —> CIs. = . E!! R**d*R 

Dem. 
b . *37702 . *7 l-l . D 

b Re 1 —♦ CIs. = :yeCl‘22 . D„. 7?‘y « 1 : 

[*53-3] b : y e G‘/£ . D„. E! 7?‘y : 

[*37 104] = : E !! R“(l‘R :. D b . Prop 

'Phis proposition is very important ; it exhibits the connection of descriptive 

functions with one-many relations. 

*71161. b : It e CIs -> 1 . = . E !! 11**1)*R 

*71162. I-: R 11 1 . = . E!! R"Q*R. E !! R**D*R 

*71163. V:.R* 1 -> CIs. = : y c d*R . =„ . E! R'y 

Dem. 

I- . *33-43 . D b : E ! R*y . D . y e Cl*R : 

[*473] D b :• y • D . E! R*y : = :y6CI‘/i. = .E! R*y 

[*1011 *271 .*37 104] D bE !! /{“CP/l Cl-/? . =y. E! R'y (1) 

b. (1). *7110. DK Prop 

*71164. b R c CIs —» 1 . s :*e l)‘/i . =, . E ! R‘x 

*71165. I-R € 1 -> 1 . = : y c d*R . =„ . E ! R'y : .r f D*R . . E ! R*x 

*71166. b : (y). E ! Rly. D . 2? c 1 —► CIs 

Dem. 
b . *2 02 . *10 1 . Dh. Hp. D :y eCI‘72 . D . E ! 7*‘y 

[*1011-21.*37104] D H : Hp . D • E!! R**d*R. 
[*71*16] D . R e 1 —* CIs : D b . Prop 

*71167. b : (or). E ! 7i*x.D.Re CIs —* 1 

*71168. I- s. (y) . E! R‘y: (*). E ! R‘x: D . 72 c 1 —► 1 

*7117. b 7? e 1 -> CIs. = : xRz . yRz . . * = y 

This proposition is constantly used in the sequel. 

Dem. 
—> —> 

b.*524. D b R*ze 1 ^ c‘A . = : x,y e R*z ,3XtV . x = y: 

[*32-18] = = *R* • 'JR* • =>x.y • * = y :• 

[*1011’271.*11’21] Dh. (2). Rlz flv i*A . = : xRz . yifc .DXtVil.x = y (1) 

b.(l). *7112. D b . Prop 
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*71171. :. R e Cls —> 1 . = : xRy . xRz . Dx. ,/>z . y = z 

*71172. Y :. Re 1 —► 1 . = zxRz .yRz . ~5x.y,e »x = y : xRy .xRz . DXi„iZ . y = z 

*7118. Y R e 1 —> Cls . = : g ! R*x r\ R*y. DX J/ .x — y 

Deni. 

h. *32181 .*22-33. D 

Y :. g! R‘x ** R‘y • • x = y • = ' (3*) • zcRz • yRz . Dx>y . X = y: 

[*10 23] = : xRz . yRz . 3x,y>,. x — y : 

[*71-17] = : R e 1 —> Cls z.OY. Prop 

*71181. Y :. R e Cls -* 1 . = : 3 ! R‘y r\ R*z . Z>y>, . y = z 

*71182. H :: R e 1—>1 . = g ! ‘a- r* R*y . v . g ! R‘.c n R*y : Dx y . x = y 

*7119. 1- : 7* 6 1 -* Cls . s . i* | R « / f D*R 

Dem. 

Y . *341 • *31-11. ^Y . x(R\R)y .s ,(^z) .xRz .yRz (1) 

Y . *501. *35101 .OY ,x(T[ \}*R)y . = .x=*y.ye D*R (2) 

l-.(l).(2).*21-43.D 

H :: 7i | R - / f* D‘/2 . 3 :. (g*) . xRz . . s zx = y .ye D‘R : 

[*33*13.*10*35] sx>y : (3*) • x = y . yRz z 

[*13104] s,: (3*) .x~y. xRz . yRz : 

[*10 35] =x.y : * — y : (3*) . xRz . yRz z. 

[*4 71] = :.(g*).* Rz.yRz . DXiV.x = yz. 

[*10*23] = xRz . yRz . Dx>y#x . x *» y z. 

[*7117] = R € 1 -* Cls :: D Y . Prop 

*71191. H:/e«Cls->l. = .«l^ = /ra<72 

*71192. y 1 Rci-ti. = .ftj« = /f*D‘/e./e|/e = /fa<R 

*712. H . Cls —► 1 = Cnv“(l -► Cls) . 

1 -» Cls = Cnv‘*(Cls—* 1). 1 -> 1 = Cnv“(l 1) [*70 22] 

*7121. 1-: i2 c 1 —♦ Cls . = . Re Cls —* 1 

Dem. 

1-. *37-62 . *31 13 . D Y z R e 1 -♦ Cls . D . Cnv'i* e Cnv“(l -» Cls) . 

[*3112.*7l-2] D . /£cCls —► 1 (1) 

Y . *37-62 . *3113 .DYzRe Cls -> 1 . D . Cnv‘i? e Cnv“(Cls 1) . 

[*31-33.*7l-2] D./*«l-»Cls (2) 

h.(l).(2).DH.Prop 
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*71'211. f- : i? e Cls 1 . = . i? e 1 -» Cls 

*71*212. Hi?el-*l. = .i?el-»l 

*71-22. b : i? e 1 -> Cls. S G li . 3 . S e 1 -* Cls 

Dem. 
H*231 .3 

h.SC/i.D: xSx. ySz . 3X. v.r . xRz . yRz (1) 

H *7117.3 

I-R e 1 —* Cls . 3 : xRz . yRz . 3ZtWt. • y (2) 

h.(l).(2).*U-37.3 

h:. Hp.D: a:Sr. yS*.3Zt •#=•/: 
[*7117] 3 : Se 1 —► Cls Dh. Prop 

*71-221. H i? e Cls —► 1 . S G i? . 3 . S e Cls —► 1 

*71-222. I-! R e 1 -* 1 .SG /?. 3. Sc 1 -► 1 

*71223. h : /e c 1 —> Cls . 3 . Rl‘i? C 1 -* Cls [*71-22 .*61*2] 

*71-224. h : A < Cls -» 1 • 3 • HI4 li C Cls -> 1 

*71-225. b : R e 1 -» 1 . 3 . Rl‘i? Cl->1 

•71-23. H J? e 1 —► Cls .D.WAStl-» Cls [*71-22 . *23 43] 

*71-231. Hi?e Cls->1.3.i?AScCls-> 1 

*71-232. b: i? e 1 -> 1.3 . R n Sc 1 -> 1 

*71*233. h : i?. .S’ e 1 -* Cls . 3 . A n S e 1 -> 1 

Dem. 

H *71 23.3 H Hp . 3 . i? A S e 1 -* Cls (1) 

K *71*21 . 3HHp.3. Setts-*1 . 

[•71-231] 3 . i? n S e Cls —* 1 (2) 

H (1).(2). *71103.3 H Prop 

*71234. Hi?,SeCls-*1.3.i?ASel->l 

*71236. H i? e 1 —► Cls . S e Cls —>1 .3.i?ASel—*1 

*7124. H i?, S c 1 —» Cls . G‘i? « G‘S*= A . 3 . i? c* Sc 1 —» Cls [*7054] 

*71*241. I- s R, S e Cls -* 1. D‘i? n D‘S = A.3.i?c/Se Cls-*1 [*7055] 

*71 242. b : R, S e 1 -* 1 . D‘i? n D‘S = A. d‘R n (I‘S = A . 3 . R o Se 1 -> 1 

[*70-56] 

*71243. Hi?, Sel—>1 . C*R r\ C*S = A.3.i?oSel—»1 [*7057] 

*71-244. H i?, S e 1 -* Cls . i? [* CPS G S. 3 . i? c; S e 1 -* Cls 

Dem. 

V . *23-34 . *4-4.3 

t-:.x(RwS)z.y(RwS)z. = :xRz.yRz.v.xRz.ySz.v.xSz»yRz.v .xSz.ySz (1) 
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I-. *71 "17 . D h R, S e 1 —>CIs . D : xllz . yRz . D . x = y : xSz . ySz. D. a:= y (2) 

. *3314 . *4 7 . D h : a:/?s . ySj . D . xllz . ySfc . 2 e Cl‘S. 

[*35101] D.x(Rt<I‘S)z.ySz (3) 

H - (3) . D h i*r CI‘S GS.D: . ySz . D . xSz . (4) 

D hRfa'SGS. 3 l.a-Si.ySt (.’,) 

h . (2) . (4) . (5) . D h Hp . D : ar/Ss . ySs . D . x — y : aS's . . D . .t = y (6) 

I" - (1) • (2) - (6). *4-77 . D H Hp . D : .r (R o S) z. y (R v S)z . D.x~y (7) 

K (7). *1011-21 . *7117 . D h . Prop 

*71 245. h : 72, & e CIs—► 1 . (D‘S) R G S. O . R w S e CIs —► 1 

*7125. hs/e.Scl-^Cls.D. «|5el->Cls 

Deni. 

h - *71-17 . Dh:. Hp . D : yjS». *S-e. D . y ™ x : 

[Fact] D : a/ty . ySa;. . J&x .O.y = z.n Ry . vRz . 

[* 13-13] D.uRy.vRy. 

[*71-17] D.a=v (1) 

h .(1). *1111-3-54. D 

h :: Hp . D (gy) . a72y . ySx : (g*) . vRz . zSx O.h-ii:. 

[*341] D :.u v(.R 5)x.D.m-u (2) 

h. (2). *7117. DH. Prop 

*71 251. h : ii, S c CIs -> 1 . D . R | S c CIs -* 1 

*71 252. b:RtS*l-+l .O.R\Sel-+l 

*71 "25 may also be deduced from *70 6, as follows: 

Alternative Deni, of *71-25. 

h . *53 301 . *71 12 . D b s * c 1 -♦ CIs . D . R“i*x elut‘A: 
[*521] D 1-: lit 1 -*Cls.ae 1 . D./*“«*« 1 w e‘A : 

[*37-6111103] DhiAcl-4 CIs . D . R*“ 1 Clu«‘A (1) 
h . (1) . *70 6 . D H . Prop 

Similarly *71251 may be deduced from *70 61. 

*71 26. h : R e 1 -* CIs. D . R f* 7 * 1 CIs [*70 62] 

*71 261. I-: R e CIs -> 1 . D . £ ] R c CIs —► 1 [*70 63] 

*7127. h : R e 1 -► CIs . D . £ ] « c 1 -» CIs [*35 44 . *71 22] 

*71-271. b:«€Cls-^l . D . « p 7 « CIs-* 1 

*71 28. b:J2el->Cls.D./91/J[*7«l-»Cls [*35442 . *71 22] 

*71-281. b:ie€Cl8-*l.D./9'|/e|‘7cCls-»l 

*7129. H:/26l->l.D.^'|i2,Rf‘7,iS']22f7el-->i 

*71 31. \-zRel-+C\s.yc d‘R . D . (R‘y) i*y [*3032 . *71’163] 
R 4c W I 28 
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*71*311. bzRe Cls-*1 .x€D‘R .0 .xR(frx) 

*71312. bzRe l-»l.xc D‘7* . y € d‘7* . D . xR(frx). (fry) Ry 

*71 32. h :: /dc 1 —^Cls.yeCl*/?. 0:.\lr(R‘y).= :(’gLx).xRy.yfrx: = :xRy.Dz.ylrx 

[*30*33. *71*163] 

*71321. I-:: R eCIs —> 1. x € D*R. D:. yj/(72‘x). =: (gy). xRy. yfry: =: xRy. Dv. yfry 

*71 33. h ::/?cl —*Cls. D :.\fr(R‘y): = z(^x).xRy. yjrxz = :yeQ‘7fzxRy.^z.^x 

Deni. 

h . *71*32 . *5*32 . D 

h :: Hp. D y € (1*7? . \fr (Rly). = : y « G‘7£ : (g.r). .r7£y . yfrx z 

= : y e C\fR z xRy. Dr . ^r.r (1) 

h . *14 21 . D I- : >/r (7*‘y). D . E ! 7?‘y . 

[*33*43] D.ycWRz 

[*4 71] Dh.ye CI‘7? . (7?‘y). = . ^ (fry) (2) 

h . *10*5 . Df*: (g.r). .vRy . >/r.r. D . (^ar) . a:7(y . 

[*33*131] D.ycd‘7*: 

[*4*71] DK y c(l*R z(T[x) .xRy .yjrxz = . (gar).a:7fy . yjrx (3) 

h . (1) . (2) . (3) .DK Prop 

*71*331. CIs —► 1 . D yfr(R‘x). = : (gy) . xRy. yfry z = : 

a: c D‘72 : a*7£y . . \fry 

*71 332. h :• A e 1 —» CIs . D : R*y c a . = . g ! 7*‘y a a . = . y c G‘7? . R*y C a 

[—w] 
v 4— 4— 

*71333. h:./?€ CIs —» 1 • D : 7?‘a: e a. = . g ! 72‘a: na.s.ifD'K. 7?‘a: C a 

*71*34. I-: R e 1 -> CIs. R - S. y e G‘7? . 3.72‘y = fry [*30*36 . *71*163] 

*71341. h: R* CIs-* 1 . R = S .x€D‘R .0 . R‘x=>S‘x 

*7136. zz R el->C\s.O z.ycd'RyjCl'S.Oy. fry = fry i = .R=S 

Dem. 
H . *21*18 . Dh:. R = S.Ozyc d‘R w G‘S. = . y € G‘7* v G‘7? . 

[*22*56] ' =.yed‘R (1) 
. (1). *71 34 . D h z: Hp . R = S. D : y € d‘R w G'S. . fry = S‘y (2) 

I-. (2) . *33 45 .DK Prop 

*71 361. I-:: R € CIs -» 1 . D a? € D‘7? v D‘S. D,. .K'a: = S‘xz = .R = S 

*71*352. l-::/2el-*l . D y €G‘« u G'S. Dv. 7£‘y = £‘y : = : 7* = £: . 

= zx€D*RyjI)(S.Dx.frx = frx 
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*7136. 1- R e 1 —> Cls . D : sc = 72*y . = . xRy 

Dem. 

h. *30-4. *71 163. D 

h Hp . y e G‘72 . D : x = R‘y . = . xRy 

V . *71-163 . Transp . D 
(1) 

h Hp . y ~ «? (3*72 . D . E ! 72‘y . 

[*14 21.Transp] D . ^ (a: = 72‘y) (2) 

h . *33*14 . Transp . D h : y ^ e Cl*72 . D . ~ (.r72y) 

h. (2). (3). *5-21 . D 
(3) 

K Hp . y ~ e G*72. D : ar =» 72*y. = . .r72y 

h.(l).(4).*4 83.DH. Prop 
(4) 

*71361. h 72 6 Cls —> 1 . D : y = 72*a;. = . xRy 

*71362. h :. 72 € 1 —> 1 . D : a: = 72*y. = . xRy . = . y = 72*x 

*7137. H 72 e 1 —► Cls . D : y e 72“a. h . 72*y « a 

Dem. 

1-. *71-33 . D h Hp . D : 72*y c a . s . (go:) . xRy . are a . 

[*37 105] a . y * 72“* Dh. Prop 

*71371. Re Cls —> 1 . D : xe 72“a . s . R'xea 

*7138. h : 72 <? 1 —► Cls . D . 72**(« - /3) = £**a - 72“/3 

Dem. 

h . *71-37 . D h Hp . D : y e 72"(a - 0) . 3 . 72*y < a - /3 . 

[*22*32.*14 21] 3 . R*y € a . ~(R‘y € y3). 

[*7137] = .y«72“a.~(y«72“£). 

[*22-32] ■ . y € 72“a - 72“>9 :.Dh. Prop 

*71381. H : 72 c Cls —♦ 1 . D . 72*‘(a - £) = 72**a - 72**/3 

*714. H : 72 « 1 —¥ DU. .. , a ~ r-.oT.i 1 .ool 

*71401. I-: R < Cls -» 1.3 . H“8 = p [(ga:). * . 0. y = «<*| 

*7141. h : 72 e 1 -» Cls . D . D‘72 = 5b {(gy) . a: - 72*y} [*3311 . *71 36] 

*71411. h : 72 e Cls —► 1 . D . 0*72 - £ {(gx) . y = 72**} 

*7142. H :: 72 e 1 —» Cls . £ C (3*72 . D :. 72“/9 Ca.ssye/9.3.,. R*y e a 

[*37-61 .*71-16] 

*71421. 1-:: 72 e Cls —♦ 1 . a C D‘72 . D R“aC/3. = : x e a .Dx. Ii‘x c/3 

*7143. 1- : 72 e 1 —» Cls .yean G*72 . D. 72*ye72**a [*37 62 . *71 16] 

*71431. U : 72 e Cls —* 1 . x e a n D*72 . D . R‘x c R**a 

28—2 
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*71*44. h :: Re 1 —» Cls . a C G‘7? . D z.xe R“a . Dx . yfrx : = : y ea . 3tf.^r(J2‘y) 

(*37*63. *71 16] 

*71441. h:: 7feCls->l .oCD‘/^. D y e R“a.D„ . yfry : = : x e a . Dz . yjr (R‘x) 

*71*45. I- R e 1 —* Cls . D : (gar). x c R*‘a . \frx. = . (gy). y € a . (R‘y) 

IJeni. 

h. *37*64. *71*16. D 

h Hp . D : (gar).arc R‘*(a n Q*R) . >/r.r. = . (gy) .yean (I‘/f . >jr(R*y) (1) 

h. *37*26. Dh.7*“(an<I‘7?)=7(“a (2) 

h . *1+ 21 . D H : y e a . >/r (7f‘y). D . E ! 7£‘y . 

[*33*43] D.ycG'Tf: 

[*4*71 .*22 33] D h : y c a . ^ (7f‘y). = . y c a a d'R. ^ (7*‘y): 

[*10 11*281] D H : (gy) .yea. ^(Wy). s . (gy) .yean d‘/e . yfr (R‘y) (3) 

h . (I ).(2).(3). D h. Prop 

*71 451. h R c Cls —* 1 . I> : (gy). y c 7?“a . yfry. = . (gar). ar ta.f (7f‘x) 

*71*46. I- : 7f c 1 —> Cls . a C 7?“£ . D . a = R“(R“a n £) 

Deni. 

h . *37*26 . D h : 7f“/9 = . «“(^‘«aj8) = R“(R“aK/3rsCl‘R) (1) 

I-. *37*65. *71*16 . D 

I-: /( c 1 -* Cls . a C 7f“(/9 n G‘7f). D . a - R“(R“a n £ a G‘7f) (2) 

I- . (1). (2). D h . Prop 

*71*461. H : 7? € Cls -> 1.0 C 7f“a . D . £ = R“(R“0 * a) 

*71*47. H s. /if e 1 —* Cls . D : a C 7f“/d . = . (g7). 7 C /? . a = 7f“7 

Dem. 

V .*71*46. *10-24. *22*43. Df-:. Hp.D :aC^.D.(a7)-7 C0.a-&‘y(l) 

h . *37*2 . *10 11*23 . Dh: (g7). 7 C £ . a = #‘7 • ^ • a C 7e“£ (2) 

h . (1). (2). D I-. Prop 

*71*471. I-:. R « Cls -» 1 . D : /3 C R‘“a. = . (g7) .7 C a . £ = £“7 

*71*48. H : 7f c 1 —* Cls . D . D‘7?« = CI'D'A 

Dem. 

I-. *37-24. *60-2. Dh.D‘i?,CCl*D‘fl (1) 

h . *37-25 . *71-47 . *60-2 .Dh: Hp. a« Cl‘D‘i«. D . (37) • 7 C <1*8. a = #“7 ■ 

[*10-5.*37-23] D.oeD'iJ,: 

[Exp.*1011-21] 0 h: Hp. D. Cl‘D‘8 C D‘R. (2) 

K(l).(2).3h. Prop 

*71-481. h: R € Cls -» 1. D . D‘(.R), = Cl‘d'8 

The following proposition is used in the theory of derivatives of a senes 

(*216-411). 
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*7149. b : 72c 1—►Cls.aCCl‘72. D. RtitCVa=0\iRlia. RittC\ ex‘a=Cl exiR*‘a 

Dem. 
b . *71-47 . *00 2 . D h Hp . D : 7 € C\‘R“a . = . (g/3). 0 C a . y = R“/3 . 

[*37 103] =.y€R‘“ Cl‘a (1) 

h . *37 43 . D I- Hp . £ c Cl ‘a . D : g ! £ . = . g ! 72“/S (2) 

h . (1) . (2) . D h . Prop 

*71491. h:72cCls—*1 .aCD*72. D.72“<CI<a = Cl<72<<a.72<“Cl ex‘«*CI ex‘R“a 

This proposition is used in the theory of derivatives of a series (*216 4) 

and in the theory of ordinal numbers (*251*11). 

*71*5. b R c 1 —» CIs . D : xRy . = . x — 1‘72‘y 

Dem. 

I-. *71-36 . *301 . D I- Hp . D : xRy . = . x = (jx) (xRy) . 

[*51*56.*32*13] a .« -c‘7z‘y D h . Prop 

*71 501. h 72 e CIs —> 1 . D : a:72y . = . y = i,Rtx 

*7151. h : 72 « 1 —► CIs . y e (3*72 . D . R‘y = 7‘72‘y 

Dem. 

h . *53 31 . *71*163 . D b s Hp. D . i‘/2*y-fl*y . 

[*51*51] D . 72‘y -7‘7?y :Db. Prop 

*71-511. h : 72 < CIs 1 . x e D*72 . D . R‘x = 7*32** 

*71-52. h : R e 1 -* CIs . D . R“a-'i“li“a 

Dem. 

-SKauS). 

- £ {(3^). (3 c~R“a.x = 7*0} 

= £ «a/3. y) . y c a . 0 = R‘y . * = i*0j 

H . *371 . DH. t“72“a 

[*51-51] 

[*37-7] 

[*1123.*13*195] = £ l(3y)-y «a .a: — i*Ji‘y\ 

I-. (1) . *71*5 . D b : Hp . D . {(gy) -yea- *72y} 

[*371] = 72“a : D h . Prop 

*71 621. H : 72 € CIs -» 1 . D . 72“a 

*71 63. h : 72 c 1 —► CIs . 72‘x = 72'‘y . D . * = y 

Dem. 

b . *14 21 . D h : Hp . D . E ! 72‘*. E ! 72'y . 

[*30-32] D . *72(.ft'*) . yR(ft'y) . 

[*1416] D . *72 (ft'y) . yR (ft'y) . 

[*71-17] D ,* = y : D H . Prop 

(1) 
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*71 531. h : 77 c CIs 1 . 77‘y = 77‘s . D . y = 2 

*71 532. I-R c 1 -» 1 . D : 77‘y = R'z. D .y = * : 1Vx-R'y. D .x = y 

*71 54. K :: 77 € 1 —♦ CIs . D 77 c 1 —> l . a : 77‘y = 77*2 . D(/iJ. y = z 

This proposition and the next (*71*55) are very often used. 

Deni. 

f- . *71*30 • D h :• Hp • D : (fl.r). xRy. xRz . =y>.. (^.r) . x = 77‘y . # = 77*2. 

|*U*205] =y>r. 77‘y = 77*2 (1) 

h . (1). D h :: H p . D 77‘y = Rlz . Dl#.,. y - 2 : = : (g.r). *7?y. *7?j . . y = z : 

[*10*23] a: xRy . xRz . Dx#r/>, • // = *: 

[*71171] a: 77 c CIs —> 1 (2) 

h . *71*103 . *4 73. D h Hp . D : 77 c CIs—> 1 . a . 77 c 1 —* 1 (3) 

h .(2).(3). D h . Prop 

*71 55. h :: 77 c 1 —»Cls. D 77[* &c 1 —> 1 . a : y, * c/9.77‘y = 77*2 . Dy,z. y «= 2 

Dem. 

I-. *71 *20. D I*:: Hp. D :. 77 f /9 c 1 —> CIs 

[*71*54] D:.7ir/9€l^l.-s(7?rWy-(«r«i*.^..Jf-*: 

[*35*7] a :y.xe/9.7?‘y = 77*2 . D,,., .y = :::DK Prop 

*71 56. h :. 77 c 1 —> 1 . y c 0*77 . D : 77‘y = 77*2 . s . y - x 

Dem. 
K*71*532. D h : Hp. 77‘y —77‘x. D .y — 2 (1) 

h . *71*105 . *30*37 .Dh Hp. y = 2. D . 77‘y = 77‘x (2) 

H . (1) . (2). D h . Prop 

*71 561. h :• 7?« 1 —* 1 .xc D‘77 . D : 77*.r = 77‘y. a . * = y 

*71 67. h 77‘y - 77*2 . a y.,. y = 2: a : 7? € 1 -» 1 : (y). E ! 77‘y 

Dem. 
K*10*l . D h:. 77‘y = 77*2 . ay>r. y = z zD : R*y — R*y . =y. y = y: 

[*13*15] i-.W-R'y^R'ir- 

[*14*28] D:(y).E!7?‘y (1) 

[*71*166] D: 77 cl-* CIs (2) 

H.(2).Dh:.Hp(2).D:77cl->Cls:77<y=77'x.DJ/ir.y = x: 

[*71*54] D:77cl-*1 (3) 

K (1). (3). *71*56. DK Prop 

*71 571. h :. y c /9. . E ! 77‘y: a . 77 \ /9 c 1 -* CIs. £ C 0*77 

Dem. 

K *71*16. Dh:.77r/3el->Cls.= :yca‘(77ry9).^.E!(77r/9)‘y: 

[*35-64 7] a : y e /9 n 0*77 . Dy. y c ^ . E ! 77‘y : 

[*22-33.*5-3] a : y c >9 « 0*77. Dy . E ! 77‘y (1) 
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*- .(1). *22-621 . D 

h f £ e 1 —* Cls . 0 C <1*11 . = z y e 0 n dlR . Df/. E ! ll‘i/ z 0 c\Q‘R = 0 : 

[*13193] = : y c 0 . - E ! R'y : 0 * (I‘7? = 0 (2) 

h . *33-43 .Dh.yf^.Dv.E! 7*‘y : D . /3 C d‘R . 

[*22-621] D. £*(1*72-1 (3) 

K (2). (3). *471 .DK Prop 

*71572. H i.ye&rs (1*72 . . E ! 72‘y : = . 72 f* /3 * 1 ->Cls 

[*71-571 .*35351 .*2243] 

*71-58. zz y, z c £ . D,JtZ : 72*y = 72‘* . = . y = 2 D . R f* £ € 1 1.0 C d‘R 

Dem. 
K . *101 . D H :: Hp . D y c 0 . Dy : 72‘y = -72‘y . » . y — y : 

[*1315.*14-28] Dy : E ! R*y :. 

[*71-571] D:.72f-/9el—> Cls . 0 C Q*7? (1) 

t- . *3-26 . Imp . *1111-32 . D 

h Hp . D : y, * e £. 72‘y = 72*$ . D(/i,. y = s : 

[*35 7] D : (ii r £)‘y - <72 [ £)*«. D.,.r . y = * : 

[*71-54.(1)] D:i*r/3€l->l (2) 

K(1).(2).DK Prop 

*71 59. h :: y, 2 e 0 . D,,., : 72*y - 72*«. - . y - *s.72|*£«l->l.£C C1‘R 

Dem. 

K . *71-56 . D H ::72r£el^l.D:.yCa‘(72r£)0:(72r£)‘y«<72r£)‘*.s.y=s:. 

[*35-64-7] Ds .y«£*a‘i2.D:y>*c£.72*y—72*«. = .y—* (1) 
h.(l). *22621 /2|*£«1->1 

[*4-73] D 

h. (2). *1111-3. Dh::J*r/9cl 

h. (3). *71-58. DK Prop 

y c 0 . D z y, z e 0. R*y = 72‘* . = . y — e :. 

y,z c 0 . D z R*y = 72** . ■ . y — * 

->1 .£C( 1*72.D:. 

y, * c £ . DVtl: R‘y = 72‘* . = . y = * 

(2) 

(3) 

The following proposition is used in the theory of selections (*80-91). 

*71 6. I- : 72 e 1 —* Cls . 3 • 72 — «*/* |(gy) . y e CI‘72 . P = (72*y) J, y) 
Dem. 

h. *41-11 .*13195. D 

|(ay).y«a‘fl.p = (*«y)iy)]i. = . 

(ay) • y * H‘72 . x {(/2‘y) i y} *. 

[*5513] = • (ay) • y € d‘/2 . a: = 72‘y . * = y . 
[*13195] = .ze d‘72 .x=Rtz 

h . *71 -36 . *33-43 . D h Hp . D : * e d‘72 .x = R‘z. = . 

H.(l).(2).Dh.Prop 
xRz 

(1) 
(2) 
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*71 61. h : T* 1 —> CIs. D . a a) = (2“T“a 

Fent. 

b . *37 103 07 111 .*32 12. D 

I-: /3f a fl). = . (gjr).xf QTn a . 0 = Q'T.r (1) 

b . *53-31 . *7116 . D h ; Hp .xe(l‘Tf% a . D . Q‘7*r (2) 

h . (1). (2). D h Hp. D : 0 c Q‘“r‘((I‘T«a). = . (•ax).x€(I‘Tna.f3=QtT‘.v. 

f*37 07.*71 16] = . 0€Q“T“(a<T« a). 

[*37-26] s . /9 <;-Q“T“aD H . Prop 

*71-611. h : 7*« CIs —► 1 . D. Q“ff“(D‘T«*)-mQ“T“* 

*71612. f-:7M -* CIs . D . r% a) =4Q“T“a 

*71 613. h : Te CIs -> 1 . D . Q"‘^“(D'r a a) - Q'ttTlta 

*71’613 is used in the theory of series (*206*6), and in the theory of 

‘•similarity of position ” (*272 131). 

*717. I-Q € 1 -> CIs. D: xP \ Qt. = . xP (Q‘z) 

Dem. 

H . *71 36 . D b Hp . Z> : yQg . = . y « Q'z : 

[Fact] D : xPy. yQj . = . xPy .y = Q‘z: 

[*10-281] 3 : (3J/). xPy.yQz. = . (a y)-*Py-!/-Q‘‘- 

[*341.*13195] D : */' | Qj . = . xP(Q'z) :.Dh. Prop 

*71701. 1-Q c CIs 1 . D : xQ Pi . = . (Q‘x) Pz 



*72. MISCELLANEOUS PROPOSITIONS CONCERNING 

ONE-MANY, MANY-ONE. AND ONE-ONE RELATIONS 

Summary of *72. 

In this number we shall prove various propositions involving 1 —►Cls, 

Cls—► 1, or 1 —> 1, but not embodying fundamental properties of these classes 

of relations. 

The present number begins with various propositions (*721—191) show¬ 

ing that various special relations are one-many or one-one. The most useful 

of these are 

*72182. I- lye 1 -> 1 

*72184. h.xl, 

We have next a set of propositions concerning lt‘S‘2 when It and S are 

one-many, or RtRiz when 11 is one-one, and kindred matters. The most 

useful of these is 

*72 241. h « e 1 -> 1 . D : y c <3‘/e . = . y = R‘R‘y 

We have next a set of propositions (*72 3—'341) concerning products and 

sums of classes of relations; of these the one most used is 

*72 32. h \ C 1 -> Cls s P, Q e X.. a ! il€R a d‘Q. D/.. Q. Q: D .i‘\< 1 -*Cls 

which is an extension of *71 24. 

We have next a set of propositions (*72*4—481) giving various relations 

of R**a and when Rt 1-> Cls, or of It“a and lV'fr when .ftcCls->l. 

The more useful propositions of this set are those that have the hypothesis 

ReC\s —► 1; these are occasionally useful in arithmetic. We have 

*72 401. V : R € Cls 1 . D . R“a * = R*\a ^ (3) 

*72 411. H : li € Cls —> 1 . a n /3 = A . D . R“a n R“(3 = A 

For example, the relation of son to father is many-one. Let a = Cabinet 

Ministers, & = fools; then assuming a r\ R = A, it will follow that the sons of 

Cabinet Ministers and the sons of (male) fools have no common member. 

If we make R the relation of son to parent (which is not many-one), it no 

longer follows that the sons of Cabinet Ministers and the sons of fools have 
no common member. 

We have 

*72 451. h : R e Cls -► 1 . D . Rt f* CPCVR e 1 -► 1 

The effect of this proposition is that if a and /3 are both contained in 

G'/i, and R“a = R“f3, then a = & (using Ri*a = R“a). 
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We next have a set of propositions concerned with the relations of 

lit and (/£)*, or, what comes to the same thing, with the circumstances under 

which a = . = . & = R“a and under which RtlRilz — a. We have 

*72 502. I-: R e 1 CIs. a C D*R . D . R“R“a = a 

Thus for example the fathers of the children of wise fathers are the class 

of wise fathers; but the fathers of the children of wise parents are not all 

wise, and the parents of the children of wise parents are not all wise—the 

first because "oC DtR’’ fails, the second because “Re 1 —>Cls" fails. 

We have also 

*72 52. h J? « 1 -» 1 . a C . £ C <I‘/*. D : a - R“&. = . £ - Iiua 

We have next a set of propositions (*7259—06) in which the relative 

product R R occurs if R e 1 —»Cls, or R R if Re CIs—* 1. The most useful 

propositions in this set arc* 

*72591. R-SfWR 

*72601. hs/ttCIs-tl.U'iSCCI'A.D.S,/! Ii = S 

*72 66. I-: S* C .S'. - S. = . (3 R). R e CIs -* 1 . S - R; li 

This is the "principle of abstraction.” It shows that every relation which 

has the formal properties of equality, i.e. which is transitive and symmetrical, 

is equal to the relative product of a many-one relation into its converse; i.e. 

whenever the relation S holds between .r and y, there is a term a such that 

xRa.yRz, where It is a many-one relation; and *72*64 shows that this term 

a may be taken to be S1*, which is equal to S‘y. This principle embodies 

a great part of the reasons for our definitions of the various kinds of numbers; 

in seeking these definitions, we always have, to begin with, some transitive 

symmetrical relation which we regard ns sameness of number; thus by *72 64, 

the desired properties of the numbers of the kind in question are secured by 

taking the number of an object to be the class of objects to which the said 

object has the transitive symmetrical relation in question. It is in this way 

that we are led to define cardinal numbers as classes of classes, and ordinal 

numbers as classes of relations. 

The remaining propositions of this number are of less importance, with 

the exception of 

*72 92. b-.Rcl-tCls.SGR.O.S-Rta'S 

This proposition shows that every relation contained in a one-many 

relation is obtainable by a limitation of the converse domain. Thus e.g. every 

relation contained in that of father to son can be specified by specifying the 

class of sons who are to be its converse domain; for then all the fathers of 

these sons must be included to provide referents. But if we take the relation 
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of parent and child, which is not one-many or many-one, a contained relation 

is not determinate even when both its domain and its converse domain are 

given; for the relation may relate some of the children in any one family' (o 

the father and some to the mother, and so long as all the children and both 

parents are each related to some one by the relation, the domain and converse 

domain remain unchanged by permutations within the family. 

*721. 

Dem. 

*7211. h 

Dem. 

K Acl 

h. *25105. D I-. ~{xKz. yAz) • 

[*2'21] D 1-: xAe . yKz . D . x 

j>llll.*7117J D V . A e 1 —► CIs 

Similarly h. Ac CIs —>1 

h • (1). (2). *71*103 . D H . Prop 

Cnvc1 —► 1 

J : 

(1) 
(2) 

CIs d) h . *3113 .*71166. D h . Cnv c 1 

H . (1) . *71-54 . *31-3212 . D h . Prop 

*7212. b.JHjie l -> CIs [*3212121 .*71 106] 

*72121. h . sg, gs c 1 —> 1 

Dem. 

1-.*32-22-221 .*71 106. D 1-. sg, gs e 1 -♦ CIs (1) 

h . (1) . *3214-15-21-211 . *71-54 . D h . Prop 

*72 13. h . D c 1 —> CIs [*3312 . *71 166] 

*72131. h . a c 1 —* CIs [*33 121 .*71 160] 

*72 132. h : C c 1 —► CIs [*33 122 . *71 166] 

*7214. h.x?,?a:«l-» CIs [*3812 . *71 • 166] 

This proposition applies to a great many of the relations we have to deal 

with, for example ‘\Pt P\, Pt, P\9\Pt x l, l x, etc. 

*7215. \-.I\el -*Cls [*37 111 .*71 166] 

In *72-16 below, p has the meaning defined in *4001, and does not 

represent a variable proposition. Similarly s in *72161 has the meaning 
defined in *40 02. 

*7216. h./>el->Cls 

Dem. 

V . *20-2 . (*40 01) . D h .P‘k = £<a c* . D.. *ca) . 

[*14-21] Dh.E lp*K (1) 

h.(l). *71166. Dh. Prop 
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#72161. h . s e 1 —» CIs [Proof as in *7216] 

*72162. H./>€ 1 —>Cls [Proof as in *72*16] 

*72163. I" ..vc 1 —»Cls [Proof as in *72*16] 

*7217. h . / c 1 -» 1 

h. *52*22. <*51 01). Dh.(*)./‘a?el. 

[*7112] DK/e l-*Cls (1) 

h . (1). *71*21 . *50*2. D h • /c CIs—» 1 (2) 

b . (1) .(2). D b . Prop 

*7218. h . # € 1 —* 1 [*51 23. *71*57] 

*72181. I-.7«1-+1 (*72*18. *71*212] 

*72182. h.*Xy€l-»l 

J)eni. 

b. *55*13. D h : z (x ly)w.= ,z = x.w*=yi (1) 

(#3*47 ] z z (r ly)w.z (x l y)w . "5 ,z = x.z' = x. 

[*13*172] D.z = z' (2) 

K . (1). *3 47 . D h : z (a* | y) v>. r (x y) w . 0 . w - y. iu = y. 

[*13*172] D.w = w// (») 

h .(2). (3). *71*172 .DK Prop 

*72184. b.xl, lxe\ -*1 [*55*2. *71*57] 

*72 185. H . ( i x)< e 1 -> 1 [*55*262 . *37*11 . *72*15 . *71*54] 

*72*19. b . Cl c 1 —► 1 [*60*55 . *71*57] 

*72 191. h . Rl c 1 -» 1 [*61*55 . *71*57] 

*72*192. b . Cl ext 1 -> 1 [*60 56 . *71*57] 

*72193. H . Rl ox € 1 —► 1 [*61*56 . *71*57] 

*72 2. b R, S € 1 -> CIs. D : * = R‘S‘z .s .x(R\S)z. = .x-(R\S)*z 

Dem. 
b . *71*36 . D b :. Hp. 0:x- R‘S‘z . = .xR(S‘z). 

[♦71*7] (1) 

f- . *71*36*25 . D b :. Hp . 0 : | S) z. s . x = (/* | S)‘z (2) 

1-. (1). (2) .DK Prop 

*72 201. b R, Se CIs-> 1.0 : * = S‘R‘x. = .x(R\S)z . = . z = (S\R)*x 

*72*202. bz. R, Sel-+1.0:*= R‘S‘z . = .x (R\S)z . = .z=S‘R‘x [*72*2*201] 

*72 21. b R, S e 1 -* CIs . D : * e S“(l‘R . = . E ! R<S‘z. = . E! (i? | £)'* 

Dem. 

b . *71*25*163 . D H :. Hp. D : ^ € CP(R | S). = . E ! (R | S)*z (1) 

h . (1) • *37*32 • D h :• Hp. D : z € . = - E! (1£ | S)‘z (2) 
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K .*72-2.*10 ir2r281 . D 

h Hp . D : (ga:) . a: = R‘S‘z . = . (g.c) . .r = (R | : 

[*14 204] D : E ! R<S*z . = . E ! (R \ S)‘z (3) 

h .(2).(3). D K . Prop 

*72 211. h :. R, S e Cls 1 . D : x € R“T>‘S . = . E ! S‘it*x . = . E ! (S j R)‘x 

*72 22. h : R, Se 1 -> Cls. * «S“d‘R . D . /e‘S‘** = (7? S)*z 

Dem. 
. *72-21 .Dh: Hp . D . E ! R*S‘z . 

[*34-41] D . = (R 1£)<, : D h . Prop 

*72-221. h : J?, S e Cls -> 1 . a: e . D . S‘R‘x = (51 ft)'* 

*72 23. H : R,Se 1 —► Cls . D . T2“S“7 = £ {(gx). * * 7 . * - 72^7) 

Dem. 

h . *37-33 . Dh. R“S“y = (/* j S)“7 

h . *71 -25-4 . D h : Hp . Z> . (R | S)“7 = £ {(g*) . * e 7 . x = (R | S)‘y] 

[*72 ‘2] =* £ {(C42) • * € 7 . x *= /i<*S*7| 

h . (1) . (2) . D I-. Prop 

*72 24. H:. i2«l—»l.D:xc D*R . = . x = R‘R*.v 

Dem. 

h . *72-202 . *71-212 . D h Up . D : #= R‘R*x. m . x(R\R) x. 
[*71192] s.xC/fD'/e)®. 

[*85101 .*501] = . a:« a:. a: € D‘72 . 

[*1315.*4-73] = .arcD‘72:. D h . Prop 

*72 241. h :. /£« 1 -+ 1. D : y c (J*R . = . y = /kfl'y 

*72 242. h:.I2cl-»l.D:0 {R‘R*Z). m .Z€D‘R . ^:<t>(R*R<g). = .zeCI'R.0* 

Dem. 

h . *30-501-51 . 3 >- : <f> {R'R'z) . = . (ga:) . a: = /?.£<* . <f,x (1) 

H . (1) . *72-2 . D h Hp. D : 0 (i*‘/e‘s) . = . (gar) . a:(i* j /*) * . <f>x . 

[*71 *192] = .(gx) .x = z.ze D‘R . 0x . 

[*13195] =.z<D'R.4>z (2) 

72 ^ 

h • <2> 5 • *71'212 . D h Hp. D : 4, (R‘R‘z). = . 2 e <3‘.ft . ^ (3) 

H . (2) . (3). D I-. Prop 

*72 243. >-::Rel-*1.0z.zeD‘R.4,z.=,. + (R‘z): = -.4,(R>w).=„.we(I‘R.+w 
Dem. 

V . *72-242 . D I- :s Hp .D:.x« D‘.R. 0z . =x. -0 (i2‘*): D : 

0Cft‘ii‘*). =,.*(*'*): 
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[Fact] 

[*14-15] 

[*10-281] 

[*71-411] 

[*14*21.*71*163] 

D : <f>(RtR‘z). w = R*z . =z%* . \jr(R*z). w = R‘z : 

D : <f> (R*w). w = R‘z . =I>1C. yjnv . w = R*z : 

D : (3^). <p(R‘w) . to = R‘z . =ir . (32). yfrw . w = R‘z: 
D : <f>(R‘w). WfQ‘7? . =„.. yjrw. w e d‘R : 

D z4>(R‘tv) .=te.yjru'.W€(IiR (1) 

b.(\)fi.l\-::Hp.3:.we(ItR.yl,u’.=„.>lr(R‘w):3:>lr(R‘z).=g.<t>z.Z€D‘R (2) 

H.(l).(2).Dh. Prop 

The above proposition is used in *272*4*41, which are used in the theory 

of "rational series,” i.e. series ordinally similar to the series of rationals. 

*72*26. h :. /? e 1 —> 1 : (y). E! R*y : D . (y). y = R'R'y 

Dem. 

h . *71*165 . D h R e 1 -> 1 . D s (y). E! R*y . s . (y) . y e <l‘R (1) 

h . *72-241 . D h Re 1 1 . D : <y). y € <W* . 5 . (y). y - /?*J?‘y (2) 

h . (1) . (2) . Imp . D h . Prop 
V , . 

The propositions Cnv'Cnv'P — Pand t'l'x — ar, which have been previously 

proved, are particular cases of the above; the former is a particular case 

because Cnv —Cnv'Cnv. 

*72-26. h : (y). E! P‘y. D . R = *77? 

In this proposition, the conditions of significance require that the domain 

of R should consist of classes. This proposition is used in *72 27. 

Dem. 

h .*37-31 .Dh.e| /?-€, | ~R 

[*62*32] =s\R (1) 

V . *53*31. D h : Hp. D. (y) • **R‘y - «V/?‘y 

[*53 02] = R*y • 

[*34-42] D.s\~R = R (2) 

H.(1).(2).DK Prop 

*72 27. h.D = 7|D.a = e“|a [*72 26 . *33 12121] 

*72-27 is used in *74-63*631 and again in *16315. 

*72 3. h : 3 ! A. n (1 —> CIs). D . p**- el-* CIs 

Dem. 

H . *41*12 . Fact. D I-: R e X. R * 1 -* CIs. D . p‘\ G R . R e 1 -> CIs. 

[*71-22] D. p‘\ e 1 —> CIs (1) 

h . (1). *10*11*23 . D I-: (3P). R * \. R e 1 CIs . D . e 1 -» CIs (2) 

K (2). *22-33 . D K Prop 
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*72*301. h : g ! X <*% (Cls —* 1) . D . p‘\ e CIs —♦ 1 

*72*302. h:g!XA(l -* 1). D .p'Xe 1-* 1 

*72 303. I" : g ! X n (1 -*CIs) . g ! X n (Cls—► 1). D ./>‘Xe 1 —* 1 (*72*3*301] 

*72 31. h : s'X el—* Cls .D.XC1-+ Cls 

Dem. 

h . *41*13 . D h : s‘\ € 1 —► Cls . P e X . D . s*\ e 1 -> Cls . P G £‘X . 

[*71*22] D. Pel-* CIs (I) 

I- .<1). Exp. *10*11 21 . D h . Prop 

*72 311. h : i'X e Cls -> 1 . D . X C CIs -* 1 

*72 312. h : s'X el—*1.D.XC1—*1 

*72 32. h X C 1 -*Cls:P, Q e X.g !Cl'Pr>d‘Q.D/t><?. p=Q. D . i‘X e 1 —>Cls 

Dem. 

H . *4111 . *11-54 . D h : x(6‘\)z . y (&‘K)z. s . 

(a P,Q)-P.Q*\.xPt.yQt. 
[*3314.*4'71] s.{^P.Q).P,Qe\.xPz . yQz . z td'P *CL‘Q (1) 

h . (1). *471 . D h :. Hp. D : z . y (S‘\) z. s . 

(3-P. Q).P,Qt\. xPz . yQz . z e d'P r. CI‘Q . P = Q . 
[*13-19-5] D.(g P).Pe\.xPz.yPz. 

[*7117.Hp] 0.x = y (2) 

I- . (2) . *1111-3 . *7117 . D I- . Prop 

*72 321. h :. X C Cls -♦ 1 : P, Q t \ . g ! D'P « D'Q. P - Q: D .i'XeCIs-* 1 
[Proof as in *72*32] 

*72 322. h:.XCl—*1:P, QcX.g! d‘P CI'Q .Dpq.P=Q: 

[.72-32-321] = 

*72 323. h:.XCl-l:P,Q,x.a!C‘P«a'C.3,.0.P_«:3.^ei_i 
Dem. 

I-. *33*161 . *22*49 .Dh. d'P « d'Q C C'P C*Q . D'P r* D'Q CC'Pn C‘Q . 

[*24*58] D I-: g ! d'P « d'Q . D . a ! C'P C'Q : 

g ! D'P D'Q . D . g ! C'P « C'Q (1) 

H . (1) . Syll. D f- Hp . D : P, Q e X . g ! a'P « d'Q . DP Q . P = Q : 

H ■ (2) . .72-322.31. Prop *■<?«*• 3 « ^ • =>« • * = Q <*> 

*72*34. h : P e 1 —* Cls .g!*.D. p'P'''* = P''p'* 
Dem. 

I-. *40*35. Dht.yep'P'''*. = :/9e*.D* .yeP''£ (1) 

h • (1) • *71*37 • DH::Hp.D:.yCp'P'''*. = :£6*.Dfl.P'ye/3 (2) 
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h. *14*21. D h £ e k . D . 72‘y e £ : D : £ € * . D . E ! 72‘y 

[*10*52] D I-:: Hp. D £ € #c. D*. 72‘y € £ ; D . E ! R*y (3) 

1-. *14*28 . *401 . D h :: E! 72‘y. D ££ k . D* . 72‘y e/9 : = . 72‘y ey‘*:: 

[(2).(3 ).*5*32,*14*21 ] D h :. Hp . D : y ep‘R‘“tc. = . R'yep'/c. 

[*71*37] =.^/f R“p‘k D K Prop 

*72 341. h : R e CIs -* 1 . H * * • ^ • p€R“€* - 

This proposition should be compared with *40*37 and *40*38. 

*72 4. h : /d € 1 —* CIs . D . 72“a a rt“£ - R“(a a £) 

Dem. 

H .*71*37 0 h Hp.D:y€ R“ar\ 72“£. = . R‘yea. R*ye@. 

[*22*33] s . 72‘y r a a £. 

[*71*37] s . y « 72“(a a £):. D h . Prop 

When R is not a 1 —»Cls, we only have in general (cf. *37*21) 

R“(a a £) C £“a a tf“£. 

*72*401. h : R e CIs -♦ 1 . D . 72“a a 72“£ - 72“<a a £) 

*72 41. H : 72 £ 1 —* CIs ,ao/5«A.D. £“« a 72“£ - A [*72*4. *37*29] 

V72 411. h : R e CIs -► 1 . a a £ = A . D . 72“a a /e“/9 = A 

*72 42. h : 72 £ l -*Cls.g ! 72“a a 72“£. D .g !a a£ [*72*41 . Transp] 

*72*421. h : R eCls -* 1. g ! R“a a 72“£. D . g ! a a £ 

*72 43. h : R £ 1 -> CIs. 72“a = 72“£ . D . a a D‘72- £ a D‘/2 

Dem. 

V . *71*37 . D Hp . D : 72‘y € a . =„. R‘y e £ : 

[Fact] D : z = 72‘y . R*y e a. .z = R‘y . 72‘y e £ : 

[*14*15] D:z = 72‘y. 2 c«. =„ • 2 = 72‘y. 2 e £ : 

[*10*281] 3 : (3 y) . 2 = 72‘y . 2 € a . = . (gy) . 2 = 72‘y. 2 £ £ : 

[*71*41 .*10*35] D : 2 e D‘72 .26a. = .2£D‘ft.2e^: 

[*22*33] D s 2 e D‘72 a a. = . 2 € D‘72 a £ :. D h . Prop 

*72*431. h : R £ CIs -> 1 . R“a = 72“£ . D . a a Q‘72 = £ a G‘72 

*72 44. H : 72 € 1 —> CIs . a C D‘72 . £ C D‘72 . 72“a = 72“£ . D . 0 = £ 

[*72*43 . *22*621] 

*72 441. h : 72 € CIs —» 1. a C G‘72. £ C G‘72.72“a = 72“£. D . a = £ 

*72*441 is used in the theory of cardinal exponentiation (*116*659). 
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*7245. 

Dem. 

*72451. 

*7246 

*72461. 

*7247. 

Dem. 

*72471. 

*7248. 

Dem. 

*72481. 

*7249. 

Dem. 

*72491. 

*72492. 

*725. 

Dem. 

n at w 

I- : e 1 —♦ Cls . D . (R)< f* Cl‘D‘72 cl—*! 

449 

h.*602. Oh:aCD‘R.0CD‘R.m.a,0eC\,D‘R (1) 

I-. *3711 . 3 h : R“a = R“0. = . (R),‘a = ( R),‘0 (2) 

K(l).<2).*72-44.3 

h :. R e 1 -» Cls. 3 : a,,0 < Cl‘D‘7i . («),<« = («).‘/3.3.., . a = 0 : 

[*71-55.*72-15] 3 : (.R), [ C1‘D‘R « 1 —♦ 1 :. 3 I-. Prop 

1-: Ji e Cls —*1.3. «,|-CI‘a‘iee 1-*1 

I-:. R «1 -» Cls. 3 : R“a = R"0 . = .an D-R = 0 r> D‘R 
[*72-43. *37-263] 

h :. R « Cls -> 1.3 : R“a = R“,3 . = . a /> d‘R = 0 a d‘R 

h:.Re 1 -» Cls . 3 : R“a = d‘R . = . D‘R C a 

h . *37-25 . *72-46.3 

H :. Hp . 3 : R“a = d‘R. = . a n D‘R = D‘R « D‘R. 

[*22-5-621] s . D‘R C a : 3 H . Prop 

h Re Cls—» 1.3: R“a = D‘R . 3 . <1‘R C a 

h R e 1 -» CS1» . a. 0 e Cl‘D‘ft . 3 : «“a = R‘*/9. s . a = 0 

1-. *22-621.3h :. Hp. 3: a = ^. = .0 n D«R = 0 n D‘R . 

[*72-46] s . /t“a ■= R"03 h . Prop 

h :. « « Cls -» 1 . a, 0 e CI'CT'R . 3 : R“a -R“0.3 . a - ,8 

I-:. Qe 1 -»Cls. 3 : d‘(/» j Q) = d‘Q. = . D'QCa-P 

h . *72-47.3 h :. Hp . 3 : Q“d‘P = d'Q. = . D‘Q C (I‘/> (1) 

H . (1) . *37-32.31-. Prop 

h PeCls-* 1.3: D‘(/»| Q) = D‘P. = . CPR C 11‘Q 

H :. P « Cls —» 1 . Q « 1 —» Cls. 3 : 

D‘CP I Q) *= D‘P . a\P I Q) = d‘Q. 3 . a*P = D-Q [*7249 491 ] 

K : R e 1 -* Cls. 3. R“R“a -an D‘R 

H.*37 33 . 3 \-.R"R“a =(R\R)‘‘a (X) 

I-. (1). *71-19.3 h : Hp. 3 . R“R"a = (/ f D‘R)“a 

t*50'59] = a « D«R : 3 (- . Prop 

1 2» 
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*72 501. h:/?cCls-»l . D . Ii“R“a = a n (l*R 

*72 502. h : /^ € 1 —► CIs. a C D‘R . D . R“R“a = a [*725 . *22 621] 

*72 503. I-: R c CIs -► 1 . a C (VR . D . R“R“a = a 

*72 504. hXC D‘/f<. D . Rt“iit“\ = \ [*72-50215] 
V w 

Note that R< means Cnv*Rt, not (R)t. *72*504 is used in the theory of 

segments of a series <*21164). 

*72 51. h : R € 1 -> CIs . a C IVR . (3 = R“a . D . a = /[*72 502 . *2018] 

*72 511. \-zRe Cls->1 . £ C <I‘/f . a = R“/3. D . £ = 7*“a [*72503. *2018] 

*72 512 h :.R < 1 -> 1 ./* C <I‘/e . D : y t &. = . R*y * R“& 

Deni. 

h . *71-37 . D h s. R « 1 -> CIs. D : y c R"R"0 . = .R*ye R“0 (1) 

h . *72-503 . D h R e CIs -> 1 .(3 C iVR . D : y c R“R"fi . = . y e f3 (2) 

K(l).(2).Dh. Prop 

*72 513. h :. if e 1 —* 1 : (y).E!/7'yO:y</3. =.R‘yeR“& [*72512.*33431] 

*72 52. h :. if* 1 -»1 .aCVH.0C(VR.O:a=R"0. = .0-R"a [*72-51-511 ] 

*72 53. H :. if e 1 —» I . D : £ C (I‘if. o = R"0. = . a C D‘if . 0 = R“a 

Dent. 

V . *72-52. *5-32 . Z> 

h uR*\ — \.'Zi*ClVR.&Ca'R.*-R“fi. = .*CTVR.RCa'R.R-R“* (1) 

h . *3715 . D h : a - /*“£ O.aC D‘rt : 

[*4 71] D h : a C I VR . & C (W* . a = R“/3 . = . /9 C d‘/i . a = R“P (2) 

h . *3716 . D H : f3 - /*“« . D . /9 C d‘7* : 

[*4. 71 ] D h : a C D‘/f . £ C d‘7* . /9 = £“a. = . a C D‘R . >9 = 7*“a (3) 

K(1).(2).(3).DK Prop 

*72 54. I-: R e 1 -» 1. D. Cnv‘(/*< T CI'dM*) = (R)< f C\‘D*R 

Dem. 
K *31131.3 

h : £ |Cnv‘(/e« [* Cl‘d‘/?)j a . = . a (R< f Cl‘d‘R) £ . 

[*37101.*35101.*60 2] = . a = R“0 . £ C d‘R 0) 

h . *37 102 . *35101 . *60-2 . D 

H : £ l(/0< r CFD‘i?) <*. = .£ = £“a. a C D*R (2) 

h . (1) • (2) • *72-53 . D h . Prop 

*72 541. h:/*€l-*l.S-.R.D. Cnv‘(i?< f D‘,S<) = f D‘R< 

[*71-48-481. *72-54] 
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*72 55. H : ft e 1 -► CIs . D . a ] ft = ft |* ft“a = a ] ft f 

Dem. 

. *351 . *7136 . D h Hp . D : x(a] R) y. = .xea.x = R‘y . 
[*14'15] = . R*y 6 a . x= R‘y . 

[*71*37] = . y c R“a . x = R*y . 

[*71-36.*35101] =.x(RfR“a)y (1) 

h . (1) • *35*11 . D K . Prop 

*72 551. h:JReCls->l.D./er/9 = (ft“£) 1 ft = (ft“ft) *] ft p £ 

*72 57. H : Q |* X e 1 CIs . X = .D./tn D'Q = Q“X 

Dem. 

t-.»37'42. Dh:X-Q“#*.3.(XlQ)«V-§“/* (1) 

H . *37'421. 3 h : X = Q“n. D.(<3f X)"Q“/* - Q“\ (2) 

H.(l).(2). 3 h : X - Q* V • 3 • (Q r X)“(X 15)‘V - <3“X (3) 

I-. *72-5 . *35-52 . D I-: Q [■ X < l -» CIs . 3 . (Q f X)“(X 1 Q)‘V - ^ „ D‘Q (4) 

K(3).(4).3h. Prop 

*7269. H:nel->Cls.D.S|ii|«=i&'|-r>‘^ 

Dem. 

h . *71-19 . D V : Hp . D . S | R | R = S | (/ [• D‘i?) 

[*50'6] - S r D‘« : D I-. Prop 

*72691. H:ideCU-»l .D.S|«|* = S|-a*« 

*72 6. h:«.l-*Cl8.a*SCD‘7i.D.S|B|ft = S [*7259. *35 452] 

*72 601. I-: R , CIs -* 1 . (I‘S C d‘rt . 3 . S | R \ R - S 

*7261. t-:ieel-»ClB.a‘SCD‘*.D.S|7e|^|S = S|3 [*72-6 . *34-27] 

*72 611. I-: fteCls-»l .a*SCa‘ie.D.Sj«|«|S = S|^ 

The following propositions lead up to the “ principle of abstraction ’’ 

(*72*66), which, though not explicitly referred to in the sequel, has a certain 

intrinsic interest, and generalises a type of reasoning frequently employed 
by us. 

*72 62. H:flel-»Cls.S-«|fl.D.S’-S.S = S 

Dem. 

t*. *34-21 . D H : ft = ft | ft . D . ft’ = ft | (ft | ft | ft > (1) 

h . *72-6 . *33-21 .Dh:ft€l->Cls.D.ft|ft|ft = ft (2) 

D h : Hp . D . ft* = ft | ft 
[Hp] -ft (3) 
H . (3) . *34 7 . D H . Prop 

29—2 
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*72621. \-:.Rfl-*C\s.^:y(R\R)z. = .R‘y = R,e 

Dem. 
(-.*71-33.3 h Hp. D : R'y = R‘z. = . (a*) • • * = R‘z ■ 
[*71 -36] s . (g*) . xRy. xRz . 

[*31-11] =.(3 x).yRx.xRz. 

[*84-1] =.y(«|fl)j:.DI-.Prop 

*72622. H:.«<Cls-»l .0:y(R\R)z. = .R,y = R,z 

*72 63. h : ii e Cls —» 1 . S-R| R . 0 . S! - S . S « S 

Dem. 

K*34-21. Z> \-:S=R\R.0.8'-=(R\R\R)\R 0) 

K *72-601. Dh:««01s-»1 . D. R | R \ R = R (2) 

K<1). (2). Dh:Hp.D. S>=/< Ji 

[Hp] -S (3) 

H . (3). *34"7 .DK Prop 

*72 64. h : £»- S. S-S. R - Cnv‘(Sf D‘S). D. R * Cls -* 1 . S = R | R 

Dem. 

H . *7212. *71-26.3 V . Sf VSt\~* Cls. 

[*71-21] 3 H : Hp. 3.7? f Cls —* 1 (1) 

l-.(l).*72-622.3 

1- Hp. 3 : y <fl | R) z. = ■ R'y = R‘‘ • 

[*31-34.Hp] =.{S [ D«S)‘y = (S f D*S)«*. 

[*35 7] = .y,*(D‘.$,.*Sly=*S,z. 
[*34-85] = . zt VS. ySz (2) 

1- .*31-11.3 1-:.Hp.3:yS2.3.2«y. 

f *33-14] 3.**D‘S: 

[*4-71] 3 : !/Sz . = . 2 e D‘S. ySz (3) 

1-. (1). (2). (3) .31-. Prop 

*72-65. h:S, = S.S = S. = .(afi)-^tCls->l [*72-63-64] 

*72-66. h:S>CS.S-S.s.(a*)-««Cls-»l.1S-A|B [*7265.*3481] 

*72-7. 1-: JJ e 1 —* Cls. 3 •/Ff D'-R r 1 —* 1 

Dem. 4_ 

h . *33 4. *22-5 . D h : y, z € D lR. R‘y = R‘z .0 .&lR*y * R‘z (*) 

h.(l).*71*18. Dh zy,zcD‘R.iR‘y=R‘z.D.y = z (2) 

h . (2). *7212 . *71*55 .DK Prop 
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*7271. h : R e Cls —* 1 . D . ~R[ d‘ i*el->l 

*7272. hRel-tl.D.Tlfa'R, *RfD‘Re 1 ->1 

*728. h : \ C D‘x i . D . Cl r X e 1 —* 1 [*55*28*22 . *71*58] 

The above proposition is used in *73*62. 

*7281. h:\CD' -♦1 [*55*281*221. *71*58] 

*729. h R e 1 -> Cls . S G i* . D : E ! S‘y. = . 7*‘y = S€U . = .!/€ d‘lS 

Dem. 

K*71-22. Dh:. Hp. 0:Sel-> Cls: 

[*71*163] D : E ! S‘y . = . y c a <s (i> 
h . *14*21 . D h : /*‘y = S‘y . D . E ! S‘y (2) 

h. *30*82.(l).DH:.Hp, O : y e (l‘S. D . (S‘y) Sy . 

[Hp] D.(S ly) % • 
[*71*36] O.S‘!/~ R‘y (3) 
1- .(1).(2).(3).DK Prop 

*7291. h : 72 e 1 -» Cls . S G R . D .(I*(R-^S)~(I*R -a <s 

Dem. 

h • *33*131 . *23*33*35. D 

. xRy . ~ (xSy) 0) 
I-. (1). *71*36. D 

h Hp . D : y € , = • (3*) • a: = R‘y ■ = S'y). 
[*14*15.*5*32] = .(g x).x=Rfy. ~<7*‘y = £‘y). 

[*10*35.*14*204.*72*9] = . E ! R*y .<N/(ye ass). 

[*71*163] B-ycd^-a'iS D h . Prop 

*72911. ViRe Cls-*1 .iS'G/i.D .V‘(R^-S) = I>‘R -D‘£ 

*7292. h : /* c 1 -> Cls . S G R . D . .s=R[a*s 

Dem. 

H.*23 1 . *33*14 . D K Hp . D : arSy . 0XiV . x/£y. y t (I ‘S. 

[*35101] 3x.v.*(/*ra‘S)y: 

[*2313 DsSGRf(I‘S <D 
H . *35*101 . *71*36 . D H Hp. D :: z(R [ dSS)y . = . x = R‘y.ye <1‘S. 
[*72*9] = . X — R‘y . R‘y = S‘y s 

[*14*142] D.x -S‘y. 
[*30*31] D.xSy (2) 
h . (2) . *11-11*3 . D h : Hp . D . R f (I‘S GS (3) 
H . (1) . (3) . D I-. Prop 

*72921. \-zReC\B-tl.SGR D .S = (D*S)'\R 
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*72 93. !-:./?< l-»Cls. AG&.s: y e <l€R . . (Rly) Sy 

Item. 

h . *14*21 . *4*71 . D H :: y e U‘R . . (R‘y) Sy : = 

y e Cl‘/e . Dy . E ! R*y. (ii‘y) Sy 

[*14 23] = y e Q‘R . Dy. E ! R'y : xRy. Dx. *Sy 

[*10*29.* 11 *62] = y c <J‘ R . Dy. E ! R‘y : y € iVR . *tfy . DXt?/. xSy 

[*71*l(i.*33*14] =:./?€ 1 —► Cls . ft G £D 1*. Prop 

*72 931. V :. ft « Cls -> 1. R G 8. = s x e D‘R. D,. xS(ft‘.r) 

*72 94. h :. ft. £ « 1 —► Cls .3:g !/2r*S.«. (ay). ft‘y = S‘y 

Dem. 

1- . *71 *30 . D h :. Hp . D : y ! ft A S. = . (a-»*. y). ;c = R*y . j* = S*y. 

|*14*205] s .(gy). R‘y = S‘y :. D 1-. Prop 



*73. SIMILARITY OF CLASSES 

Summai'y of *73. 

Two classes a and /3 are said to be similar when there is a one-one relation 

whose domain is a and whose converse domain is /9. We express "a is similar 

to /3” by the notation ‘‘asm/9.” When two classes are similar, they have 

the same cardinal number of terms: it is this fact which gives importance to 

the relation of similarity. 

We have 

a sm /9 . h .(gR). R e 1 -> 1 . a = D*Jl. = (W*. 

The relation of similarity is that of the domain of a 1 —» 1 to the converse 

domain, i.e. it is the relative product of L)f*(l —► 1) and < 1 —► 1)1 Cl, or, what 

comes to the same thing, it is the relative product of Df*(l —> 1) and CT. 

Most of the properties of similarity result immediately from those of 

one-one relations and offer no difficulty of any kind. 

When there are relations which correlate a's with /3‘s so as to make 

a similar to £, we denote the class of such relations by “asIu/3.” Thus 

we have 

a sin /9 — (1 —► 1) r\ D*a r\ Cl*# Df 

an<l sm — 8/3 (a ! a sm /9) Df 

When, as in this case, we have a descriptive double function closely 

connected with a relation, we shall make it a practice to distinguish the 

descriptive double function by a bar. 

It is to be observed that “sm,” like A and V and 1 and 1 —* 1, is ambiguous 

as to type, and only acquires a definite meaning when the types of its domain 

and converse domain are specified. The domain and the converse domain 

may or may not be of the same type, i.e. “sm” may or may not be a homo¬ 

geneous relation. This enables us to speak of two classes of different types 

as having the same number of terms. We shall return to this point in 

connection with cardinal numbers (cf. especially *102—*106). 

The propositions of the present number are important, and are very 

frequently referred to throughout cardinal arithmetic. In order to prove 

that two classes a and /3 have the same cardinal number of terms, it is 

generally necessary, in the fundamental arithmetical propositions with which 

we are concerned, actually to construct a relation R such that Reasni/3. 

Such a relation will be called a correlator of a and /9. It will usually be 

obtained by taking some relation S for which we have (y). E! S*y, and 
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limiting the converse domain to ft, so that S[ft is the required correlator. 

Very frequently we shall have Sc 1 —*Cls, not Sc 1 —► 1, but ft will be such 

that S[ftc 1 -> 1. 

Among the more important propositions of the present number are the 

following: 

*73 142. h:ftr/36aMn/3. = ./?[*£el-*l.£C <P/? . a = R“ft 

l.e R[ ft is a correlator of a and ft if (1) R [ & is one-one, (2) ft is con¬ 

tained in the converse domain of R. (3) a is the class of those terms which 

have the relation R to members of ft. 

*73 2. h : R c 1 1 . D . D‘R sm (l‘R . (I‘T? sin D*R 

This results immediately from the definition. 

*73 22. h : Rc 1 -> 1 .ftC (l*R . D . R“ftsm ft . R [ ft c (R“ft) sin ft 

*73 3. H.asma./pacasma 

*73 31. h :asm/3. s ./Ssnia 

*73 32. h : a sm ft. ft sm y . D . a sm 7 

The above three propositions show that similarity is reflexive, symmetrical, 

and transitive. 

*73 36. h:. asm/3.D:a!a. = .a!/9 

*7341. h . ("asm a . t fa c(<“a)siu a 

Thus every class a is similar to a class i“a of higher type, and consisting 

wholly of unit classes. 

*73 45. h . 1 s£(£smt'x) 

Thus 1 is the class of all classes similar to any unit class. 

*73 48. h . 0 = /§(£sm A) 

Thus 0 is the class of all classes similar to the null-class. 

*73 611. H . I x“a sm a . ( l x) [ a c ( i x“a) sm a 

This proposition is very often useful. For arithmetical purposes, we often 

wish to obtain mutually exclusive classes. Now whether or not a and ft be 

mutually exclusive, i xila and | yilft are mutually exclusive provided tf + y. 

Thus by means of the above proposition we can always construct mutually 

exclusive classes each similar to a given class, i.e. each having some assigned 

number of members. 

*73 71. V : a sm ft.y9m8.ar\y = A.ftf\8 = i\..'D.(a\jy) sm (ft v 3) 

This proposition is fundamental in the theory of addition. 

*73 88. H : a sm 7 . ft sm B.yCft.SCa.O.asmft 

l.e. “if a is similar to a part of ft, and ft is similar to a part of a, then 

a is similar to ft." This is the Schroder-Bernstein theorem. The proof given 

below is due to Zermelo. 
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*7301. a sm £ = (1 —► 1) r\ D*a r\ d‘£ Df 

*7302. sm = o£ (a ! a sm £) Df 

*7303. ^ : R e a sm £ . = . R e 1 —* 1 . a = D‘77.£=d‘77 [*33-6-61 .(*7301)] 

*7304. H : a sm £ . = . a ! a sm £ [(*7302)] 

*731. H : a sm £ . = ,(a/7). Re 1 —-* 1 .a = D‘/7.£ = d‘/7 [*730304] 

*7311. H : a sm £ . = .(a7?). R e 1 —► 1 .aCD‘/i.£=K,(a 

Dem. 

h . *22*42 . *37*25 . D 

V : R e 1 -► 1 . a - D‘7* . £ - dfR. D . R « 1 -► 1. a C D‘i* . £ = R“a : 
[*10 11 28]Dt-:(a«)./ecl -► l .a = DtR.0 = Cl‘R.D . 

(a/e)./?€i i .aCD‘/e.£= i?“a: 

[*731] D H : a sm £ . I> . (a 7?) . /* e 1 -»l.aC D‘.R . 0 - i7“a (1) 

h . *71-29 . *37-4 . *35-62 . D 

h : € 1 -> 1 . a C D‘* . £- £“a. D . «1 « 1 ->1. a - D‘(a1 7e).£-<3‘(«1 77). 

[*10-24) D . (aS). S € 1 -► 1 . a = D*S. 0 - dSS. 

[*731] D.asmjS (2) 

h. (2). *1011-23. D 

I- : (a/7) . R € 1 -> 1 . a C D*R . 0 = Ii“a . D . a sin 0 (3) 

K(l).(3).Dh. Prop 

*7312. \-:asm0.m .(g-R). 7*« 1 -* 1 .fiCa^.a = «“/3 

[Proof as in *7311] 

*7313. h : a sin £ . = . (a7?). 7* « 1 -► Cls . 77 f* £ e Cls-* 1 . £ C CP/d . a-Ji“0 

Dem. 

h .*71 103 271 . Dh:J2el-»l.D.i?c] —* Cls . /7 [* £ € CIs —* 1 : 

[Fact] DHr/fe 1 -* 1 . £ C d‘77 . a = R**0 . D . 

/7€l-*Cls.77r£«Cls-*l . £ C G.*R . a ■* 77“£ : 

[*1011'28.*7312] D h : asm £ . D . 

(a77).7*€ 1 -*Cls. 77|*£€Cls-* l .£CCI‘/*.a=.ft"£ (1) 

h.*71-26.Dl-: 77 6l-*Cls. 77[*£*Cls-*l . D . 72 [*£« 1 -*Cls. R t0cC)s-> 1. 

[*71103] D.i*P£el-*l (2) 

h. *35-65. *37-401 . D 

H :£Cd‘7?.a= 77“£. D.£ = d<(77|‘£).a = D‘(7*r£) (3) 

h . (2) . (3) . D h : 1 -* Cls . R f* £ e Cls -> 1 . £ C d‘/7 . a = R“(3 . D . 

7* r £ * 1 -* 1 . a = D‘(R [“£).£ = d‘(R r 0) • 
[*10-24.*731] D. a sm £ (4) 

h. (4). *101123. D 

I- : (a/e> . 77 c 1 -* Cls . R r £ € Cls -* 1 . £ C d‘/7 . a - R“0. D . a sm £ (5) 

I- . (1) . (5) .DH. Prop 
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*73131. : a sin 0 . = . (g77). 77 c CIs -> 1 . a 1 77 e 1 -> CIs . a C D‘77 . £ « 77“a 

[Proof ns in *7313] 

*7314. h a sm /9. = : (g77): R e 1 —♦ CIs . jS C G‘77. a = 77“/9 : 
y,ze 0. 77‘y = R‘z. 0,,'Z • y = z 

Dem. 

K *71-55 .*5-32. 3 

h:.Afl-»Cls.Ar0cl-»l.»: 

/^el —♦CIs: y,2€ 13.77‘y = 77‘* . ’5v%:.y = z (1) 

K *71*26. 3h :.77«1 -*01* . 3 : 77p#€ 1 -♦CIs: 

[*4-73.*71 103] 3 : 77p/9el -♦ 1 . ■ . 77P/9€Cls-* 1 :. 

[*5-32] 3 h :. 77 e 1 -♦CIs. R [ 0 * 1 -♦ 1 . =. 77 < 1 -♦CIs. R P/9cCls—♦ 1 (2) 
h.(l).(2).Dh. (g R). R e 1 —♦ CIs . R [ 0 e 1 -♦ 1 . 0 C G‘77 . a = 77“/9. e : 

(g77): Re 1 -♦ CIs. 0 C G‘77 . a = 77“/9: 
//,* e /9. 77‘y = R‘z . 3,,.,. y = * (3) 

*73-13.31-. Prop 
The use of this proposition in proving similarity is very frequent. 

*73-141. H :. a sm 0 .= :(g77): 77cCls—♦ 1 . aCD‘77 ./9 = 77“a : 

[Proof as in *7314] 

*73142. h : 77 [“ /9 € a sm /9. = . 771* /3 e 1 

//,c € a . 77‘y = R*z . 3v>1 .y = ~ 

-♦1 .,9CG‘77.a = 77“/9 

Dem. 

h . *73 03 . 3 
h : 77 p /9 6 a sm /9.s.7?P/9<l—♦!.<> = D‘(77 [ 0). 0 — G‘(77 P 0). 

[*37-401 .*35 64] = . 77 [ /9 € 1 -♦ 1 . a = 77“/9 . 0 = /9 n G‘77 . 

[*22-621] m . R[0€ l —*1 .a — 77“/9. /9 C G‘7? : 3 h. Prop 

*7315. h : a sin /9 . = . (g77). 7? P /9 € 1 -♦ 1 . /9 C G‘77 . a = 77“/9 

Dem. 

V . *73*12 . *71*29 .Dh:a sm 0.0. (g77). 77 P/9« 1 —♦ 1 ./9CG‘77.a=77“/9 (1) 

K *7314204. 3h:(g77). 77P£el-*l./9CG‘7?.a = 77“/9.3.asm£ (2) 

h.(l).(2).DK Prop 

*73 2. h : 77 c 1 —♦ 1.3 . D‘77 sm 0*77. G‘77 sm D‘77 

Dem. 
h. *202. *321 .D 
h:il«l—♦l.D.jRel—*1. D‘77 = D‘77 . 0*77 = a*77. 
[*10 24] 3 . (gS). S e 1 -♦ 1. D‘77 = D‘5. G‘77 = 0*5. 
[*731] 3. D‘77 sm G‘77 (1) 

h . (1) . *71 -212.3 h : 77 e 1 -♦ 1.3 . D‘R sm 0*77 
[*33-2-21] 3 . a*77 sm D‘77 
h ,(1).(2). 3 h . Prop 

(2) 
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The following propositions, down to *73*241, are deduced from preceding 

propositions of this number just as “ D*R sm Q‘7i ” was deduced in *73 2 

from *731. The proofs are therefore merely indicated by references to the 

previous propositions of this number which are used. 

*73 21. I- : R c 1 —> 1 . a C D‘12 . 3 . asm Rtfa. a R e asm (R“a) [*7311] 

*7322. h: €1->1 ./9C<I‘P. D . R“/3 sm/3. R 10 e (R“/3) sm 0 [*7312] 

*73 23. h : .R « 1 —► Cls . /3 C CI'P . Rf 0e Cls —>1.3. 

R“/3sm&. R [ f3*(Rlt0)sml3 [*7313] 

*73 231. I- :Re Cls-> 1 .aCD‘P . a] R e 1 -*Cls . 3 . 

asm R“a.a 1 «€asm(«»a) [*73131] 

*73 24. h R € 1 Cls . £ C <1*R : y, * . fl‘y = . 3.,.,. y - * : 3 . 

P“/3 sm £ . 7? r £ e(/?“/9) sm £ [*73 14 142] 

*73 241. h /£ e Cls —> 1 . a C D‘P : y,z t a . 7?‘y = • 3yiZ. // * z : 3 . 

a sm P“a . a 1 R « a sm (R“a) [*7314103] 

*73 25. h (y). E ! P'y : y, * « £ . P‘y - . 3y.,. y - * : 3 . sm £ 

I) era. 

h . *71166. 3 h : Hp • 3 . ft c 1 -» Cls (1) 

V . *33 431.31-: Hp . 3 . £ C CI‘/2 (2) 

I-. (1) . (2). 3 V Hp . 3 : R « 1 -► Cls . £ C CP/* : y%z*$.R'y-R‘ty-zz 

[*73-24] 3 : A“j9sm /3 3 h . Prop 

This proposition will be convenient in such cases as the following: Let /3 

be a class of relations whose domains are mutually exclusive, x.e. such that 

no two members of /9 have domains which have a member in common, and 

suppose we wish to prove that the class of these domains is similar to /3. 

The class of domains is D“/9, and we have (P). E! D€P. Hence we have 

only to prove (putting D in place of the R of *73*25) 

P,Q€0.D‘P= D‘Q.3,.<,.P = Q, 

which, in the case supposed, is proved immediately. 

*73 26. V <y) . E ! R*y : R c 1 —► 1 : 3 . R“0 sm fi.Rffi* (R“0) sm 0 
Deni. 

h . *33-431.3 I- : Hp .D.Rel—*l./3C G‘R . 

[*73-22] 3 . P“/9 sm . P f £ e (R“0) sm £: 3 I-. Prop 

*73-27. h R*y = R‘z . .y = z: 3 . R**t3 sm £ . R [ 0 e (R“/3) sm 0 
[*73-26. *71 57] 

*73-28. I-:: y, z e >9.3,,, : R*y=R*z . = .y=*zz. 3 . 

sm £ . P r £ € (P“£) sm /3 
Dem. 

h . *71-58 . *7303 . *37-421.3h:Hp.3.Pf*/9€ (P“>9) 5m5:3K Prop 
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*73 3. b . a sm a . f [ ae a sm a 

Dent. 

b. *50-31 .*2411. Dh.aCd‘1 (1) 

h . (1). *72*17 . *5016 .Dh./el—»l.aC Q‘I.1“a = a (2) 

H . (2). *73*142*04 .Dh. Prop 

This is the reflexive property of similarity. The conditions of significance 

rec|uire that a should be a class of some type, but impose no restriction as to 

the type of class. 

*73301. b : /feasm/3. = ./?€/9sma 

Deni. 

H . *73 03 . *71 212 .*33 2*21 . D 

\-:Reasm{3.= .Rel -* 1 . D*R-0.a‘Rma. 

[*73*03] =.7f€/9sma:Dh. Prop 

*73 31. b : asm/9 . = . £sm a [*73*301*04 . *31*52] 

'This proposition shows that similarity is a symmetrica! relation. 

*73311. b : R e asm/3 . S €/3 suiy . D . R Sea stay 

I Jem. 

b . *73 03 . *71*252 . D b : Hp . D . /?1 Se 1 -> 1 (1) 

H . *73 03 . *37*32 . D h : Hp. D . D‘(/? IS) = R“0 . (I‘(7*1S) = S“/3 . 

a *= D‘7? . /9 = a*/? . 0 = D'iS .7= Q*»S'. 

[*37*25] D. l)‘(R\S) = a.a\R\S) = y (2) 

h . < 1). (2). *73*03.3 b. Prop 

*73 32. b : asm /9 . /9 sm 7 . D . a sm 7 [*73*311*04] 

This proposition shows that similarity is a transitive relation. Thus we 

have now proved that similarity is reflexive, symmetrical, and transitive. 

*73*33. b . Cnv'sin = sm [*73*31. *31*131] 

*73 34. b . sm’ = sm 

Dem. 
h . *34*55 . *73*32 . D b . sm* C sm (1) 

H . (1). *73*33. *34 8. D h . Prop 

*73 35. b . D'sm = G‘sm = Cls 

Dem. 

h . *73*3 . D b . z ($ ! 2)sm 2(<f> ! z). 

[*20*18] Ob :a = z(<pl z).D .asma: 

[*10*11*23] 0 b : (g<#>) . a = 2 (<£ ! z) . D . asm a . 

[*33*14j D . a € D'sm . a e G‘sm : 

[*20*4] D h : ae Cls. D . aeD‘sni . ocQ'sm (1) 
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I- . *731 .*10*5.3 

\- asm/9. D : (3-ft). a = D'K . £ = C1*11: 

[*105.*33*11111] D :(a/2).a«*-{(a^).ar/ey):(a/J)./3 = *)\(&x).xRy\i 

[*20*41*18] D: a e Cls. /9 c Cls (2) 

h .(2). *10*11*23. D 

*■ :• (3/9) .asm^.D.oe Cls : (3a). asm >9. D . /9 e Cls 

[*33*13*131] D h a c D‘sra . 3 . a 6 Cls : /9 e <3‘sm . D . /9 e Cls (3) 

h .(1). (3) . D h . Prop 

*73 36 h :. a sm £. D : 3 ! a . s . 3 ! £ 

Dem. 

1- . *33*24 . D h a = D‘/2 . /9 = . D : 3 ! a . = . 3 ! & 

[*3 42] I> t- J* e 1 -► 1 . a = D‘R . /9 = (1*R . D ; 3 ! a . s . 3 ! /9 

[*10*11*23]D h (3/d). 72 € 1 -> 1 . a = D‘i* . £ = (1‘R . D : 3 ! a . = . 3 ! (l) 

H - (1) . *73-1 . D h . Prop 

*73*37. h a sm /9 . D :78m a.s.7 sm /9 

Dem. 

1-. #73*32 . D H : a sm /9.7 sm a . D . 7 sm /9 (1) 

H . *73*31 . D h : a sm >9.7 sm /9 . D . /9 sin a . 7 sm /9. 

[*73*32] D.7sn»a (2) 

h . (1) . (2) . D H . Prop 

*73 4. h . Cnv“X sm \ . Cnv f\c (Cnv“\.) sin \ [*73*26 . *72*11 . *31*13] 

*73 41. h.t“a8ma.tf'a((t“a)8ma [*73*26 . *72*18 . *51 12] 

This proposition is useful, because it gives a class (1**0) similar to a but 

of higher type. Thus if ft is a cardinal number, and it is known that in a 

certain type there are classes having ft terms, it follows that there will be 

classes having terms in the next higher type, and therefore in the next 

type above that, and so on. No corresponding means exist for lowering the 
type. 

*73*42. h : a C 1 . D . a sm t“a 

Dem. 

K *52*13.3 h : Hp.D. a C D‘i (1) 

I- . (1) . *73*21 . *72*18 . D h . Prop 

Ihis proposition gives a means of lowering the type without altering the 

cardinal number, provided our class a is composed wholly of unit classes; for 

i“a is of the type next below the type of a. But when a is not composed 

wholly of unit classes, this construction fails. 

*73*43. h . sm i‘y . « ^ y e (far) sm (t‘y) [*55*15 . *72*182 . *73*2] 
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*73 44. h :. a € 1.3 : £sin a . = . 0 e 1 

Dem. 

b . *73 43. 

[*1011-23] 

[*10 11-21-23] 

[*521] 

b . *37-25. 

D b :. a * i*y. 3 : /3 = i*x. 3 . 0 sm a 

^ (3//). a = t'y . 3 : /9 = i*x. 3 . /3 sm a 

3 b :• (ay) • a = i‘y. 3 : (gx). 0 = i‘x .0.0 sm a :. 

3 b :.ac 1.3 : 1.3 .£sm a (1) 

D b 7? € 1 -* 1 . D*R = i*x . 3 . d‘R = £“,‘.r 

[*53 31.*71 1G5] = i*R*. c. 

[*52-22] 3. d‘R e 1 

[*20 18] 3b:.*«l-*l. D‘7? = f‘x. CI‘7? = .5. 3 . 0 e 1 

[*10 11 23.*73 1] 3 b : i‘xsm £ . 3 . £ c 1 : 

[*20 18] 3 b :.a« *‘.r. 3:asm£.3.£« 1 

[*101123] 3 b:. (gx). a = i*.c. 3 : a sm 0 . 3 . 0 e 1 

[*73-31 .*52 1 ] 3 1-a * 1 . 3 : £sm a . 3 . 0 c 1 (2) 

b . (1). (2).3b. Prop 

*73 45. b . 1 = 0(£sm i‘x) 

Dem. 

b . *52-22 . *73-44 . 3 b : £ sm i‘x. = . 0 e 1 (1) 

b.(l).*2033.3b.Prop 

*73 46. b . A sm A [*721 . *33 29 . *73 *2] 

*73 47. 1*: 0 sm A . s . £ = A 

Dem. 

1-. *73-46.3 b s £« A . 3 . £sin A (1) 

b. *7312. *10-5.3 

b : £ sin A . 3 . (3/?). 0 = R“A . 

[*37-29] 3.£ = A (2) 

1- • (1).(2).3 b • Prop 

*73 48. b . 0 = 0 (0 sm A ) [*73 46 .*51 11 . (*54 01)] 

The following proposition is used in the theory of double similarity 

(*111111). 

*73 5. CPO'/e C sm 

Dem. 

b . *35 101. *37 101 . *60 2.3 

b :. 7?, r CI‘(I‘7< G sm . = : 0 C d‘R . a = R“0.3.#/). a sm 0 (1) 

b . *73-22. Exp .3b:.22el—*1. 3 : £ C a *R .a = R“0.3 . asm 0 : 

[(1).*1111-3] 3 : Rt [• C\‘(I‘R Gsm (2) 

b. *3018. *51-12.3 

b :. £ C (1‘R . a = 2*“£. 3.,* . a sm £ : 3 : t‘y C d*R . a = R“i*y. 3. . a sm t‘y : 

[*51-2.*53‘301] 3 : ycdtR.a = R‘y. 3..asmi‘y: 

[*20 53.*73-44] 3 : y c G‘/e . 3 . R‘y e 1 : 

[*10T1-21.*37*702.*71 1] 3 : Re 1 -> Cls : (3) 
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[*72 51 .*3716] D : a C D‘ft . = R“a . Da(J . & C <3‘ft. a = R“(3 (4) 

h . (4) . *47 . *11-37 . D h Hp(4) . D : a C D‘ft . 0 = R“a . Da « . a sm B : 
w ■ 

[(8) ^ • *71-211.*73*31 J D: fteCIs-* 1 (5) 

h . (1) . (3). (5). *71103.=> h : ft, f Cl'CI'ft G sm . D . ft e 1 —> 1 (6) 

K(2).(6).Dh. Prop 

*73 501. h : ft € 1 -► 1 . = . (ft), f* Cl'D'ft G sm 

Dem. 

h. *71-212. DH:ftcl->l #a.5il-»l. 

[*73*5] = . (ft), r Cl'CT'ft G sm . 

[*33 21] s . (ft), r Cl'D'ft G sm : D h . Prop 

*73 51. h : ft € 1 -> Cls . a C D‘ft . D . %‘a sm a 

Dem. 

H . *72 7 . D h : Hp . D . ft f D‘ft « 1 -> 1 . 

[<*35-481 .*71 ■ 5522] D . [• <*« 1-► 1 

I- .*33-431.*32121 . D h . a C CI*!ft 

I- .(1). (2). *72 12. D h : Hp.D .*Rc 1 -* Cls . /ifae 1 -» 1 .nCO'S. 

[*73-23] D . *R»„ sm a : D h . Prop 

*73 511. h : R e Cls -* 1 . a C (PA . D . 7?<a sm a 

£*73*51 ^.*71 211 .*33 2 . *32 241J 

*73 52. h : ft e 1 -> Cls . a C Cl‘D‘ft . D . (ft),“a sm a 

Dem. 

(1) 

(2) 

h . *72 45 . D h Hp . D : (ft), f* CI‘D‘ft « 1 1 : 

[*7l*55.*72 15] D : ft if« Cl‘D‘ft . (ft),‘£ = (ft)«‘*7 . D#>, . f : 

[HP] => : ft*< «• - («V*7. D#t,. £ -17 s 

[*73-25.*37 111] D : (ft>“asm aD h . Prop 

*73 621. H : ft c Cls —* 1.£ C Cl‘Q‘ft . D . ft,“j88m /3 [Proof as in *73 52] 

*73 63. h : ft c 1 -> Cls . a C CPD'ft . D . ft‘“a sm a 

*73 631. h : ft € Cls -► 1. £ C Cl‘(I‘ft . D . ft‘“/9 sm 0 

*73 61. f-.®j“a8ma.(a:|)f'af(ari “a) §m a 

*73 611. K . j®“aBraa.(|a)[ ae(^a^*a)§ma 

*73 62. H : X C D‘* . D . d“X sm X . a f X e (<I“X)smX 

*73 621. h:XCD‘ji.D. D“X sm X . D p X e (D“A)smX 

[*73-52. (#37 04)] 

[*73*521 .(*3704)] 

[*73 27 . *55-2] 

[*73-27. *55*201] 

[*73*23 .*72*131-8] 

[*73-23. *7213-81] 
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*73 63 h:S€asm0.rfa,Tt/3<:\->l.ayjf3Ca‘r.D.T S'.T€(T“a)§m(T“0) 

Dent. 

h . *73 03 . *35-452 453 . D b : Hp. D. T S T=T T 

[*35-354] -rr«|£l£1?" 

[*35-52.*71 252.*73 03] D. T S Tc 1 -¥ 1 (1) 

I-. *37-32 . DK D‘(T S T)= T“S“a*T (2) 

h . (2). *37-27 . *73 03 . D h : Hp . D . D4<T{ S f)= T“a (3) 

Similarly HsHp.D.d‘(T S T)=T“/3 (4) 

h . (1) . (3). (4). *73 03 . D h . Prop 

The above proposition is used once in connection with cardinal addition 

(*112 231), and once in connection with cardinal multiplication (*114-561). 

The following proposition (*73*60) is a lemma for *73 7. 

*73 69. h : /? e a Sfii # . a a 7 « A . 0 n y = A . D • ft c; / f* 7 6 (a u 7) sm (/? u 7) 

Dem. 

h . *33-26 261 . *50-5-52 . } 

h : I)4ft - a . (\*li -0.S=Rw/ty.O. D*8 « a u 7 . (1*6' = 0 v y (1) 

h. *7 l-242. *50-5-52.D 

h : Hp (1). /? < 1 —* 1 . a a 7 ■ A . n 7 » A . D . 7? c; /7 c 1 —* 1 (2) 

H.(1).(2). *73 03 . D h . Prop 

*737. h : a sin /9.a«7- A.^7 = A.D.(a V7) sm (/$ w 7) [*736904] 

*73 701. h : 7( t asm/9 .Sc7sm6.a^7 = A./iA5 = A.D./^c/.S'c(a»-»7)sm(/3c/5) 

Deni. 
V . *73 03 .D h:Hp.D. D4ft n D46* = A . <J‘ft n Cl4tf = A . R,Se 1 -> 1. 

|*71242] I>.ftc/tf<l-»l (1) 

h .*33-26-261 .*7303. D h : Hp. D . D4(ftoS) = avy.(l*(RvS)=/3vS (2) 

h. (1). (2). *7303. Dh. Prop 

*7371. h : asm/9.7sm5.ar»7=A./3r»$ = A .D.(a V7)sm(^v^) [*73-70104] 

*73 72. I-: a v i‘a?sm@ sj i‘y ea. y ~€0. D. a sm f3 

Dem. 

h . *731 . } 

h : Hp. } .{zR).Be 1 —> l.D‘/? = av i*x.(l*R=/3 \Jt‘y.x~€ a.y~€/9 (1) 

h . *71 -381 .DhsAcl-tl.ae D 4ft . y € a4/? . Z) . ft44(G4ft - i‘R*x - i‘y) 

= R“a*R- R“i*Rtx-Rttity 

[*37-25.*53-31] = D4ft - i'R'R'x - <4ft‘y. 

[*72-24] =D‘R- Sx-i'R'y. 

[*73 22] } - (D4ft - t‘x - £4ft4y) sm (CI4ft - i*y - i‘R‘x) (2) 
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h . *71*362 . *22-5 . D h : Hp(2) . x=R*y . D . 

D‘ R - i*x - i<R*y = D*R - i*x. il'R -f'y- i'R'x = Q'R - t*y . 

[(2)] D .(D*R — £*dr)sm(Q‘/i — i*y) (3) 

V . *22-92 . *33-43 .DH:Hp(2).x+ . D . 

(D‘ie - i*x - i*R‘y) v i‘R*y =D‘R - i‘ar (4) 

H . *71-362 . D h : Hp (4). D . y 4= R<x. 

[*22-92.*33-44] D . (a*A - i*y - c«jftr) vf «£<.r-(I«A - #*// (5) 

*■•(*). (5) . *73-71-43 . (2). D h : Hp (4). D . (D‘i£ - f‘.t) sm {iVR - t‘y) (6) 

K(3).(G). D h : Hp(2) . D . (D‘7? - f*x)sm (d*R — f‘y) (7) 

H .*51*211'22. D h : T)‘R = a ^ f*.c. (1*72 ™ f3 v i*y . .r e a . y *■>» c /9 . 

D . D‘« -- a. d‘/e -i*y = /3 (8) 

h.(7).(8). D h : e 1 —■* 1 . Hp(8) . D . asm£? (9) 

K(l).(9). D h . Prop 

The following propositions give the proof of the Schroder-Bernstein 

theorem, namely: If one class is similar to part of another, and the other is 

similar to part of the one, then the two classes are similar. The proof here 

given is due to Zermelo*. An explanation of the following proof is given in 

connection with another proof in the summary of *94. 

*73 8. h : (I‘/e C 0 . >9 C D‘R. * - 5 (a C D‘R . £ - CI‘7* C a . R“a C a). D . 

Dem. 

H. *22 42 43 44. D h : Hp . D . \YR C D* R . & - <l‘R C D*R (1) 

h . *22 44 . *37-25 . D h : Hp . D . 72“D‘7* C D*R 

h.(l).(2). DI-:Hp.D.D‘/2c* 

h. (3). *4012. Dh.Prop 

*73 801. h:Hp*73-8.D.iS-a</JCpV 

Here “ Hp*73-8” means “the hypothesis of *73-8.” 

Dem. 

h . *20-33 Oh. Hp . D : a e * . D« . /3 — G‘R C a :. D h . Prop 

*73-802. h : Hp *73 8 . D . R“P‘k CP*k 

Dem. 

I-. *20-33 . D I- :. Hp. D s a c *. D. . /*“a C a (1) 

h • (1). *40-81.3 h. Prop 

*73 81. I-: Hp *73-8 . D . P*k e k 

Dem. 

H.*73-8-801-802.DH:Hp.D.p‘«CD‘ii.^-a‘«Cp‘*.fl‘‘p‘*Cp‘*OI-.Prop 

Math. Annaltn. vol. vxr. Heft 2, February 1908. 

<2) 

<*> 

R«CW I 
30 
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*73811 b: Hp*738. D. j?“p*« C/j**-(£-CI'/?) 

Dem. 

h.*37 lG.DK/e'yxCCP/? 

[*22s] C — (— CI‘/?> 

[*22-8143] C-(£-<!<£) (l) 

I-. (I >. *73802 .DK Prop 

*73812. H : Hp *73 8. — <I*/?) u I{“p‘* . D . R,t(pix — f‘.r) C — f*.r 

Dem. 

H. *22-87. D h : Hp. D ,jc~~€ !{“/>**. 

[*■>1-30) D./*>‘*C-i‘x (1) 

I-. (I). *73 802 . D h : Hp. D . R,tp,H C /*** — i‘x . 

[*372] D . /?“(//* - i'x) C ptK -(‘.rjDh. Prop 

*73 82. H : Hp *73*812 . D ./>** — i*.r = y>‘* . 

Dem. 

f-. *22 87 . *51 30 . D h s Hp•D.£- (1*7? C - /‘x. 

[*73-801] D . (3 - (1 •R Cp‘« - /‘.r (1) 

h .*738 . Dhs Hp.D./P*— i*x C D‘/f (2) 

H . (1). (2). #73’812 -DP: Hp. D . //* — «‘xc *. 

[*4012] 

[*51‘3I>. *22*43] D. x~« ;/*. p‘x Prop 

*73821. h : Hp*73 8 .x€j>«*-(£-0*/?). D.xt ]?“//* 

Dem. 

I-. *73*82 . Transp. D H : Hp*73-8.x«/>‘* . D . x«(£ - CP A) u RttptK (1) 

K . (l). *•'»•(». D H . Prop 

*73 83. H : Hp*73 8. D .p*< - (£ - (1*11) = R“p*K ,p*K «(£- OPJl) ^ ii"/*1* 

Dem. 

V . *73-821 . D h : Hp. D . - (£ - d'R) C * V* (1) 

V . (1). *73-811. D I-: Hp. D .p‘*-(£ - d‘R) = £“/><* (2) 

h . (2). *24-47 . *73*801. D h : Hp. D . p** = (0 - (I‘R) v R“p‘* (3) 

h . (2). (3). D h. Prop 

*73 84. H : Hp*73 8 . D . £ =p‘/c u (<3‘i? - 

Dem. 
h.*2292.Dh : Hp. D .£ = (£-a*/?) ^ (P* 

[*22-92.*37 16] = (£ - CP*) u R“P*k u (d‘i? - 

[*73 83] = p*K u (CP R - R“p‘k) : D h . Prop 
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*73-841. b : Hp *73 8.7? 6 1 —> 1 . Z> . 0 sin (1*11.0 sm D*R 

Dem. 

b. *73-8-21 . D b : Hp . D . j)*ksin R**/)*tc (1) 

b. *24-21 . D b . R“p‘K n((I*R- R“p*k) « A (2) 
b . *73-83 . *24-492 . *73-801 . D 

b : Hp . D .p*K-R**p*K=/3-a*R. 

[*24-21] D . P*k r\ (G*R - R**p*k) — A (3) 
Ml).(2) . (3) . *73-7 . D 

b : Hp . D.p**yj (CI*R-R**p*K) sm R**P*k u ((1*R - 

[*73-84] D . /9 sm ll**p*K v (CI‘7? — R**p*k) . 

[*22‘92.*37’16]D . /3sm a*R (4) 

b . (4) . *73 2 . D b . Prop 

*7385. h:J2cl—»1.CI‘J2C/3.j8C T)‘R . D . /9smQ‘/J./9smD‘7i [*73841] 

*73 86. h :d‘.RCD'S.<3*5CD‘7J.:>. 

„ D‘(/j | S) = d-it .(i‘(R\S)c a‘s. a<s c i>‘(r i s> 
Dem. 

I-. *37-321 .Dh Hp . D . D‘(7?15) - D*R 

b . *34-36 . D b : (l*(R | S) C <1‘S 

Ml) • DhHp.D.a‘5C D‘(/e j S) 

H • (1) . (2) . (3) .DK Prop 

*73 87. b : 5 e 1 -* 1 . Ci*R C D*S. d‘S C D*R . D . D‘/£ sm D*S 

Dem. 
K . *71-252 . D h : Hp . D . 72 | £« 1 -» 1 . 

[*73-86 85] D . d*S sm D‘72 . 

[*73-2] D . D'Ssm D‘72 : D b. Prop 

*7388. b : a sm y . /3 sm 8.7C/3.8Ca.D.asm/3 

Dem. # 

H . *731 . D h : Hp . D . (g/*, 5). R, Se 1 -► 1 . D*R - a . (J*R = 7. 

D‘£ = £ . d‘£ = 8.7 C /3.5 C a . 

[*73-87] D . (a«, 5) . D‘7? = a . D*S = £ . D‘72 sm D*S. 

[*13 22] D. asm/Sob. Prop 

This is the Schroder-Bernstein theorem. 

(1) 
(2) 

(3) 

30—2 



*74. ON ONE-MANV AND MANY-ONE RELATIONS 

WITH LIMITED FIELDS 

Nn in mnI'/ of' *74. 

The purpose of the present number is to collect together various propo¬ 

sitions in which we have such hypotheses as 

/{[ \( 1 —*CIs. * 1 lie I -> CIs. etc. 

•»r in which such hypotheses are shown to he dcducible from others. Hypo¬ 

theses of this kind occur very frequently, and it is important to be able to 

deal with (hem easily. For the sake of completeness, we shall here repeat 

propositions previously proved on this subject. 

The propositions of this number are mostly of the nature of lemmas, to be 

used in the theory of selections (Part II. Section D), and in cardinal and 

ordinal arithmetic. The most useful of them are *74772,773,774‘775. These 
•• # w v 

propositions are concerned with circumstances under which Q It or | R, with 

or without some limitation of the converse domain, is a one-one relation. The 

reason they are important is that the correlators by means of which many of 

the fundamental theorems of cardinal and ordinal arithmetic are proved are 

such relations as (] It (with the converse domain limited) for suitable values 

of (] and It. The above-mentioned propositions are as follows: 

*74 772. h (j ) . E ! Q*x : <//>. E ! /{<•/ : Q, R « CIs 1 .O . Q j| R e 1 -► 1 

The hypothesis of this proposition will be verified if we put, for example, 

Q = It ** i x. Thus (l«)||(Cnv‘ ^x)c 1 —> I. This proposition is used in 

*1 Hi’531, which is used in proving one of the formal laws of exponentiation, 

namely /zTxr x v™ — (/a x n)v. 

*74 773. b:Q [a. Iif0€ CIs-* 1 .a C d‘<?. 0C d‘/f. s‘D“\Ca.s‘(I“\C/9.D. 

(Q || H) r x € 1 -♦ 1 . (Q B Z) r A € 1(0 II R)“\\ sm X 

This proposition is used in connection with both cardinal and ordinal 

multiplication and exponentiation. If Qf“a and Ii[ 0 correlate y with a 
and 8 with 0, then if we take for X the class of all ordinal couples that 

can be formed of an a and a 0, (Q R)“\ will be the class of all couples 

that can be formed of a 7 and a 8. Thus in virtue of the above proposition, 

if 7 is similar to a and 8 is similar to 0, the class of ordinal couples formed 

of a 7 and a 8 is similar to the class of ordinal couples formed of an a and 

a fS. This result is useful because we define the product of the number of 

members of a and the number of members of 0 as the number of ordinal 

couples formed of an a and a 0. 
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*74 774. h if e Cls -> 1 : (y) . E ! R‘y : 3 . | R e 1 —> 1 

This proposition is useful when, for example. It is j.-. 

*74 776. h : Q C s‘D“X, if [ s‘CI“X e Cls -* 1 . s‘D“X C CI‘Q . s‘(r“X ca‘K.3, 

(Qll .(<21,B)|*Xe {(<3||«)“X) sm\ 

This is a particular case of *74 773, and has similar uses. 

*741. b -.-.Rffft l-»Cls. 3 Rf/Be 1 -» 1 y.ztg .R‘y= li‘t j=z 

Dem. 

K *71-55. 3 I-:: Hp . 

D (if r 0) f/9 e 1 -» 1 . h : y,» 0 . (if [ 0)-y = (if f 0)‘z . 3„, ,. y=z:. 

[*35-31-7] 3:. if |79« 1 —*l. = :y, t e 0. R‘y -- R'z . 3j,_,. y = « :: 3 f . Prop 

*7411. h if [■ /9 f 1 —» Cls . /3 C (I‘if . = : E !! if“/9 [*71571 . (*37 05)] 

*7412. b::R[Rel-»i .ffC CI‘if. s s. y, * < 0. 3,.,: R‘y - if‘». s . y = * 

[*71-59] 

*7413. 1-: if « 1 —» Cls . 3 . (if), [ Cl‘D‘if e 1 —» 1 [*72 45] 

*74131. h : if e Cls —* 1.3 . if, [ CI‘Cl‘if r 1 —» 1 [*72 451] 

*7414. l-:ff«l-*Cls.£ = if“a.D.a1/f = if[-/3-a1if|-/9 [*72 55] 

*74141. h:if«Cls-»l.a=if‘‘/9.3.a1if = if r/3 = «1«r/3 [*72-551] 

*7416. h:Q|-^«l-»Cls.X = Q‘‘*.3.*nD‘Q = Q“X [*72-57] 

*74151. h:*1QeCls-»l .«=Q“X.3.X«CI‘<2 = <2“* 

*7416. 1-: Qf X « 1 —» Cls. k C D‘Q . X — Q“k .3 . * = Q“X [*7415.*22 621] 

*74-161. I-:«1 Q*Cls-»l.XCa‘Q.* = Q“X.D.X = y“« 

*74-17. I-: Q \Q“k e 1 -* Cls . * C D‘Q. 3 . * = Q“Q“k [*7416] 

•74T71. 1-: (Q“X) 1Q t Cls -» 1 . X C a-Q. 3 . X - Q“Q“\ 

*74-2. H:Q“aC/3.3.a1Q = a14>ri8 

Dem. 
*■ * *37 4 .Dh:Hp.D. a*(a *|Q)C/3. 

[*35*454] D.a1Q = a1Qr/3:^h - Prop 

*74-201. b : Q“/3 Ca.3.<2[/9 = a'1Qf'/9 [Similar proof] 

*74-21. h . a ] Q = a ] Q [• Q“a [*742] 

*74-211. h . Q [ /3 = (Q“/3) 1 Q f" /9 [*74-201] 

*74-22. 1-: D‘<2Ca.3.Q = a-|Q [*35-451] 

*74-221. l-:(I‘<2C,8.3.Q = Q[-/9 [*35452] 
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*7423. h:o = (?“y*‘o.D.c1V = Vr,<'“® = o1,?rV“« [*74-21-211] 

*74 231. I- : /i = <rQ“(3 . D . V f -3 = < V‘‘/3> 1Q = <Q"3) 3 [*7-4 21-211] 

*7424. '■:*-Q"e.0=<'r*-'}-°'\Q = Qri3 = a-\Q[/3 [#7423] 

*74 25. h : <?T>9« 1 -*Cls.oC D'y. 3-f><0.3.«1 (? = Qf/9-al 

[*741(i-24] 

*74 251. t- : o 1 Q « CIs -* ! . 0 C««V. a - If'ff.3.«1<?-(?f/i = a1Qf-/9 

[•74-Kil24] 

*74 26. h : Qt £. 1 -» 1 . a C \VQ. (/“a . =. o] Q e 1 l ./SCd'Q.a- Q“0 

Item. 

I-. *7 425 . D h : (? f* /9 # 1 1 . a C D‘0. ^ - ^“0.3. a 10 - Q T /9. 

^ (1) 

H . *37-16 . D K : - £"« .D.£C<I‘Q (2) 

h . #7416 . D h : Qf £ « 1 -> 1 . a C D'Q. 0 - Q“a . D . a = (}“$ (3) 

h.(l).(2).(3).D 

H : QfSe 1 -> 1 . a C 1)‘V. ,3 - £“a . D . a 1 tjt I -♦ 1 ,£C<I •Q.a-Q"# (4) 

Similarly 

H : a 1 V € 1 —> 1 .0CQ,Q.amQ“0.5.Qf0t 1 _» i . a C ]VQ. £ = Q“a (5) 

h . (4).('»). D H . Prop 

*74 27. h:Qr^cl-#l./9« £"tr V*. = . (Q“0) 1 y e 1 -» 1 . £ C U‘(? 

Dem. 
Q“B 

I- . *74-20 ‘ . D 
a 

I-: y r £ c 1 -* 1 . Q“0 C D‘l?. £ = </“Q“£. = . 

(Qlt&)‘\Q*\-+\.fiC<ltQ.(r0 = Q“& (i) 
h . (1). *37 15 . *20*2 . D h . Proj) 

*74 271. hsalQcl-tl.a - <?“<?“« . =. Q f Q“a € 1 -> 1. a C D *Q 

[,74-26 SgS] 

*74 3. H gr e 1 -* CIs: (ga) ./3 = Q“a: D . #‘Q“/9 = £ 

Dem. 

h . *7415 . D V : Q [ p € 1 -> CIs. & = $“a . D . QpQ“fi = <?“(a n D‘Q) 

[*37-261] =Q“a 

[Hp] = £ 

h . (1). *1011-23-35 . D K Prop 

(1) 
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*74-301. h a 1 Q e Cls -> 1 : (g/9) . a = Q“0 : D . <?“Q“a = « [Similar proof] 

*74*31. h : Q r £ e 1 -* Cls . £ e D‘(Q)< . D . 

f3=Q“Q“0.0Ca‘Q.Qtf3 = (Q“/3)'\Q.(Q“/3)'\Q€l-+C\s 
Bern. 

V . *74-3 . *37-23 . D h : Hp . D . £ - Q“Q“i3 (1) 

1-. *37-23 16 . Dh: Hp.D.£Cd‘Q (2) 

h.(l).*74-231. Dh:Hp.D.Qr/9-(Q‘W1Q (3) 

[*1312] D.(Q“^)1 Qcl-*Cls (4) 

H . (1). (2) . (3) . (4) . D h . Prop 

*74 311. 1- : a ] Q e Cls —> 1 . a e D‘Q«. D . 

a = Q“f>‘a.aCD‘Q.a1(2=Qr^<a-^r5‘<«^>8-> 1 

[Similar proof] 

*74-32. 1-: * C d‘P . R [ k c Cls -* 1 . D P [ « e 1 -♦ 1 

Bern. 

. *33 41 . D h Hp . D : y, z c k . R*y = TP* . D . (ga.). .tPy . xRz . 

[*35101] D .(gar).* (7?|**)y. x (Pf* k)z , 

[*71171.Hp] Z>.y = * (1) 

(1). *71-55. Dh. Prop 

*74 4. \-:P\(Q[\)=P\Q. = . Q“(J‘P C X 

Bern. 

K *35-23. DbiP\(Qf X)«P|Q. = .(P| OTX-PjQ. 

[*35-66] = .d‘(P!Q)C\. 

[*37-32] = . Q“d‘P CX.Oh. Prop 

*7441. H : G‘P n D‘Q C.k.'2.P\k‘\Q=‘P\Q 

Bern. 

K *3313 131 . *10-23. D 

h :. Hp . s : xPy. yQz . D,.,.,. y * * : 

[*4-71] = : xPy. yQz . . xPy. yQz . y e *c : 

# [*10-281] D : (gy). *Py. yQz . =x>,. (gy) . xPy. yQs .ye«: 

[*34-1.*35*1] "5 m.x(P\Q)z. =XfZ ,x(P j *”] Q)* :. D h . Prop 

*74-42. h : d‘P C Q“\. D . D‘(P | Q f X) - D‘P [*37 321401] 

*74-43. H : Q“X C d‘P. D . d‘(P |Qf*X) = d‘Q « X [*37-322401. *3564] 

*74-44. h:d‘P = Q“X.D.D‘(P|Q[-X) = D‘P.d‘(P|Qrx) = d‘Qrt X 

[*74-42-43] 
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*74 5. H : K ! (P\ &)'y. = . //c 0 . E ! luy . = . {P\&)ty=Pty 

Dam. 

h.*357. D b ir — iPf &)*!/• = •ye& •x = Piy (1) 
H . (1 >. *10‘1 1*2*1 . D 1-:. (g.r) .x — {P[ &)*y. = : y c/8 : (gx) ..r = 

[*14 >04) D 1-E! (P[ 0)‘y. = . y e £ . E! P*y (2) 

K . *35 7 . D 1-: <7^ 0)‘y = Ply . = .y*&. P‘y = P*y. 

[*U2H] = .yaQ. E! P*y (3) 

K(2).(3).DKPiop 

*74 51. V 7"y C o . D : E! (a 1 P)‘y. a . E! luy. = . P*y = (a ] 7>)‘^ 

I)cm. 

H . *32’1S . *351 . D h :. Hp. D : xPy. =x. x(a 1 P)y: (1) 

[*30 34] D : E ! (a 1 P)'y. s . E ! Ply (2) 

h . (1). *30341 . Dh Hp. D: E! P‘y. = . 7>‘y =>(a] P)*y (3) 

H . (2). (3). D h . Prop 

*74 511. K T7*.*- C £. D : E! (£] TV.* . = . E! 7~‘.r. = . l”.v = ] P)*x 

[Proof ns ill *74-51] 

*74 52. H : <6'"£) ] .S'c 1 —► Cl*. /9 C <I*&. ytfi .0 . ft#"#)] Sl'y-S^. E! S‘y 

Dem. 

V . *37 1H. D h : Hp. D . 8*y C S“/3 (1) 
H.*37 1 . DhHp.D. (gx). xSy. x € .S'*1/?. 

[*33-131] D . .y € (I‘ |(5“/9) 1. 

[*71*l(j] D . E ! |(.S'“/J) 1 A']‘i/ (2) 

h. (1). (2). *74-51 .DK Prop 

*74521. h:.S'rN‘‘/**Cls-> 1./3CI>‘S. y «/9. D. |(S“/9) 13|‘-/ = S‘y. E!5\y 

[*74'32l] 

*7453. 1-: (»S“/?) 1 .S'f 1 —* 1 ./3Ca‘S.y€/3.D.6’‘S‘y = y 

Dam. 
h.*37l .*33131 . Dh:Hp.D.yja‘|(S“j8)1S|. 

[*72 241.*35-51] D.(3rS“/9)‘{(S‘W1S|‘.v = J/ (1) 

h . *74-52. :Hp.D.((S“/9)1S)‘y = S‘y (2) . 

K.(1).(2). 3 h : Hp . 3 . (3 r S“/8)‘S'y = ,/. 

[*35*7] D . S‘S‘y = y : D H . Prop 

*74-531. ./9CD ‘S.yc0.O.S‘S‘y = y 

*7453 ^ 
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*74 6. h 7*6 1 —» 1 • \ C CPd*?'. * C CI‘D‘T . D : *• = T<“\ . = . X = (T)<“k 

Dem. 

h . *37 421 .Dh: Hp . D . Tt“\ = (Tt f C)‘d ‘7’)“X . 

&)<“*= hHrCYD'T]"* (1) 
K. *72-451-52 . D 

h Hp. D : * = (Tt [ Cl‘d‘7*)“X . = . \ = {Cnv‘(Z\ f* CI'd'DI"* . 

[*72-54] =.\ = {(2;)<rCl<D‘y,;<</c (2) 

^ • (1) • (2). D h . Prop 

*74 61. b:.Te 1-*1.D:XC CPd'r. * = F“X . = .^C Cl‘D‘7\ X = T"'k 

Dem. 

H . *74 6 . *37 103 . D h Hp . D : « C Cl'D'y*. X C Cl‘d'T.K = T“l\ . = . 

*cci‘D‘2\xcci‘d‘y\x- F“* (i) 

1-. *371516 .Dh* = T*u\ . D . « C CI‘D‘r: X = 2*“* . D.XC Cl‘d‘7’ (2) 

•(!)• (2) . *4 71 . D h . Prop 

*74 62. h y, z € £ . y * 2 . Dy>, Ts'y rTs*z - A : b . S f & e CIs -► 1 

Dem. 

. Trnnsp .Dh:.y.«e/5.y + #. Dy>/ . tf'y r» «= A : = : 
—► —► 

y, e e /9 . a ! S‘y o‘r . Dy>,. y — * : 

[*3218] =:y,ze (3 . xSy . xSz . Dz,„,z - y =* * : 

[*35101] = : *(S r>3)y .*(S - y- * = 

[*71171] = : S [• /9 « CIs —* 1 :. 3 t-. Prop 

*74 63. h:.P,Q<X.P + 4».D/..(?.D‘P«D‘Q = A: = .e|Drx«Cls-»l 

[*74-62. *72-27] 

*74 631. Hs.P,QeX.P + Q.Df.(?.a‘Pna‘Q = A: = .«|arx«Cls-» 1 

[*74-62. *72-27] 

*74 632. h:.P,QfX.P*Q.D,.<,.C‘PnC‘Q = A: = .PrXeCls—»1 

[*74-62. *33-5] 

*74 7. h : Q « 1 —♦ CIs .P\Q = P‘\Q.O.P[ D‘Q = P/[D‘Q 

Dem. 

h.*34-27.Dh:Hp.D.FQ|Q = F|<2|Q. 

[*72-59] D . P r D‘Q = F |* D‘Q : D 1-. Prop 

*74-701. h : Q * CIs —► 1 . Q | P = Q | P'. D . (CPQ) "] P = (<I‘<2) 1P" 

*74-71. H:.Qel—»cis. d‘P C D ‘Q . d'-PX D‘Q .3:P|Q-P'!Q. = .P=P' 

[*74-7 . *35-66 . *34 28] 

*74-711. I-:. Q « CIs—»1. D‘P C Q‘Q. D'P'C Q‘Q .3:Q|P=<2|P'. = .P = P' 
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*7472. h y c 1 —»(.Ms: 7*c X . Dj.. <1*7'C D*y: D .( Q)[\e( Q“\) srnX 

l)em. 

h .*74 71 . D H :: Hp.D P.P'eX . 7* Q = i>' Q.= .P = P' (1) 

H . < 1 >. *73’28 . D h . Pmp 

*74 721. hs.yeCIs-* 1 : P € X. D,.. D‘7* C <I‘Q: D. <<? )|* X «<y| “X) sm X 

*74 73 K : y « I —> Cl*..*.*< I“X C D*y . D. ( y>|k\€( Q“\)siiiX 

| *74 72. *40 43] 

*74731. Hy*n*-> 1 .A*i>‘*xc<i*y. :>.<y >rx€<y “x)srax 

*7474. h:yt 1 -»ri«.(IWXCD'Q.D.< y>fXc( y*‘X)smX 

(*74 73. *41 44] 

*74741. l-:yffClN-*l .DVXC(I'Q.D.(Q Xc(Q “X)smX 

*7475. H : a 1 y c 1 —> CIs . a C l)*y . s*<I‘*X Co. D .( y)f*X€( Q“X)8U>X 

I Jem. 

h . *40-43 . D h :. Hp. D : PeX . D/>.0*7'C a . 

[*43-481] 

[*37 09] D: Q“X - |(a 1 Q)“X (1) 

H. *43-491 . Dh:Hp.D.( y)TX-| (aiyi^X (2) 

h . *74-73 . *3.VG2 . D K : Hp. D . » (a 1 Q)J [ X e [|(a 1 Q)“X] 5ni \ (3) 

h.(1).(2).(3). D y . Prop 

*74751. H : y p a e CIs —* 1 . a C H*y • s‘D“X C a . D . (Q ) f* X f (Q “X)smX 

[Proof as in *74 75. using *74*731. *43 48 49] 

*7476 hsQcCIs-*! .Jtfl-»CI*.Q P\R = Q\P'\li.D. 
(UtQ)‘\P[D,R-(G‘Q)‘\P'tiyR [*74-7-701] 

*74 761. y :. Hp *74*76. D‘P CWQ.Q'P C IVW.D'i" C Cl*y.<J‘7>' CD <R.D: 
Q\P R-Q P'\Ji. = .P=P' [*7471-711] 

*74 77. y : Q, Re 1 -* CIs. s‘D*‘X C D‘Q . $• CI“X C D*77. D . 

(y II70 r X «1 -* 1. (QII«) r X e [(§ II5m X 
Dem. 

I-. *74*761 ^. *40-43 . D 

hrsHp.Dr.P./'eX.Dsy P| 7? « Q j F \ R. = . 7^= P': 

[*43112] D : (Q || 70*7^ = (QIIRYP' . = .P = P' (1) 

H. (1). *73*28. DK Prop 

*74 771. y : Q. R * CIs -* 1 . $‘D‘*X C (I‘Q. s‘d“X C 0*7?. D . 

(Q||H)rXfl-*l.(Q|4)rx*{(Q||«)##Xl5SBX 

[*»n£4] 
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*74772 and its immediate successors are of very great use in cardinal and 

ordinal arithmetic. 

*74 772. f :.(*). E! Q'x : (y) . E ! R'y : Q, Re CIs —»l:D.Q||fiel—»1 

[*74 771 .*33-431] 

*74 773. H : Q[ a, R [(3sCIs -► 1. a C d‘Q,/9 C d‘«.*«D“X C a.s‘d“X C/3.D. 

(Q||«)r\el-»1 .(Q„K)rx*[(gil«)“X!sm\ 

I-. *35-64 . D I-: Hp . D . s‘D“X C d‘(<21- a). s‘d“X C d‘(7* |-/3) (1) 

h.*43-51.DI-iHp.D.{(Q[-a),;(/3li<»rx = (g «>rx (2) 
I- . (1) . (2) . *74771 .31-. Prop 

*74 774. H R « CIs —» 1: (y). E! R'y: 3. | R « 1 -♦ 1 

Dein. 

H. *71-166. D h : H p . D . /£ f CIs —> 1 (1) 

h . *33-431 . D h : Hp . D . {P) . (T'P C D‘7* (2) 
w 

K . (1) . (2). *7471 ^. 3 H s. Hp. 3 : P \ R - F \ R. mr, r. P = P'(3) 

K (3). *71-57. 3K Prop 

*74 775. I-:Q[ s‘D"X, R f «‘d“X « CIs -♦ 1 . s*D“X C d 'Q. s' d“X C Q'R . 3 . 

(Q || R) [ X <r 1 -♦ 1 . <Q i| R) [ X « |(Q ]| £)“X] sm X [*74773] 

*74 8. 4 : (/3 u 7) e 1 -* CIs . = . 7? r A •« T 7 « 1 -* CIs 
Dem. 

H . *71-572 . 3 I-: R u y) , 1 -»Cls. e : y « d‘R « </9 o 7). 3„ . E ! R'y : 
[*22-68.*10-41] = : y e d‘72 «/3 . 3„. E! R'y: y e d‘7i o 7. D„. E ! 7J‘y : 
[*71-572] iJCyel—♦ CIs:. D K Prop 

*74801. l-:(/9c7)1ReCls-»l . = ./91ie,71iieCls-»l 

*74-81. I-: s'k e 1 —» CIs . = . R f “* C 1 -♦ CIs 
Dem. 

h . *71-572. 3 h Jlf#** e 1 —»Cls. = : y e Q'R n s'k . 3„. E! 7i‘y : 
[*40-11.*10*35*23] = : a € k . y e Q'R r> a . D«.y. E! 7£‘y: 

[*ll-62.*71-572] = : ae *. 3. . «r a« 1 -» CIs i 
[*37-61] = 2 7J f “k C 1 —» CIs :. 3 I-. Prop 

*74-811. I-: («■*) 1R s CIs —♦ 1. = . 1 R“k C CIs -> 1 

*74 82. h 2 09 «7)1 R «1 -> CIs.=. £1R, 71R e 1 -♦ CIs. R“(0 - 7) o R"y = A 
Dem. 

K *351. *7117.3 

H w *y) 1 ^ e 1 —► CIs . = :.ar, y e & v y. xRt. y/te. * x = y 

[*1312] Di.xeP .yey . xRz . y/k . 3,.*., . * Ts.YjJ-^C £ 
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[Tmiisp] 

[*10*21 '252] 

[*10*28.*37*10.>] 

[*24*39] 

1* .<11. *71*22.3 

3 .r e & — 7 . xRz . 3ry>,. ^(y e7 . yRz) 

D .r c (3 - 7 . xRz . 3Z... May) • y f 7 • '/#- s- 

3 z c - 7> • =>.* • *'^“7 :* 

D:. 7it‘i0-y)*R“y = A (1) 

t-:(#vy) 1 /<« I -► CIs ./<“<£-7> * A“7 = A (2) 
1*. *71*22.3 h i&^R* 1 ->CU.3.<0-7>1 /?e 1 ->Cls (8) 

I- . *37*4 . 3 h : A*“<^ - 7) a R“y = A . 3 . (I‘(£ - 7) J R r> <I‘<7"] A) = A (4) 

H.(.S).(4).*7l-24.DI-:/2V^7l^< 1 -> CIs. R“(0 - y) n R“y - A . 3 . 
(^-7)1 A c/7|/*€l ->Cls. 

[*35*41] 3.<£ w7)*|/fe 1 —>Cls (5) 

1- . (2). (5). 3 H . Prop 

*74 821. »- : /^i/jw7)*ris-» 1 . = . 

Rf0. ^r7«CI*-*l .R“{/3-y)rs R“y - A 

*74 822. l*:(£v7)1/f« I -♦ 1 . b .01 A.7I Ac 1-» 1 . R“(0-y)"R“7-A 
[*74 82*801] 

*74 823. 1- : /*[><** v7)c 1 -♦ I . = . /<[*£■ 7^7* 1 -♦ * • /*“(£-7>" HuyA 

[ *74*8*821] 

*74*83. 1* /7“tf * /f“7 = A . 3 : (rf v 7) 1 Rt 1 —>Cls. = ./*] /A 71 R « 1 ->C1» 

[*74*82] 

*74 831. R“prs R“y= .\.0:R[(f3 v y)€C\s-+ l.m.Rfff, .RfyeCh-f 1 

*74*832. I-/<“£ a £ “7 - A . 3: <£ v 7) 1R11 -> 1 . 2 . & 1 R. 71 * «1 “* 1 

[*74*83*801] 

*74*833. 1-R“f3 /% R“y - A . 3 s 7? f (£ * 7) « 1 -> 1 • = • R t A * T 7 « 1 1 
[*74 8*831] 

*74 84. h s.(«*#c) 1 Re 1 —>Cls. s : 

1R“«C 1 —» CIs : (8.7«*. 3».T. — y)r> X“<y “ A 
Dem. 

h.*4013.*35*43.Dh:/3<^.D./91/JC(^)1i?: 
[*71*22] 3P:.(«St)1i?€l-*Cls.3:/3€*.3.£*| ftfl ->Cls: 

[*37*61] D: 11?“* C1 —»CIs (D 

h. *72*41. *37*4*21.3 1-:. (s‘/c) 1 /* € 1 -» CIs. 3 : 

/9.7**.3,.Y..R‘‘<0-7)*iK==A (2) 
K *37 *105. *24*39.3 

1- :.f3,y€*.Oli.y.R“(8-y)''R“y = Ai = i 

/3,y€*.xf0-y. xRz . 3*. T . ~ (gy). y e y • yRz ' 
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[Transp] D : 0, yezc.xe0.yey. xRz . yRz . Y . .<• e y . 

[*4.-7] Dfiy. .v, y ey. xRz . yRz. 

[*351] ^ 3*.Y.*(7l<R>W(7lfl>* (;*> 

H . (3).*7117 .Dh./9,7f/c. D„>Y . - 7) *R“y= A : *| C1-> CIs: D: 

0,y e tc . x e 0 . y e y . xRz . yRz . Ofi.y.x.y.z • x = y : 

[*10 23.*4011.*37*1] D : * ((s‘*) ] /if * . y ] rtj 2 . D,.,,.* . u: = y : 

[*7117] D : s‘/c 1 R e 1 -► Cls (4) 

1". (1) . (2). (4) .3h. Prop 

*74841. R[s*k e Cls —♦ 1 . = : 

R\“k CCls-*l i0,y eK.Dty. R“(0- 7) r* Rify = A 

*74842. Re 1 —* 1 . = : 

] R€tK Cl—>1 : 0,y e k . Op,y • R“(0 — 7) r\ R€ty = A [*74-84-811] 

*74843. 1"R T e 1 -♦ 1 . = : 

R [•“« Cl-»l:i9,7f<. D,.v . Rl\0 - 7)" /*“7 - A [*74-81-841] 



SECTION D 

SELECTIONS 

Summary of Section I). 

Tin.* subject lo hi* considered in tliis section is important chieHy in 

connection with multiplication, both cardinal and ordinal. In order to get 

u definition of multiplication which is not confined to the case where the 

number of factors is finite, we have to seek a construction by which, from 

a given class of classes, k sav, we construct another class which, when k is 

finite, has that number of terms which, in the usual elementary sense, is 

the product of the numbers of terms in the various classes which are members 

of k, mid which, whether * is finite or not. obeys as many as possible of the 

formal laws of multiplication. The usual elementary sense of multiplication 

is derived from addition; that is to say. p x v is to be the number of terms 

in 8,k. where * is a class of p mutually exclusive classes each having v members, 

or vice versa. This sense can he extended to any finite number of factors, 

but not to an infinite number of factors; hence for a number ol factors which 

may be infinite we require a different definition, nud this is derived from the 

theory of selections. 

Selections are of two kinds, selections from classes of classes, and selections 

from relations. The latter is the more general notion, from which the former 

is derived. But as the former is an easier notion, we will begin by explaining 

selections from classes of classes. 

Given a class of classes *. a class /1 is called a selected class of * when 

H is formed by choosing one term out of each member ol k. For example, if 

k consists of two members, a and and if * € a and y c &, then i‘xu i y is 

a selected class of k. If every constituency elects a local man. Parliament 

is a selected class of the constituencies. If * is a class of mutually exclusive 

classes, i.e. a class no two of whose members have any member in common, 

then a selected class consists of only one term from each member of *; t.e. /i 

is a selected class if 
/l C s*k 1. 

But if * is not a class of mutually exclusive classes, this does not hold 

necessarily; for a term x which is a member of both a and B (where a,Be *) 

may be chosen as the representative of a, while some other term may be 

chosen as the representative of B. so that two members of B »“ay belong 

to the selected class. Again, if * is a class of mutually exclusive classes, the 

relation of the representative to its class must be one-one, because, since no 

term belongs to two classes which are members of *, no term can be the 
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representative of two classes. But when k is not a class of mutually exclusive 

classes, a term which belongs to two classes a and 0 may be chosen as Un¬ 

representative of both. Thus the relation of the representative to its class 

may be only one-many, not one-one. 

The relation of the representative to its class may be called a selective 

relation. A selective relation of * is one which selects, from every class 

a which is a member of k, a certain member x as the representative of a: 

that is, we have, if R is the selective relation, 

a € k . D« . R*a e a : (1*72 = k. 

This condition is equivalent to 

R e 1 —► Cls . R G € . Q* R = tc. 

If R is a selective relation, D‘R is a selected class; and if p is a selected 

class, there is a selective relation R such that Thus the study of 

selections from classes of classes is wholly contained in the study of selective 
relations. 

The class of selective relations from a class k is called (A‘tc. Thus 

R t €A‘k . =. Re 1 —► Cls . RQe. Q*R = k, 

- (1 -► Cls) Rl'c « <P*. 

Then I)is the class of selected classes. 

It will be seen that, if a etc, R‘a may be any member of a, and we get 

a different R for each different member of a. Thus if we keep the repre¬ 

sentatives of all the other members of k unchanged, the number of selective 

relations to be obtained by varying the representative of a is the number of 

members of a. Hence the number of selective relations altogether may 

be fitly defined as the product of the numbers of terms possessed by the 

various members of k. In case k is finite, this agrees with the usual definition 

of multiplication; and whether k is finite or infinite, the product so defined 

obeys all the formal laws of multiplication. 

To illustrate the notion of selective relations, let us take a very simple 
case, the case where k consists of two classes a and 0, each of which has two 

members. Let x and y be the members of a, z and w the members of /3. We 

assume a=$=£, x^y, z^w. Then the selective relations of k are the following: 

x lav z l 

x l av w l (3, 

y lav z 10, 

y l av w l 0. 

Thus they are four in number, x.e. the number of members of is the 

product of the number of members of a and the number of members of 0. 
A similar process would show that our definition of the product agrees with 

the usual definition in any case in which all the numbers concerned are finite. 
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Selections from relations are an obvious generalization of selections from 

classes of classes. We had above 

CIs) a Rl‘e a 

.CIs)A Rl«i* a a**. 

€** = (l 

We put, generally, 

which we derive from the definition 

= \ k IX = (I -♦ CIs) a HI*P All1*! Df. 

This is the fundamental definition in the subject of selections. We have, in 

virtue of this definition. 

1-8 

When *-<l‘/\ we may call /V* the class of selections from P. Thus 

generally. /V* i* the class of se lections from /'[** provided and it 

this condition is not fulfilled, PS* « A. We may call the class /V* the 

class of ••/‘•selections from The class of "c-selections from *" will be 

what we previously called the class of - selective relations of 

It will be observed that we have 

li € Pa* . i/t* .0 . lt'a « P'y- 

Thus if -P“k is a class of mutually exclusive classes. D*R selects one Iroin 

each of those classes, and is therefore a selective class of P“k\ hence in this 

case 

D“/V* - D“cA,y,<^. 

In Cardinal Arithmetic. is the important notion, and the more general 

notion /V* is seldom required. In Ordinal Arithmetic, Fa1* is the important 

notion. It will be seen that 

R € Fa** . s . /? « 1 —* CIs. HQF ,Q*R = *. 

Thus Fa* is only significant when * is a class of relations; in this case wo 

l,UVC RtFA'x.Qex.l-R'QcC'Q. 

Thus li chooses a representative member of the field of every member of *. 

The most important case is when k is of the form C‘P, where P is a serin 

relation whose field consists of serial relations. Then FA‘C*P becomes the 

field of a relation which may be defined as the ordinal product of the relations 

composing C‘P; in this way we get an infinite ordinal product analogous o 

the infinite cardinal product. This will be explained at a later stage 

Although it is chicHy and FS* that will be required in the sequel, 

we shall treat IV* generally, because this introduces little extra complicate , 

and most of the theorems which hold for or FV* have exact analogues 

for Pa1*- 
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as above defined, is the class of one-many relations contained in P 
and having k for their converse domain. We know of no proof that, there 

always are such relations when * C Q*P. In fact, the proposition 

* c a *p. ,. a! 
is equivalent to the “ multiplicative axiom,” i.e. to the axiom that, given any 

class of mutually exclusive classes, none of which is null, there is at least one 

class formed of one member from each of these classes. (This equivalence is 

proved in *88 36, below.) It is also equivalent to Zermelo’s axiom*, which is 

(a) . a ! eA‘Cl ex‘a ; 

hence also it is equivalent to the proposition that every class can be well- 

ordered. In the absence of evidence as to the truth or falsehood of these 

various propositions, we shall not assume their truth, but shall explicitly 

introduce them as hypotheses wherever they are relevant. 

In the present section, we shall begin (*80) by considering such properties 

of Pa‘k as do not depend upon any hypothesis as to P. We shall then 

(*81) proceed to consider such further properties of Pa*k as result from the 

hypothesis /'f k « Cls —* 1. This hypothesis is important, because it is verified 

>n many of the applications we wish to make, and because it leads to important 

properties of /V* which are not true in general when P is not subject to 

any hypothesis. These special properties are mostly due to the fact that 

when P[k is a many-one relation, Pa*k consists of one-one relations (not merely 

of one-many relations, as it does in the general case). This is proved in *811. 

We then (*82) proceed to consider the case of relative products, i.e. (P\Q)A‘\. 
It will appear that, with a suitable hypothesis, (P \ Q)A‘\ = | Q“PA‘Q“\ and 

D“(P | Q)a‘\ = D“PA*Qt*\. In the following number (*83) we apply the 

results of *80 to the particular case where P is replaced by e, which is the 

important case for cardinal arithmetic. In *84 we apply the propositions of 

*81 to the case where P is replaced by c, and where, therefore, we have the 

hypothesis <• [* * e Cls —► 1. This hypothesis is equivalent to the hypothesis 

that no two members of k have any members in common, i.e. that 

a, e k . a 4= /3 . D.,* . a r\ (3 «= A. 

When k fulfils this hypothesis, it is a class of mutually exclusive classes. 

For classes of mutually exclusive classes we adopt the notation “Cls’excl.” 

It is shown in *84’14 that a Cls* excl is one for which we have c \ k e Cls —» 1. 

When k is a Cls* excl, D f is a one-one relation, and D“€A*k sm €A‘k. 
Also in this case T)lt€AfK consists of all classes formed of one member from 

each member of *, i.e. all classes ft such that 

ft C 8*/c zaetc.Da.ftnac 1. 

Bee hU "Beweis, daea jede Menge woblgeordnet werden kaon,” Hath. Annaltn, Vol. Liz. 
PP. 614—616. 

BfcW i 31 
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In *85, wo prove various important propositions, of which the chief is a form 

of the associative law*, namely 

h : k € Cls’excl. D . sm 

Finally, in *88, we consider the question of the existence of selections. This 

cannot in general be proved when < is an infinite class. The assumption that 

€A‘/c is never null unless one member of * is null is equivalent to various other 

assumptions, for example to the assumption that every class can be well- 

ordered. One of these equivalent assumptions is called the “ multiplicative 

axiom.” This axiom is equivalent to the assumption that an arithmetical 

product cannot be zero unless one of its factors is zero, and is regarded by 

some mathematicians as a self-evident truth. This can be proved when the 

number of factors is finite, i.e. when * is a finite class, but not when the 

number of factors is infinite. We have not assumed its truth in the general 

case where it cannot be proved, but have included it in the hypotheses of all 

propositions which depend upon it. 

• Cf. note# to •12*1*11. 



*80. ELEMENTARY PROPERTIES OF SELECTIONS 

Summary of *80. 

In this number, we shall give such properties of PA as follow most directly 

from the definition, without any restrictive hypothesis as to P. 

If ReP a‘k, R selects one member of P‘y, whenever ye*, as the selected 

referent of y. For, since R e 1 Cls . d*R = *, we have y e * . D . E ! R‘y; and 

since RQP, we have y e * . D . (R*y) Py, i.e. y e * . D . R‘y e~P‘y. Calling R*y 

the selected referent of y, it is evident that we may replace R*y by any other 

member of P*y, and still have a member of /V*. (This is proved in *80 4.) 

Thus il /V* has any members at all, we can get as many members as there 

are members of P'y by merely altering the selected referent of y, leaving the 

other selected referents unchanged. 

In the present section, we first prove various simple properties of iV*. 

Most of these are almost immediate consequences of 

*80 14. V : R e /V* . = . Re l—> Cls . RGP. d'R = * 

The most useful of them are 

*80 2. h : a ! /V* . D . * C CVP 

*80291. ViR€Pa*k.1.RG.P[k 

*80 3. h : R e Pa‘k . y e *. D . E ! R*y 

*80 33. \-iRe Pa<k . D . D‘R C P‘‘k 

We then have various propositions (*80 4—46) concerned with x J, y when 

xPy- Of these the most important are the following : 

*80 41. V : R e PA<K .yeK. x'Py . D . [\R^-{R‘y) l y\ v x'l y] e Pa‘k 

I.e. given a selective relation R, the selected referent of y (where yeQ.*P) 
may be replaced by any other term having the relation P to y, and we shall 

still have a selective relation. 

*80 45. h . PA Vy = l y“~P‘y 

We then have a set of propositions (*80 5—*54) connecting (Pc/Q)4‘(/fu\) 

with Pa1k and QA‘\. These are chiefly useful as leading to the next set 

(*80 6—-69), connecting Pa‘(k v X) with Pa*k and /VX. The most useful of 
these are the following: 

*«0 6. h-.RePSx.XCK.O.RfXePSX 

*8065. h : * « X = A .Re PA‘x .SePA‘\ .D.R oSe?4‘(« u X) 

*80 66. \-:.K*\=A.DzMePA*(Kyj\). = .(&R,S).RePA‘K.SePA‘\.Af=RvS 

31—2 
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We have next a set of propositions (*80'7—78) dealing with the relations 

of if and il-R when (e.y.) J/tP4‘(««X) and RePS«. These propositions 

are seldom used, but they would be useful in considering division. 

We next have a set of ]>ropositions (*80-8—-84) dealing with the relations 

of I\‘a and 7V/9. The most useful are 

• 8081. h : g ! TV« . TV* = /V£ ■ 3 ■« - $ 

*8082. h : a =j= /3.3 . W« a 1\‘,3 = A 

Finally, we have four propositions (*80 9—93) on ?4'(i‘j/vt‘t) and one 

.... /V(£vt‘*)' The most useful of these is 

*80-9. h :.//+ z . D : McPS(Py v = .<3«m0- uPy.vPzly 

*8001. (1-*CIs)a BPPntv*\ Df 

•801. 1- : X PA* . 2 .\.(1-»CIs)aRI*/'aU<« [*21-3. (*80 01)] 

*80 11. h . PS* = (1 -*CI*)aRI«/JaCT«* [*801 . *303] 

*80 12. H . E! /V* [*80*11 .*14*21] 

*8013. 1-: X Pak . = . x = PS* [*8012 . *30-4] 

*8014. b:R< PS*. = K 

[*80l1 .*20 •43 . *22-33. *61 2 . *33 61] 

*8015. ViPdQ.O . PS* C QS* [*8014] 

*8016. h : li <• PS* . HQQ.D. lie QS* 

I- .*80-14.31- : R tPS* . 3 . Rt l-»Cls.CI‘K- k : 
[Fact] 3 I-: R'1\‘k.R CQ.3. fir 1—*Cls.CI*« = * 

[*8014] O.Rt QSk : 3 I-. Prop 

*80 17. h : Q C 1‘ . 3 . = /V* a RI*Q 

RCQ- 

h.*80-15. 3h:Hp.3.Q*‘*C7V* (1) 

h. *80-11. 3 I- • Qa‘* C RI‘Q (2> 
h . (1). (2). 3 h : Hp . 3 . c /V* a R1*Q (3) 

h . .80-10 . 3 h . TV* a RI*Q C <&** (+) 

h. (3). (4). 3 h. Prop 

This proposition is used in the theory of ordinal multiplication (*172162). 

*80 2. 1-: a ! P*K • 3 - * c a</> 

Dem. 
h. *80-14.31■:R(P^K.O.ReP.aiR = K. 

[*33-264] 3.a‘flca‘P.a‘fl = * 

[*13-13] 3.*Ca‘P 

K(l).*10-11-23.3 1-. Prop 

(1) 
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*80 21. hj-^c d‘P) . D . PSk = A [*80*2 . Transp] 

*80 22. V : P r /c = Q f* *. D . PA‘* = QA '< 

Dem. 

H . *3314 . D H :: Q.*R = k . D xRy . D • y e k 

[*5-44] D a-Py . D . o-Z^y : = : xRy . D . xPy .ye/cz 

[*35-101] =:.r Ry.D.x(Pt*)y (1) 

H.(l). *1111-3-33. D 

h d‘Zi = *.D:PGP. = .PGPr* (2) 

l-.(2)^.Dh:.a«fi = *.D:iiCg. = .iJGQr* (3) 

M2). (3). *1312 .Dh. CI‘.R = x . P{ * - « . D : J{ G P. = . IIG Q (4) 

H . (4) . Comm . *5 32 . D 

h Hp . D : P G P . d‘Z* x.s.ACQ.a'A-x: 

[*8014] D : Zic PA‘* . = . R c Qa‘ac D h . Prop 

*80 23. h . ZV* - (Pf *)*'« 

Dem. 
h. *35-31 . *22-5 .Dh.Pf*Ac = (P [•*)[** (1) 

h. (1). *80-22. DI-. Prop 

*80 24. h/cC d‘P. Q-Pf*#c. D . ZV* =. QSd'Q [*35-65 . *8023] 

*80 25. V : g! iV* .Q-Pf**.D. P*‘* = QA‘d‘Q [*80-224] 

*80 26. V . Pa‘A - t‘A 

Dem. 

V . *8014 . D h : P e ZVA •■•Pci—* CIs .PGP. d‘P = A . 

[*33*241] ■.Pci-* CIs . RQP. R = A. 

[*13*193] = . A c 1 —» CIs . A G P. P = A . 

[*72*1.*25*12] s.P- A. 

[*51*15] ■ . P c i‘A s D h . Prop 

Note that PA‘A is a unit class, not the null-class. It is owing to this fact 

(as will appear later) that, if y is any cardinal, y° = 1. See the note to *83*15. 

•80 27. h : a ! ac . D . Aa‘/c = A 

Dem. 

h . *8014 . D 1- s P c ASk . D . P G A . d‘P = * . 

[*2513] D . P = A . d‘P = ac . 

[*33-241] D.k = A (1) 

I- .(1) . Transp. *1011-21. D 

h^lx.D. (P). P ~ c A &K . 

D . Aa‘ac = A : D I- . Prop [*24-15] 
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*8028. 

I Jem. 

*8029. 

Deni. 

*80-291. 

Dem. 

*803. 

Dem. 

•8031. 

Dem. 

*8032. 

Dem. 

*8033. 

Dem. 

*8034. 

Dem. 

P : a ! k . D . P±k 

P . *8014 . Dh:.g!/r.D:/?€ /V* . D/;. g ! G‘P : 

[*83-241 ] D : R *- 7 V* . D*. g ! R : 

[*25 63] D : A^c P&tc D P . Prop 

P: 

P . *80’14 = 

[*35-452] D . 77 = 7f|* * s D P . Prop 

I-iRcPSsc.Z.HGPt* 

P .*80*14.*33*14. D 

P : • H p. D : jr Tty . Dx§ y . rPy. y e k • 

[*35*101] DXiV . D P . Prop 

I" s 77 f 7V* . y € k . D . E ! IVy 

1-. *8014 . D P : Hp. D . 7? * 1 —* Cl*. y € (I‘P. 

[*71*163) D. E! R*y : D P . Prop 

P: R€PA‘K.ye*.0./Vy€P*y 

P . *80*14. D P : Hp. D. R < 1 -* Cl*. R Q P. y e (l‘R . 

[*71*31] D . 7? G 7'. (IVy) Ry. 

[*23-441] D . (R*y) Py • 

[*32*18) D . R‘y e P*y : D P . Prop 

P R € TV* . D : y e k . = . E ! R*y. = . R*y c P*y 

b . *80*14 .DPs. Hp. D s (I‘77 = *: 

[*33*43] D:E!77‘y.D.ye* 

P.*14*21.DP: J7‘y€?‘y.D.E!/*‘y: 

[(!)] D b Hp. D : R'ycP'y. D .ye* 

P.(1).(2). *80-3*31 .DP. Prop 

P: J*6/V*.3.D‘flCP“* 

P . *80*14. *37*25 .DPs Hp. D. D‘J7 = R“k .RQP. 
[*37*201 ] D • D‘77 C : D P. Prop 

P : P € PA‘* - 3 . K !! R“k . /?“* = D‘77 

P . *8014 .DP: Hp . D . 77 e 1 —* Cls. <P77 = * . 

[*71 16.*37-25] D . E !! 77“*. 77“/c = D‘77 : D P . Prop 
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*80*35. h : R e PA‘*. D . D *R = £ |(gy) .yeK.x= R‘y] [#376 . #80*34] 

#80 36. V : R, S e PA‘* . R[ av Sf - a e P*‘k 

Dem. 

H. #71*26. Dh: Hp . D . P [ a, Sf* - a e 1-> Cls (1) 

h . #35*64 . D V . a\R [a)rs Cl*(S[* - a) = A (*2) 

H . (1). (2) . #71*24 .DI-: Hp — afl—> Cls (3) 

K . #35*64 . #80*14 . D h : Hp . D . (I‘(P [ a) = * ^ a . d*(S f - a) = * - a . 

[#24*41] D.a*(/erac;5[‘-a) = /f (4) 

I-. #35*441 . #80*14 .DHrHp.D.i^raGP.iSr-aeP. 

[#23*59] D. Pfac/Sr-aGP (5) 

h . (3) . (4) . (5) . *80*14 .Dh. Prop 

This proposition is used in dealing with greater and less among cardinals 
(#117*68). 

#80*4. : Re Pa‘k . y « * . xRy. x’Py. D . {(P -i- x J, y) v x J y) e PA‘tc 

This proposition is important. It shows that, if ReP^tc and x is the 

selected referent of y (i.e. is R*y), then x may be replaced by any other 

member of P*y without our ceasing to have a member of /V*. 

Dem. 

I-. *55*3 . D f-Hp . D : a* l y G R : 

[*72 01] D : Cl\R^x J, y) - CI‘P - Cl*(x i y) 

[#80*14.*55*15] = *-i‘y (1) 

H . (1). *33*261 . D h: Hp. D . (I‘{(P-* i y) c; *' i y) = (* - i‘y) v OV | y 

[*55*15] =(K-lty)vi‘y 

[*51221] -« (2) 

h . (1) . *55*15 . D 1- : Hp . D . Q‘(R-^x |y)n Cl‘(a;' i y) = (k — i*y) n i*y 

[#24*21] = A. 

[*7l*24.*80*14] D . (R — xX y)wx' ^ y e 1 —* Cls (3) 

h .#80*14 . *55*3.3 h -.Hp.D.R^xiyQP.x iyQP. 

[*23*59] D.(flix|y)u«'|yGP (4) 

h . (2). (3) . (4) . *80*14 ,DK Prop 

*8041. h : R e PA‘* . y e k . x'Py. D . [{P^(P‘y) ly}vxly]e PA‘* 

Dem. 
V . *80*3 . *30*32 . D H : Hp . 3 . (P‘y) Py (1) 

h . (1) . *80 4. 3 h . Prop 

•8042. 

Dem. 

h .*41*11 . 3 h ix^pPS^y . = . (gP) . P € PA‘* . xPy. 

[*80*14] 3 . a:Py .ye*. 

[#36*101] 3.<r(P|**)y (1) 



PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 488 

h . *80-4-1 .*35101 . D 

b : P « /V* .x(P\k)ij. D . [|P-(P‘y) | yj ori(/]c /V* . 

[*55 132]D.[;P.^(P‘y)iyI oxJ,y]ePA‘*.x[[P-^(P‘yUy]c/xl,y]y. 

[*41 *141 ] D . xijPP&K)y (2) 

b . (2). Exp. *1M 13 . Z> H : R € PA‘* . D . P f * Gs‘Pa‘k (3) 

I-. (3). *101123. D h : g ! PA‘* i‘/V* (+) 

H.(1).I4).DK. Prop 

-80 43. K : rPy. = . .r | y € P^i *y 

Jjem. 

b . *72182 . *53 15 . D I-. * ly c 1 -» CIs. CP* 1 y = «‘y (1) 

H . *35-3 . D H : xPy. = . x | y G P (2) 

h.<I).(2). *4 73 . Ob: xPy. = .x | y G P. x J, .y € 1 CIs . d‘(x | y) = f‘y . 

|*S0 I4] 5 .x.|y€PAVy :D H. Prop 

‘•80 44. H : Rt PA‘i‘y . D . P = (P‘y) | y 

l)em. 

b . *8014 . D b : Hp . D . P € 1 -> CIs . d‘P - i‘y. 

[*37-25] D. P c 1 -> CIs. d‘P = i*y. D‘P = R“i‘,/ 

[*53-31.*711(»3] = i‘P‘y. 

[*5510] D . P * (P*y) i y: D h . Prop 

‘•8045. h. /V'V/ = iy“P‘// 

JJem. 

1-. *38131 . D b ; P < | y“P*y. = . (gx). * c P‘y. R = a; J y. 

[*3218] = .(gx).xPy. R -x^y . 

[*80-43] D.PtPA‘i‘y (1) 

h . *80-44-31 . D 1-: P e PAVy. D . P = <P‘y) 1 y. P‘y f P‘y. 

[* 14-205] D . (gx). P =* x l y. x e P‘y. 

[*38131] D. Pc±y“P‘y (2) 

I-. (1). (2). D h . Prop 

*80 46. b : g ! PA Vy . = . g ! P*y . = . y c Q‘P [*80 45 . *37 45 . *33 41] 

*80 6. huo\=A.Pf PA‘* . S e QA‘\ . D . P c/ S e (P c; Q)A‘(* ^ X) 

Dem. 

1-. *8014 ,0b: Hp . D . P, S c 1 —> CIs. <PP = k . dfS = \. RG P. SGQ • 
[Hp.*33-261.*23-72] D. P, Sc 1 -* CIs. d‘P n d‘S = A . d‘(P u S) = k w X . 

Pc/SGPc/<2- 

D.PuSel—♦Cls.d‘(Po5) = ^X.«o5GPaQ. 

D . P c; Se(Pv Q)A‘(x u X): D h . Prop 
[*71-24] 

[*80-14] 
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*80-51. h : X a (I <P = A .Re . Se Q±‘\ .O.RvSe(Pv Q)*‘(* o X) 

Dem. 
H . *10 24 . D h : Hp. D . g ! P^k . 

[*80-2] D . * C (I‘P . 

[*2248] D./rnX C CPP a X . 

[Hp.*2413] D.*cnX = A (1) 

H . (1) . *805 .Dh. Prop 

*80511. H : k a G/Q = A . X a G*P = A . M e (P c/ wX).D. 

M\k-M AP AQ 
Dem. 

.*8014. *23-621 . DH: Hp. D . M-MX(PwQ). 

[*3517] D . M r ^ - Jl/ A (P wQ)f k 

[*35 644] = M A P p k 

[*35*642.*25’24] - M A(P\kv P\\) 

[*35-41217] «A/[(/cwX)AP 

[*80-29] -MAP 

H . (1) . 0\-iHp.0.»rf\-M*Q 
t y \£t *, A 

(1) 

(2) 

h . (1). (2) .Dh. Prop 

*80 62. H : * a a ‘Q - A . X a a*P = A . Me(P v Q)S(k w X). D . 

MtKiPSK.MfXeQSX 
Dem. 

H . *8014 . *71-26 . D b : Hp . D . M f k. A/p X c 1 -* CIs (1) 

h . *80-511 . D h : Hp . D . 3/ [** = M A P . M f X = M A Q . 

[*23-43] O.M[kQ.P.M[\QQ (2) 

1- . *8014 . *22-58 .Dh:Hp.D./cC(I *M. X C d‘M. 

[*35 65] 0.a€MfK-K.<I*Mt\-\ (3) 

I- . (1). (2) . (3) . *80 14 . D h . Prop 

*80 63. h * a (l‘Q = A.Xo d*P = A . D : 

M e (P u Q)A‘(* V, X) . = . (3P. 5) . /e € /V* .SeQt‘\ .M-RvS 
Dem. 

*80-52 . DhHpJ/e(Po QV(* v \).O.M f kc PSk.M p X e Q*‘\ (1) 

*80-29. Dh: Hp(l). "5 . M = (k \j \) 

[*35412] (2) 

I-. (1). (2). D h Hp . D . M e (P o Q)a‘(k ^ X) . D . 

(g«, S) . R e iV* . S e Qa‘\ .M = RsjS (3) 

K *80-51 . DH:.Hp. D: R e P*‘k . S e QS\. M = RvS. D . 

Afe(PoQV(*uX): 

[*11-11-3-35] D : (a«, S). R e iV*. S € Q*‘\ .M-RvS.O. 

M€(PkjQW(k»\) (4) 
M3). (4). Dh. Prop 
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*80 54 I-* n d*Q = A . X n CllP = A. D s 

li e 1\1k . S t QA‘X. = . (g.l/). M c (P u Q)*\k v\).R = M\k.S=M\\ 

l)em. 

H . *80-51 . D 4: Hp .Re TV* • S * QA‘X .D. RsjS€(Pkj Q)*‘(k u X) (1) 

I-. *8014. Dh: Hp(l) . D . * a d‘S = A.Xn d‘P = A . 

[*35*644] D . (P vy S)f* = P [* * . (P u • 

[*80-29] D . (P o .9) f** = P. (7? iy 5) |* X = 5 (2) 

h . (1). (2). D1-: Hp. R e TV*. S f (?A‘X . D . 

RvSe(Pv Q)A‘(Kyj\).(RvS)fK = R.(RvS)[\ = S. 

[*10-24] D . (gif). M e (P v (?)A‘(* w X). M f* * - R. M f X - S (3) 

h . *80-52 . D h s. Hp. D : M e <P o Q)A‘(* w X). P = M[ * . 5 = M[ X. D . 

R € P&k . S € Q&‘\ : 

[*1011-21 -23] D s (gif). A/ c (P « Q V(* * X). P = A/. S-A/r X.3• 

PePA‘*.ScQA‘X (4) 
H . (3). (4). D I-. Prop 

*80 6. h : Ac TV*. X C * . D. P[* X e PA‘X 

Pern. 

K. *80 14. *71*26. Dh: Hp.D. P|*X« 1 -»Cls (1) 

h . *80 14 . *35-441 . D V : Hp . D . P [* X G P (2) 

K *80 14. *35*65. D 4 : Hp. D . d‘P |* X * X (3) 

h . (1) . (2). (3) . *80 14 . D K . Prop 

*80-61. I-: M r * < PS* .M\\€ TVX . D . A/p (* u X) € TV(* w X) 

Deni. 
V . *800. D h : il/f* X f PA‘X . D . .1/ f* (X - *) * PA‘(X - *) : 

[Fact] Dh:Hp.D.jl/[«c PA‘* . M f (X — *) e PA‘(X — *). 

[*80-5.*24*21 ] D . A/f* * vy A/ f* (\ - *) c 7V(* v (X - *)». 

[*35412.*22-91] DJ/f(*wX)« PA‘(* wX):Dh. Prop 

*80-62. h : 3/ € TV(* w X). Z> . A/ f* * € PA‘* . AT f X « PA‘X [*80 6 . *22 58] 

*80-621. h : A/f(* v X)c TV(* vX). D. A/f *e PA‘* . .1/ [* X e PA‘X 

Deni. 
h . *35-31 . D V . [3/1* (* v X)) f k = A/ \ [(* u X) a *) 

[*22-631] =M[k (1) 

Similarly H . (AT f“(* v X)J f* X = A/ f* X (2) 

H . (1). (2). *80-62 . D h . Prop 

*80-63. 1-: M\k €Pa‘k . Mf\ c PA‘X. = . AT [(* u X) c TV(* u X) [*80 61-621] 

*80*64. h :. G‘Af = *uX.D:A/f‘*€ PA‘*. A/f* X € PA‘X. = . AT ePA‘(* w X) 

Deni. 
h . *35-452 . D h : Hp. D . M= u X) 

1-. (1). *80 63 . D H . Prop 

(1) 
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*8065. h:«n\ = A. R e 1\‘k . S e P4‘X . 3 . R vSeP.‘(« «X) 

*80 o ^ . *23-56J 

*80 651. h : R e . Sc Pa‘X . 3 . .ft u S [ (X — *) e P4‘<k u X) 

Dent. 

K*80-6.Oh:Hp.O.Sr<*--*>«iV<X-*). 

[*80 65] O . P o £ r (X - k) c Pa‘|* v (\ - *)) • 

[*22-91] D.iiwS[(X-/f)cPA‘(* v X):D h . Prop 

*80 66. h:.*n\-A.D: 

A/ c iV(* u X) . = . (gP. 6'). R € P*'k .SePA‘\. M =RsjS 
Dem. 

y .*80-62 . Oh: A/€ PA‘(* wX). D.3/f*/ce PA‘* . .1/p X€ PA‘X (1) 

h • *35-452 .Oh: A/c PA‘(* v X). O . Af — A/ f (* w X) 

[*35-412] =iV[*/coA/rx (2) 

Ml).(2). ^b:jyeP^(ICyj\).D.M[K€PAiK.M[\€PAt\.iM^M[KsjM\'\. 

[*1136] 0.<gR,S). R€P*‘k.S€P*‘\.M=RvS (3) 

h • *3065 . 0 h :. Hp .3: Re PA‘* . S e PA‘X. A/ - P c; 5. O . A/« PA‘(*uX): 

[*11 11-3-35] O : (aP, 5). R < PA‘*. S e PA‘X. A/ - R c; £. O . 

M3).(4). Oh. Prop 

*80 661. h : * /> X = A . 

Dem. 

MePS{Kv\) (4) 

RePA*K.StPA‘\.0. R = (RsvS)tK.S = (RvS)t\ 

*8014. O h : Hp . O . G‘P = * . il*S r* * = A . (1) 

[*35-452] O .Pf** = P (2) 

Ml) • (2) . *35-644 . O h : Hp. O. (P c* S) f k - R . (3) 

Similarly h : Hp. O. (R o 5) T X-8 (4) 

1-. (3) . (4) . O h . Prop 

*80 67. h:.*nX = A.O: ReP*‘* . S € PA‘\ . = . 

(gA/). M e Pa‘(k yj X) . R = M f* * . 8 = M[ X 
Dem. 

y ■ *80-65-661.3h:.Hp.3:fic P4*«. Sc/>4‘\. 3 . 

b o s c p.‘(*« x). r=(j? c< s) r *. =(R * s> r X ■ 
[*10-24] 3.(aJf). HCRa\k»\).R = M\-k.S = M^\ (1) 

K *80-62. 3h:AfeP4‘(*«\)..ft = .M|-*.S = A/fX. 3. fie P.‘*. S.P.'X: 

[*10-11-23] 3 1: (a M). AT e JV(* wX).« = A/f*.S=A/|-X.D. 

fieP„‘*.,SeP4‘X (2) 
*" • 0) • (2) .31. Prop 



PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 

*80 68. b : R e /V< * — i*y). ye k . xPy. 0 . R kj x | y e P*k 

Deni. 
b . *8043 . 0 b : Hp. 0 .x^yePSi'y (1) 

H. *24*21. 0 b . (k — I‘y) r\ (‘y = A (2) 

I-. (1). (2). *80-65 . 0 b z Hp . 0 . Ii vy x ^ y e P* \(tc — (ly) v pyj. 

[*51*221 ] 0.Rvxlye Pa*k :0 b. Prop 

■‘80 69. I-: 3 ! PA‘<* ^ X>. = . g ! /V* . g ! PA‘X 

Dem. 
b. *80*62. DH:g!PA‘U«X).D.g!PA‘*.g!PA‘X (1) 

H . *80 6 . D b : g ! PA‘X. D. g ! PA‘(X - *): 

(Fact] 0 H : g ! PA‘* . g ! /VX . D . g ! PA‘* . g ! PA‘(X - *) (2) 

b . *80*03 . Ob: Re /V* • S« 7V(X - «).0.R wSePSi* v X): 

1*10 11 *23] D H :g ! /V* • 3 ! /V(X — *). 3 . g ! PA‘(* v X) (3) 

H. (2). (3). 01-: g ! PA‘*. g 8 /VX. 3. g IP^w X) (4) 

I-.(1).(4). D h . Prop 

*807. b : (I*P aCPQ — A . *CG‘P. X Cd‘Q. i/ e(Po Q)A‘(* «x).D. 

M ^Q*PSk.M ± PtQS* 
Dem. 

b . *33*33 . *80*14.0 H : Hp . 0 . P a Q = A . if G P v Q . 

[*25*491] D.if^Q-ifAP. if^P-ifAQ (1) 

b . *22*48 . *24*13 .Ob : Hp .0 . * r\ (l'Q = A. X a d‘P - A . 

[*80-511 *52] O.AlAPe PS* . if a Q € QA‘X (2) 

h.(l).(2).Dt*. Prop 

*8071. h:d‘pAd‘<?« A.M^Q€pA‘«.M^PeQ**\.O.Me(PvQ)S(Kv\) 

Dem. 
b . *33*33 .Ob: Hp. 0 . P A Q= A . 

[*25*493] D.if«(if-=-P)o(if^Q) (1) 

H . *80*2 . DH: Hp.D.XCd'Q. 

[*22*48.*24*13] 0 . X a d‘P- A . 

[*80*51 ] D . (ifQ) c; (if-s-P) € (P o Q)A‘(* u X) (2) 
h . (1). (2). DK Prop 

*80*72. b d‘P a d‘Q = A . * C d‘P. X C d‘Q. D : 

if e(Pc/ <?)A‘<* wX). = . if—Q€ PA‘* .M-Pe <?A‘X [*80*7*71] 

*80*73. h:Q = Pr^-^ = ^rx.D. PA‘(* «X) = (Qo P)A‘(* w X) 

Dem. 
h . *35*412 .Dh: Hp . 0 . Q c; 7? = P f (* w X). 

[*80-23] 0.{Qv P)A‘(* u X) = PA‘(* wX):DK Prop 

*80 731. H:Q = Pr*.P = Prx.*v/XCd‘P.D./c = d‘<2.X = d‘P 

Dem. 
h . *22*59.0 b : Hp . 0 . * C d‘P. X C d‘P. 

[*35-65] 0 . k = d‘Q . X = d‘P :0 b . Prop 
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*80732. h:<2 = Pp*.Ps=Ppx.*«X = A.D.CI‘<2na‘P = A 
Bern. 

H . *3564 .DF: Hp . D . (PQ C*.d‘PCX. 

[*22-49] D . (l‘Q Q‘P C * r» X . 

[*2413] 3. Cl ‘Q. r» CI'P ■A:D1-. Prop 

*8074. hun\ = A . M € P4‘(* \J X) . D. 

Bern. 
A/p*=A/p-x= A/ —Pp X . A/p X = A/p - * = A/ ~p[ 

h . *24-4 . D h : Hp . D . .1/ p* = M p J(« u X) - \| 

[*35-31] = {A/r<«-x)ir-x 

[*80-29] - A/p-X a) 
h . *80-732 . D h : Hp . D . CI‘(P [ «) * CI‘(P r *) - A . 
[*33-33] 3.pr*A-pr^-A (2) 
K *80-291 . Dh: Hp.D.A/GPp<* v\). 

[*35-412] D. A/GPp*oPpX (3) 
M2).(3). *25*491 . D H : lip . D . A/-5- P p X ■= A/ n P p * 

[*35 17] -<Af*P)p* 

[*8014.*23- 621] = A/p* (4) 

Mi). (4). Dh:Hp .D. Afp*-A/p-X- Jr-i-PpX (5) 
Similarly H s Hp . D . A/p X- A/p- * - AZ-^Pp * (6) 
M5).(6). D h . Prop 

*8075. h«n\-A ..JkfcPA'(*v\). D . A/-PpXe P±‘k . A/-Pp * € P4‘X 

[*80-62-74] 

*8076. ViMe PA‘p . P e PA*/c. R G A/ . D . Af — P c PA‘(u — *» 

Bern. 
K*8014. D h : Hp . Z>.(I‘P = *.(I‘A/ = m (1) 
t-.*8014..72-91. Dh: Hp. d . a'(A/^ P) = a*A/ - a*p 

[(1)] */*"* (2) 
1-. *8014 . *71-22 . D 1-: Hp. D.A/ — Pel—* Cls (3) 
K *8014. *23*47. Dh:Hp. D.A/iPGP (4) 
^•(2).(3) . (4) . *8014 . D h . Prop 

*80761. h : k r\ X = A . Af € PA‘(* w X) . P e PA‘* .PGil/.D. 3/iPc PA ‘X 
Bern. 

1-. *80-76 . D h : Hp . D. A/ — PePA‘|(* w X) — xr) (1) 
1". *24-4. D h : Hp. D . (* u X) — /c = X (2) 

*80-77. 

Mi).(2). D 1-. Prop 

hMePSn .M^-RePA‘(v- k) . RGM. k C fj .0 . R € Pa‘k 

Bern. 

h . *80-76 . D h : Hp . D . * PS{p - (/* - *)) (1) 

H.*25-411. DhsHp.D. Af=Po(Af-P) (2) 
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P. *2521 . 0\-.Rf%(M^R) = A (3) 
K (2). (3) . *25-4 .D P: Hp.D. J/-^(il/x- R) = R (4) 

^ . *24 411-21 4 

P.<1).<4).(5). DP.Prop 

(5) 

*80771. P : k n X = A . Me Pa(k \j X). .1/x. R e P.‘X . P G M. D . P £ 

Dem. 

P . *24"4 .DP: Hp .D.Xs^wX)-* 

P . (1) - *80*77. DP. Prop 

(1) 

*8078. P : M tf PA‘n . xJ/y . D . A/ -s-a- PA*(/* — t‘y) 
Dem. 

P . *'».V3 . DP: Hp. D.x|yGil/ 

P .*8014. D P : Hp. D . xPy . 
(1) 

[*80*43] D . x | y e P&i'y 

P.(l ).(2). *80-76 . DP. Prop 

(2) 

*808. P:g!PA.D.aW*-« 

Dem. 

P . *80-42 . D P : Hp . D . *‘/V* = />[** 

P . (1). *80-2 . *35 65 .DP. Prop 
(1) 

*8081. P:3!/Va./V«-/V/3.D.«-0 

Dem. 

P . *30*37 . D P : Hp . D . (I= d's'/V/S . 

[*80-8] D . a = 0 : D P . Prop 

*8082. P : a + £ . D . PAa rs iV£ - A 

Dem. 
P . *80 14 . D P : R e PA'a . S€ PA‘0. D . CI‘7* = a. Cl'S = £: 

[*13 13] DP:. Hp. D : /Je /Va. Se 7V/9 . D . Cl'/* 4= d‘tf. 

[*3037.*33’ 121 .Transp] D . R + S 

P.(l).*24-37.DP.Prop 
(1) 

The following proposition is used in *80 84 and in the theory of double 

similarity (*111‘3). 

*80 83. 

Dem. 
P . *8012 . *71 166 . D P . PA e 1 CIs . 

[*7127] DP.(-i‘A)*|/>Ael-*Cls (1) 

P . *35*1 .*51*15. D 

h : X !(- i*A) 1 PA| a. X |(- e‘A) 1PA) 0. 

= .X*A .\PAa.\Pj3. 
[*2454.*80 13] = . 3 ! X. X = PA‘a. X = PA‘/9 . 

[*8081] D.a = £ . (2) 

P . (2). *71*171. D P. (- i‘A) 1PA c CIs —» 1 (3) 

P.(1). (3) .DP. Prop 
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*80-84. b : A~e PA“* . D . PA“* sin * 

Dem. 

b. *51-36. D b : Hp . D . Pa“k C — i‘A . (1) 
[*37-42] D.Pa"*=((-i‘A)*|Pa|“* (2) 
b. *8012. *33-431 . DK/cCd'P*. 

[*37-51] Db.KC PA“PA“tC (3) 

K(l).*37-2. D b : Hp . D . PA“PA“* C /V‘(- t‘A) 
[*37-4] Cd'|(-t‘A)1PA| (4) 
M3).(4). D b : Hp . D . * C d‘((- t*A) 1PA) (5) 
b. (5). *80*83. *73*22 . D h : Hp . D . {(— «*A) 1 PA)“* sm k (6; 
H - (2) . (6) . D I-. Prop 

The three following propositions are useful both in cardinal and in ordinal 

multiplication (#113 and #172). 

#80 9. b y 41 g. D s MePA\i*y w i‘z). = .(g*/, t»). uPy. t»P*. 71/ = u l y w v l z 
Dem. 

b . #80 45-66 .Dh. Hp . D : Me PA*(i*y v t‘*) . = . 

(3 R,S). Re l y€tP*y .Se l z'<P‘z .M-RvS. 
[#38131.#32*18] = . (a u, t») . uPy . vPz . = Dh. Prop 

#80 91. b: Me P*‘(l‘y v Pz) .D.M = (M‘y) l y o (M‘e) l z 
Dem. 

b. #71-6. #8014. D 

b : Hp . D . M = s‘Q ((aw) . w e i*y v i‘z. Q =» (M*w) | w) 

[#51-235] = (Q = (M‘y) ly.v.Q = (M‘z) | zj 
[*51-232] = i€[it{M*y) jyw l\M*z) | z\ 
[*53*13] *= (M‘y) i y& (M*z) ^ z : D h . Prop 

*80-9-91 can be extended, by precisely similar proofs, to any finite number 

of variables y, z, .... They will, on occasion, be assumed for three or four 

variables, without fresh proofs. 

#80 92. b : y 4= z . D . D“iV(£‘y \j i*z) = £ ((au, v) . uPy . vPz . £ = l‘u u t'v) 

Dem. 
b . *5515 . *3326 . Dh. D‘(u |yoi;^) = t,uvt‘i; (1) 

h • (1) • *80-9 . *37 6 . D h Hp . D : ge D“P*‘(l‘y v l*z) . = . 

(3^, v, M) . uPy . vPz . M = u^yw^z.t;=: ilu v/ i*v . 
[*1319] = . (gu, v) - uPy . t>Pz. £ = i*u Prop 

*80 93. h : a ! PA‘(t‘y u i*z). = .y,ze d'P [*80 46 69] 

#80-94. b : 3 ! PA‘(£ ^ i‘*). = . a ! Pa*£ . * e d‘P [*80 46 69] 

From this proposition, together with *80'26 (which gives a * Pa*A), we 

shall obtain an inductive proof that Ps‘/3 exists whenever 0 is a finite class 

contained in d‘P (cf. *120 011). 



*81. SELECTIONS FROM MANY-ONE RELATIONS 

N// /// urn ry of *81. 

When 7>f‘* is a many-one relation, Pa*k has many important properties 

which do not hold in the general case. In the first place, 7V* consists wholly 

of onc-one relations. In the second place, if Iie 1\‘k, IVR takes one term 

and no more out of each member of Puk. Again, if 77 € 7V*. 77 is determinate 

when D‘77 is given; i.e. 77. »S e 7V* . I)477 = L)4&. D . 77 = .S'. It follows that 

J)“7V* is similar to 7V*; hence the numl>cr of members of 7V* is the 
—> 

number of ways of choosing one member out of each class belonging to Plin. 

It should be remembered that when P\ * is many-one, JUiK is a class ol 

mutually exclusive classes, i.e. no two different members of 7,4‘* have any 

common member. This follows immediately from *71181. 

As explained in the introduction to this section, the propositions of this 

number are chiefly useful on account of their application to the case of e. 
This application is made in *84. The most important propositions in this 

number are: 

*811. ViPr*cCls->l . I>.7V*C \-> 1 

*8114. b : 7'f* * c CIs —» 1. i7c 7V*. 3.77 = (D‘77) 1 * = 1* f\ D477 \ < 

This proposition, by exhibiting 77 as a function of D‘77, leads immediately 

to 

*8121. I- :Jj[k«C\s-¥ 1. D. Df 7V*e 1 -* 1. D“7V*am 7V* 

This is the principal proposition of this number. The following also is 

important: 

*81*22. I*: P r * « CIs -> 1. D. L)“7V* - £ |y e *. D,. /i fl:/*C P“*\ 

(1) 

*811. b : P f k e CIs 1. D. /V* C 1 -* 1 

Dent. 
b . *80*14 . D b : 77 c 7V* . D . 77 c 1 —> CIs 

b . *80 291.I> b i.ReP^K . D : 77 G Pf k : 

[*71*221] D : P * € CIs —* 1 . D . 77 * CIs —► 1 (2) 

b . (1) • (2). D b . Prop 

*81*11. b ; 7J f * € CIs —> 1 . J7cJV*.x€D‘/7.D.E! R'x .x{P\k)R'x 

Dem. 

b . *71*165 . *81*1 . D b : Hp. D . E ! R‘x. (I) 

[*30*32.*31 *11] D . xR (R'x). 

[*80 291] . 

b . (1) . (2) . D b . Prop 

(2) 
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*8112. I- : P I* K € Cls —» 1 . R € 1\ <K . .1- e D‘/f . D . 

R‘x = ((.</) lyf«. .<Py) = (<r 1 P)‘x 
Deni. 

I-. *71-361 . D I- Hp . 3 : j. (P r *) ■ = ■ R‘x = |Cnv'(F r *)): 

[•8111] 3: R‘x= |Cnv‘(P|-*)|‘-r 

[*35-52] = («1 P)‘x (1, 

[*35-1] = (» y)(yex.xPy) (2) 

I- • (1) • (2). 3 h . Prop 

*8113 (-:..P|-*,Cls->l .ReP^K.^-.xRy.m.xtD'R.xPy.ytK 

Dem. 

H . *8112 .Dh: Hp . D :.xe D‘R . D : y = = . y = <* *] 

[*71361] D :xRy. s . . 

[*35101] ■. xPy, y € k (lj 

h . (1) . *5 32 . D 

h Hp. D : are D*R . ar/ty . = .x t D‘R , xPy.ye*: 

[*3314.*4 71] D : xRy . = . are D‘/£ . arPy . y e k I> f-. Prop 

*8114. H : P r * e Cls -» 1 . R e P^k .D.R - (D*R) 1 P f* * = p * D'rt t * 

[*8113. *35-102-822] 

This proposition, by exhibiting R as a function of shows that 

a member of /V* is determinate when its domain is given, provided 
p r«eCls->l. 6 v 

*8116. h : P f * e Cls —► 1 . R € Pa‘k . y c k . D . i‘R‘y = D*R n~P‘y 

Dem. 
*" • *®1 13 • 31:. Hp . 3 : xRy. =,. x c D‘/i . xPy : 

[•32 18] 3 -.xe~R‘y.=,.xe D ‘R .xe'p-y. 

[*20 43.*22 33] D:li‘y = D‘R « ~F‘y : 

[*53 31.*71 163.*8014] D : fjfy = D ‘R n ~P‘y 3 I-. Prop 

*81 2. I-:. P f * { Cls -♦ 1 . ft, S e PA‘« . 3 : D‘« = D‘£. = . R - R 
Dem. 

. *30 37 . *33 12.3 h : R = S. 3 . D‘R = D‘S (1) 

I-. *81-14 . *1312. 3 (- :. Hp. 3 : D‘R = D‘S. 3 . R - P r. D‘S | * 

[•8114] =S (2) 

Ml). (2). 3 (-.Prop 

•81-21. (-: P f * ( Cls -» 1.3 . D f P„*« r 1 -» 1 . D“P„‘* sm /V* 

[*81-2. *71-59. *73-28] 

aacw i ao 



498 PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 

This proposition wry important. The class D“/V*. when Pf*eCls-*1. 

i' formed, as we shall prove later, by making every possible selection of one 

term out of each member of P“*. each such selection giving us one member 

«*| 1)“PA‘*. The fact that, with the above hypothesis, the class of classes 

l>“/V* has the same number «*f terms as PA*k (which results from the above 

proposition), i> of great utility in the theory of cardinal multiplication and 

exponentiation. 

*81 211. b : P r * < Cl> —>1.3. D"PA‘* C £ |y e * . 3y. M a P‘i/ e 1 : p. C P“*J 

Dew. 

b . *8115. *52 1 . 3 b Hp. R * PA‘* . M = D ‘R P*y e 1 :• 

[*101123-35] 3 H Hp:(H/O.P€/^<<./x-D<P:D:y^.Dv.AxnP'<y€l:. 

[*37G.*33- 12] 3 h s. Hp. m « D“ JV*. 3 s y c *. 3y. ft n 7”y € 1 (1) 

h. *80-21) I .*33-203.3 

► S 71 € /V*. M = D‘fl .D./xC *). 

[*87 401] D.mC/w*j 

[*I0 1 I 23-85] 3 h : <a/?>. /* « /V* . = D‘« . D./iC P“*: 

[*37*G.*33* 12] Dh*i< D“PA‘* . D./xC P“* (2) 

h .(I).(2).3 h . Prop 

-81212. I- ,Dv./«o P*y * 1 :/xC P**k : 3 . /* < D"/V* . /* *| P|* * € PA‘* 

Dew. 

V . *35 442 . *37-402 . 3 

I-: R = /i 1PT*. 3 . P G P. (J‘fl - * a P‘V . D‘P * ,1 rs P“K (1) 

b . *52*10 . Dh:.H|).D:y(«.Dv.g!fin P‘//. 

[*37-40.*32-241] 3„ . y € P‘> : 

[*221] DuCPV (2) 

h . (1). (2). *22 021 . 3 K : Hp.R = M1 Pf* * . 3 . P G P. <3‘P = *. D‘P = /x (3) 

h . *3218 . *35 102 . 3 b Hp (3). 3 : y c k . 3„. R*y = ft r* . 

[Up] Dy.7?y€l: 

[*37-702] 3 : R“k C 1 : 

[(3).*71 "I ] 3:Pcl->Cls (4) 

b . (3). (4). *8014 . 3 I-: Hp. 3 . /* 1 Pfxe P±'k . D V1 Pt *)-M • (5> 

[*37-6] 3./xtD“PA‘* (6) 

I- . (5) . (G) .3b. Prop 

*81 22. I-: P r * ^ CIs -* 1.3. D“P*‘* = [i\y e k .^y. n k~P'ij d i ftC P“k\ 
[*81-211-212] 
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*81 221. h : P [■ * « Cls -» 1 . D . P4V = 1 (Pf *)“L>“P4‘« 

Dem. 
h. *81-14. *37-62. Z> 

t-Hp . D : P £ P„‘« . D*. P = (D‘P) 1 P f * . D‘P £ D“P4‘* . 

[*10 -24] . (a/1). P = M 1 P r * . M e D“I\‘K . 

[*38-131] . P £"] (Pf- *)“D“P4‘« (1) 

H . *81-22-212 .Dh:.Hp.D:^£ D“P4‘* . D. . M ] P |- « e Pa‘« : 

[*3701] 3:1(Pf-*)“D“P4VCP4‘/c (2) 

I". (1) . (2) . D h . Prop 

*81 23. I- s P f- * £ Cls —» 1 . P £ PSk .-/£*. D . D‘P - ~P‘'j = D‘P - i‘P‘y 

Deni. 

t-. *22-93.3l-.D‘P-7”y = D‘P-(D‘Pr.P‘y) (1) 

I-. *81-15 .Dh: Hp . D . D‘P — (D‘P ■-> P*y) ■= D‘P — «‘P‘y (2) 

I-. (1). (2) .3h. Prop 

*81 24. H : P f- * £ Cls —»1 . m < D “P4‘* . rj * *. D . /x - P‘y £ D“P4‘(* - f‘y) 

Dem. 

h . *80-78 . D I- : P £ p4<* . y «K . D . P^-( P‘y) J, y £ P.'(* - t'y) . 

[*37-62.*88-12J D. D‘(P J-(P‘y) 1 y| £ D“P4‘(* — t'y) (1) 

1-. *81-1 .*8014. D 

: Pf * £ Cls —* 1 . P £ P4‘* .y£x.3./2fl—»l.y€ G‘P . 

[*72-911.*71-31 .*55-3] D . D‘|P-(P‘y) J. y] - D‘P - t'P'y 

[*8!-23] - i)i/{ _ p«y (2) 

h • d) • (2). 3 H : Hp(2). D‘P = /i .0. p — P*// * D"P.'(* - t'y) (3) 

I- • (3). *10-11-23-35 . *37-6 . *3312 . D (-. Prop 

*81 26. I-: y £ « . xpy. ^ f D“P„‘(* - t'y) .D.»ui‘if D“PP* 

Dem. 

h * *80 68 ‘5l-:y€«. *Py . P € PA‘(* - i‘y) . D . c * i y c PA‘* . 

[*37 62] D . D‘(P c/4y)f D“7V* - 

[*3326.*5515] D . D‘P v i‘x€ D“P*‘* (1) 

h • (1) * D H : y e * . a:Py . P * PA‘(* - py) .M = D‘«. D./iwt'if D“PA‘* (2) 

h -(2) • *10 11-23-35 . *37-6 . D f-. Prop 

*8126. h:. P^cCls-* 1 .ye^./inPyel .3: 

^ — P*y f D“PA‘(* - i‘y) . = ./*€ D“PA‘* 

^ * *81-24. D h Hp. D :/* e D“P*‘* . D . /* - P^y € D“PA‘(* - i‘y) (1) 

h • *81’25 - 3 h Hp . D ; M n ^‘y = Par. M - P*y € D“PA‘(* - i‘y) . D . 

0* — P*y) ^ i‘x 6 D“PA‘* (2) 

32—2 
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H . *22-551 . Dhj/irt P'y = i4.r. D . (/x — P‘y) sjitx = (p- />4y) u o P‘y) 

[*24 41] =,x (3) 

l*. *52*1. D I-: Hp. D . (g.r). n n P*y = i*x (4) 

y . (2). (3). (4). D I-Hp. D : M - 7”y € D44/V<* — f4y). D . n e D“P*‘k (5) 

I-. ( I). (5). D y . Prop 

-81 3 !-:/'[ *€(>•-► 1 .\=/,4‘*. D. D44/V* = £ atls/tCA] 

Deni. 

y . *37-700 . D y z. i/1 k . D.t. n r\ P*i/€ 1 : = : a e P*'* .D(./tnacl (1) 

H . *40-5 . D H s m C /,<<<r. 3 . /x C *4P“* (2) 

»-.(!>.<2).«81 22.D 

h : « < Cl* —♦ I . D . I >“/V* = ? l« ‘ /"'* s‘P‘‘*| (3) 

K (3). *1312.3H. Prop 

*81-31. I- : 1‘[k.Q\k» ('U -* 1.7"‘« - V'« • 3 • 1 >“/V* - D“Q4‘* 

Dcm. 

h . **1 *3 . D h : Hp . D • D“/V* = a* !« « Q“*. D, ./ioa«l:/iC **<?“*) 

[*81*3] =* D44#*4* : D H . Prop 



*82. SELECTIONS FROM RELATIVE PRODUCTS 

Summary of *82. 

The propositions contained in this number are not much used except in 

connection with the associative law for cardinal multiplication, but they have 

a certain intrinsic interest. We prove in this number that, with a suitable 

hypothesis, (P| Q)a‘\ results from by multiplying each member bv 

Q, i.e. 

*82 272. h:<2rXel->l.X€D‘(Q)<.D.(P Q)s‘\.jQ“PA<Q“\ 

Also under a suitable hypothesis the domains of (P Q)±‘\ are the domains 

of i.e. 

*82 32. h: Qf Xel—►l.X.C (I‘Q . Z> . D“(P Q)A‘\ = D"/VQ“\ 

In the applications of propositions of the present number in *85, P and Q 

are replaced by e and Q. By *G2'26, e Q = Q ; thus we obtain relations 

between QA‘X and e**Q“\. 

*82 2. ViMeP^K. AT€Qa‘\ 

Dem. 
h . *8014 . Dh 

[*71-25] 

h . *8014 . D h 

[*34-34] 

h. *8014. Dh 

[*37-32] 

h. *8014. Dh 

[*37-201-25] 

[Hp] 

[*37 271] 

H.(3).(4).(5).DI- 

I-. (1). (2) . (6). *80 

*8221. 

Dem. 

.Q“\Ck.O.MiV<(P\Q)a‘>, 

: Hp.3.iV,ATel->Cls. 

D.Afi N* 1 -*Cls 

: Hp .O.MGP.NGQ. 
D.M NGP\Q 

: Hp . D . d*M = k . 

D.a^iV: N) = Nt*K 
: Hp. D . ATGQ.a'AT—X. 

D . N“\ C Q‘*\ . N“\ = D*N 

D.D'iVC*. 

D . N“k - d‘Ar 

: Hp . D . aN) = \ 

-14 Oh. Prop 

h • *80 29114 . D h Hp . D : R e Q±‘\ .D.RGQfX. Q*R = X . 

j>72'92] D.R = (Q rx)ra^.a‘P = x. 
[*35-31] D.i? = QfX 

b. *35-441-660 h: Hp. D. Qf*X el -»Cls.Qr^GQ.a<«2rx) = X. 
[*8014] D.Q[*XeQA‘\ 

h • (1) ■ (2). *61141 Oh. Prop 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 
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*82 22 1 -> Cl>. X = Q“*. .V* 7V*. 3. M Qc{P QU'X 

Jh’in. 

h . *80 14.*3732.Dh : Hp.D.U'tJ/ (/)-$"«• 

jup) :>.<p<.i/ y>-x 

[*35 452 23] D . -V y-J/ «?rM- 
[*71-25.*8»14| D.-V y« 1 ->Cls (2) 

h.*:H:U.#HOU.Dh: II,..D. A/ QG 7' Q (3) 

t-. i I». < 2). (:*>. *ki» 14 . D H . Fr.*p 

^82221. i-syrxf i->ru.\c<i‘y. J/*/vyMx.D..i/ yrx«(P y>A*x 

l/em. 

K *7125. *80 14. D I* s Hp. D . .1/ yrXcl->CI* <D 

K *34*34. *8014. DHsHp.D.J/ <?rxG7> y (2) 

I-. *37-32 . *3504 . *80 14 . D h : lip . D . < l‘< M yT X)- X a y“y“X 

(♦37 51.*22i!2l] -X (3) 

h . (1).<2).{3>.D H. Prop 

*82 23. h:ypx« I-* I .*-yo\.7f*i7* y »A‘X. D . R, Qt 7V* 

I tl’III. 

K*80I4. Dh: Hp.D.<P//-X. 

[ *35-48) 0. R y-/f (Xiy> 

[*35-51) -7f Cnv'cyfX). <2> 

1*7125) D.ft y<l-»CI» <3) 

h.*37-32. D»-:Hp. :>.«!*<7? y)«y“(I‘7* 

[(i» - y“x 
[Hp] = * l4> 

»- .*80*291 .DH: Hp.D./*G<P y>f*X. 

[*35-23] O.RQP <Q[*X). 

[*3434] Z>.7< Cnv‘(y [* X) G P Q[\ CnsUQ[\)- 

[(2).*72-59) D . R QG 7'T D‘(Q[ X). 

[*35-441] D. 7? J y G 7> <5> 

h . (3). (4). (5). *80-14 . Z> h . Prop 

*82*231. hsyrxcl-*! ./lc<P y^X.D.T? Q«/VQ“X. fl-P Q\QTx 

<i\ 

h. *80-14. Dh: Hp.D.U‘7f = X. I1' 

[*74-41] D.7? Q = 77 X1Q 

[*35*51] = R j Cnv‘(Q [ X). 

[*34-27] 3>.7< y yrx = 7e|Cnv‘(yrx>:^rx 

[*72-591] =77ra<(Qr>') (2) 
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h . *80-2 . D h : Hp . D . X C <3‘(P i Q) . 

[*34-36] D . X C <3‘Q . 

[*35-65] D.d‘Qr\=\. 

[(1).*7 4-221] D.Pra‘(Qrx)=7? (3) 

l-.(2).(3).Dh: Hp.D. P^PIQIQfX (4) 

. (4) . *82-23 .Dh. Prop 

*82 24. l-:Qr\el-»l.«C D*Q . X = . R c (P Q)a‘X . Z>. 

* = Q“\ .R Qe Pa‘k .R = R\Q\Q 
Dent. 

h . *7416 .DhHp.D./c = Q“X . (L) 

[*82 23] (2) 

[*8014] Z>.(I‘</e|Q) = *. 

[Hp] D.Q“a'(R;Q)-X.^ 

[*74-4] D . R , Q j Qf X= R Q|Q. 

[*82-231] D.R-RIQIQ (3) 

H . (1). (2). (8). D (■. Prop 

*82 241. D‘(Q),. R «(R | Q)S\ . D . R = R | Q, Q 
Dem. 

»- . *74-31 . D h : Hp . D . X = Q“Q“X 

[*8014] = 

[*37-32] -Q“a‘(i*|Q). 

[*74*4] D.PlQiQrx^ R\Q'Q (1) 

I- . (1). *82 231 . D I- . Prop 

*8225. z Qf \ e l —+ l. * C D‘Q . X *■ Qiftc . R e(P Q)A‘X. D . 

(gA/) .Me Pa*k .R = M\Q [*8224 . *1024] 

*82 251. h:Q|*X«l-» 1 . R €{P\Q)^\ ,{^M) . M € P^Q^\. R = M \Q[\ 
[*82-231 .*10-24] 

*82 26. h s. Qf\ € 1 -* 1. * C D‘Q . X = Q“* . D : 

Re(P | Q)a‘X . = . (g A/). M € PSk .R = M\Q [*82-22-25] 

*82261. hs. QfX«l-*l,XC <3‘Q. D: 

[*82 221-251] ^ ' <P ' Q>‘‘X * ’" '■ (a"> * *' JV«"X ■* - "\ «r X 

*82-27. D‘Q . X - Q“* .D.(P, Q)A‘X = j Q“P+'k 
[*82-26 . *43*121. *37*6] 
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*82 271. h : VT v* \ -> I .\C(1‘^.D.(7' Q)S\= l<Jt X>“/VQ“X 

[*82 201 .*43 121 .*37*l>] 

*82 272. h: V[*\t l->l.Xel>,iV)f.^.(i> Q)A‘X = ^“/VQ“X 

hem. 

1-. 47 2:i. D : HI*. D . IHM) • X »<J'v • 

|*37'2*31) D.ia/i).X-y“(/i rx IVQ). 

[*22 43) D. <a*>. X « . * C 1 )‘V 

H . *v> 27 . *74* li>. 3 

h:VrXc | _>| .*CD‘Q.X-y"*.D.|7' V^X= y«‘7V<T* (2) 

h . 111. < 'J». *l»*l I 23*35 . D K . Prop 

v82 28 h:.*lV« • « . X CU«V.«-V-X . D s 

/<€ (/* (7>a‘X . - . i;.|M). M€ /V*. li = M iQ 
[*82*20. *74*20) 

*8229 h:*1V« » —* I . X CU'V • * - V“X . 3.1P V»a*X- V“/V* 

[*82*27 .*74 213) 

*82291. h:*lV* I ->l V“/V* 

[Pimo! at in *8*2*272) 

*82 3. h:.Vt7'A‘V“\.D.D‘(.V Qrx)-l>‘.V 

hem. 
Y . *sn 14.0 Y : H|). D . GM/ = (7“X . 

[*74 42) D . D‘( M Q [ X) = D‘.1/ : D h. Prop 

*82 31. Y :/;<(/' Q»A‘X.D.D4</f 

Pem. 
h . *80 14 2 . D Y : Hp . Z>. Cl‘/f = X . X C (I‘( P Q). 

[*34*3<>] D.U'/fCG'Q. 

(*37*321) 3 . L>‘(7? Q) - D‘7? : D Y . Prop 

*82*32. h : vr * « 1 - 1 • * C U‘V • => • D“(P VU'X = D“/VQ“X 

Don. 

Y . *82*271 . D 

Hp. 3 : D“( <?>A‘X = D“t {Q[: 

[*37*07] D : a e D“(7> Qh‘X . = . (g.l/). if € . a = D‘(J/! GT • 

[*82 3] => • (3^) • Me /VQ“X. a = D‘i/. 

[*37*6] D . a « D“Pa‘Q“X 
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h . *82-3-221 . D h Hp. D : M € PA‘Q“\ . D . Y>*M- D‘(!f | f X). 

[*3762] D.DM/fD^P (,>)A‘X: 

[*37 61] D : D“PA‘Q“X C D“(P! QU‘X (2) 

h . (1). (2). D h . Prop 

*82 33. h:«1Qcl-»l.«e D‘£< . Z> . D“(P Q)SQ“k = I >“/V* 

Vein. 

I-. *37-23-26 .Dh/ff D <Q<. D . (3X) .\Ca‘Q.<-Q“\ (i) 

H . *74-26 . D 

h : *1 (^el -> 1 ,\C(1*Q .k = Q“\ ,5.Qf\e 1 -* 1 .^CD‘C.X = ^ . (2) 

[*82-32] D . D“(P j Q)±*\ - D“PA‘<2“X . 

[(2).Hp(2)] D.D“(P Q)SQ“k - V“P*‘k (3) 

h. (3). *10 11-23-35. D 

h:.**]Q«l-*l s(aX).XCa‘Q.<-Q«\:D. D“(P| - D“/V* (4) 

H . (1). (4) .Dh. Prop 

The following propositions (*82 4 41 41142) are lemmas for *82 43, which 
is used in the proof of *114 5, in the theory of cardinal multiplication. 

*82 4. h : Te 1 -♦ Cls . P“\ C CI‘7\ Z> . T{ “PS\ C (T, P)A‘X 
Dm. 

h. *8014. *71 25. DhsHp .Jit JVx . D . 7* P e 1 -> Cls (1) 
H .*8014. *34-34. D K s Hp .Re /VX .D.r\R<ZT\P (2) 
h . *80-33. D h:Hp.Re P*‘x .D.D‘PC(I‘7\ 
[*37-322] ^.a\r R)-afR. 
[*8014] d.a\r R) = \ (3) 

. (3) . *80-14 . Dh:. Hp. D: PeP *-X.D.r|P€(2r|P)A‘X:.DK . Prop 

*8241. h :2r«Cl8-»l. Me{T\P)S\ .D. 7i»/eP4‘XJ/= P|P| A/ 
Dern. 

h. *8014 . *71-25. Dh: Hp. 3. PI 3/el -♦Cls (1) 
h .*8014 . *34 34 .Dh Hp. D-TiVcfiriP. 

[*71-191.*342] GP (2) 
h. *8014 . *34-36 . D h : Hp. D.D‘i/CD‘!r. 

[*37-322] D.a‘(r|3/)=aM/. 

[*80*14] D.at(T\M) = \ (3) 
h.(l).(2) .(3). *8014. Oh. Prop 

*82 411. h : TcCls-* l . 0.(r|PV\ cri “PA‘X [*82-41] 
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+82-42. h:T<i-*1.1>“\C(-l‘T.0.(T P>S\-T “Pa‘\ (*824411] 

*82-43. t-:rvr^<*-»l-7’“xCa‘:r-xC<1‘<?-'f = <2“X-3- 
(T I>[\ (?)4‘* = (7’ $)“/VX 

l>r in. 

h.*s2->7^.Dh:V«l-*l.XCn‘<,».* = ^“X.3.(iJ <?>+'* = Q'Ts'X (1) 
K% \ 

* .« I I x . 3 h : vr X C 1 -* 1 . x C 1 >‘.X 1 <Jt. « = i«?fX»“X . 3 . 

(/' XI #>*** = <Xl#>“/YX ( >) 

H . (21. #3501 :».-.4. *37412. *43 4s 1 . •Nil-14 • 3 

8: vrx«l -* 1 .XC<l‘V.«-VX.3.i/*rx vu‘«- 5“/VX <:i> 

K|3>7’/'. 3h:^rx. I-*1 

.v /*rx vvy /‘>4,‘x i+) 

h .(41.*82-42. 3KHp.3.«r /TX <?>*'«- V‘3T “'VX 

| *43-202.*37-33] -• T tf)“iVX OK Prop 

+8245. h : Q[ X < 1 -* I • X C<I'V• 3 •</*! Q'»‘X si.i /VV“X 

Dan. 
h . +K0* 14. *37-15 .3 H:K« /VfX . 3*. <l‘W - V“X . I?‘\ C D«<?. 

[*14-15] 3/;. <I‘/{ C I >*y, 

[*7472] 3KHp.3. (Q[\rl^Q"\sm 

[*82-271] 3.11* ^li'XMii 7VV“X OH. Prop 

+82 5 I-: 7'[ <^“X t CIs—+ 1 . <?f X « 1 —* 1 . X C <I‘Q. 3 . 
(/’ <?li‘X*inl>"iVG“X [*82-45. *81-21] 

#82-51. H s f jc «Cl* —► 1 .«10«1 -*1 . X C (l‘Q. k = Q“\ . 3 . 
(/’ Qfe'XsmD“/V* [*82-5.*74-251] 

#82-62. I- : P r * * 01s -+ I. * 1 Q « I -* I • * «I>‘Q< • 3 .< P »'■> D‘,iV‘ 

Deni. 
h. *37-23 . 3 I-: Hp. 3 . (g/O. k = Q“n * 

y . *37-20 . *22-43.3 
KK = Q‘y.X = M«U*Q.3.* = tf“X.XC<rQ 

K *74101 . 3 H : Hp. <e = Q‘‘X . X C (l‘<7.3 . X = Q‘‘k . 

[*82-51] 3.(P 0)i'0“*s.n D»/V* • 

[*10 11-28:35]3h:.Hp:(aX).* = Q“X.XCa‘Q:3.(7> <2)+‘Q“*smD“7V* (3) 

I-. (1). (2). 3 H : Hp . 3 . (gX). * = Q‘‘\ . X C (I‘Q (4) 

V . (3) . (4). 3 1- • Prop 



SECTION D] SELECTIONS FROM RELATIVE PRODUCTS 507 

*82 53. I-: P [ k, R f* * e Cls 1 . * 1 Q e 1 -> 1 . * € D‘Q«. P“k = R“k . D . 

(PI Q)A‘Q“*sni (P | Q)SQ“* . ^ 

D“(P | Q)SQ“k =. D“(P I = 

£ ja e P“*r .D,./iA8f 1 :/iC P“* j 

= D“PA‘* = D“P*‘* 
Devi. 

H . *82 52 . D h : Hp . D . (P j Q)a‘Q“k am D“PA‘* . 

[*81-31] D . (P | Q)A‘Q“* sin D“PP* . 

[*82 52.*73*32] 3 • (P| QV$“*sm (P QWQ*‘« (1) 

h . *82-33 . D K : Hp . D . D“(P| QVQ*‘« - D“PA (2) 

[*81-31] -D“P*‘* (3) 

[*81-8.*40-5] (4) 

h . *82-33 . D h : Hp . D . D“(P j Q)SQ“k = D“P*‘* (5) 

I- . (1) . (2) . (3) . (4). (5) .DK Prop 



-83 sEUi« TION.S FROM « LASSES OF CLASSES 

Sil III Hill l'f/ of *S3. 

Ill ihi-. number. til.- general propitious which have been proved lor /V* 

at., i.. he applied to lie- important s|Ktial case where V is e. In this case, we 

have -elect ion^ ti..in . I:.--. - classes; if P picks out a re/>rc$e»tatirt 

/{‘a from each elas* a which i' a nieiiiber of*; i.e. we have 

a « h . . H*a * o- 

The |»ni)i»«iti»iis «l this number result from those of previous numbers 

eiiher immediately by »he submitmion -f < for P. or by the use of preposi¬ 

tion > of *(>-.' notably r.‘o=a t«i>2 2). and c"* * #V (*G2'3). 

The pro|».^iiioiiH ..t the present number follow, in the main, the same 

course as those o| *s<>. with e substituted for P (except that the special forms 

of propositions lieloiv *st> 2 are not given). We have first a set of propositions 

resulting immediately from early propositions of *80. Of these the most used 

are : 

*8311. h:A **.D.*A‘*-A 
This leads to the proposition that an arithmetical product is null il one 

of its factors is null. (Wo cannot prove the converse universally without 

assuming the multiplicative axiom.) 

*8315. K*V.\ = /‘A 
Thus «**A is a unit clas>. This is the source of the proposition m“=1. 

where p is a curdinal (ef. note t*» *83*15). 

*83 2. H 1<« . D : a « * . s . K ! li'a .*./?* at a 

Here P*o is the " representative ot a. 

*83 21. I- : 1< * . D . I>‘/f C s*k 

We lmve next a set of propositions f**T4—44) on selections from unit- 

classes and classes of unit classes. We have 

*83 41. h .<A‘f‘asma 

This leads to the pn>|)osition that a product of one factor is equal to that 

factor. 

*83 43. H:*C 1 . D . = f‘H T *> = *'<« I* *> 

This leads to 

*83 44. h :* C 1 . D. 1 
whence it follows that a product of factors, each of which is one. is one. This 

holds even if the number of factors is infinite or zero. 
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We have next a set of propositions (*S3*5—'58) on changing the repre¬ 

sentative of a class, and on selections from a class of classes some of which are 

unit classes. These propositions are seldom referred to in the sequel. 

We have next (*83 6—*74) a set of propositions «»n the domains of selec¬ 

tions, i.e. on the class We have 

*83 66. h : g ! . D . s‘D“*V* = 

(The hypothesis here cannot be dispensed with unless we assume the 

multiplicative axiom.) 

*83 7. KD 

*83 71. h . D“sA‘t"a = • D‘o *]7- a 

We have next two propositions (*83*8*81) on the types of e±lK and "D" €&,**. 

The type of D“ca'k is the same as that of k (*83*81). 

The last set of propositions in this number (*83*9—*904) deals with the 

existence of selections. We have 

*83 9. h . a ! e*‘A 

*83 901. h : a ! 9**1*a . m . g ! a 

*83*904. h : g ! €A‘(* t‘/9) . 3 . g ! . g ! /9 

From these propositions we shall deduce by mathematical induction that 

whenever k is a finite class, eA‘* exists unless Atk (cf. *120*62). Thus a 

product consisting of a finite number of factors (which may themselves be 

either finite or infinite) can only vanish if one of the factors vanishes. 

*831. h : a ! . D . A*>*« k 

Dem. 
h . *80 2 .DI-:Hp.D.*Ca‘f. 

[*62*2.31] D . A: D h . Prop 

*83 11. I*:A«*.D. 9A‘k = A [*83T . Transp] 

*8312. t-.€s‘K = (etK)±*K [*80*23] 

*83 13. : A~€* .Q = c\- * .3 . €a‘* = QA‘(I*Q [*80*24 . *62 231J 

*83 14. h : g ! . Q = € f « . D . = QA‘CI‘Q 1*83*1 * 13] 

*83*15. h . €a‘A = i‘A [*80*26] 

In virtue of this proposition, the product of 0 cardinal numbers is 1—a 

proposition of which a particular case, namely ^ = 1, is familiar. This arith¬ 

metical proposition results from the above as follows. We shall define the 

product of the numbers of members of k as the number of members of €&‘k. 

Thus when k = A, the number of members of is a product of 0 factors. 

Now by the above proposition, «a‘A has one member, namely A. Hence a 

product of 0 factors is 1. 

*83*16. h:g!«.D. A~ce**« [*80*28] 
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-83 2 4 . 3 : * «• * • s • K ! R*a . = . K'o < a (*80 3*2 . *62-2] 

*83 21. 4 : «r tV < . D . I >‘ H C f**0:W . *62 3] 

>83 22 4 : li < . D . E !! R“* . = D‘7? [*80 34] 

-83 23. 4: l>‘/»*«7 r.jo>. . •**« /?*« [*S035] 

*83 24 »- : /f « *V* . a «* ..» e a . D . [! 1<-t /f‘«» 1 a\ w.r l al < «a‘* [**0-41 ] 

• 83 25 4 : ;.J ! tV* . 3 . *•**•* = *[« [*80*42] 

-83 26 4 : if * «f * . $| ! V*‘* • 3 • = V l*s3 1 

-83 27 I -»< 'Is . h : a « U‘/f . D. . H'a * a [*62*45 . * /1 * Hi) 

■83 271. 1- K * «*•< |«/f. 3 : a e < I * /? • >.. /f‘a < a [*S3 27 . *86*14] 

*83 28. H .iiot'f.D,. 

[*83-27 .*80 14. *14 15) 

• 83 29. 4 rt « •*•* . s : o € * . s* . /f‘a c a ; < l‘Jf - * l*83”2 28 J 

*83 3. 4 s. * a X - A . D : .1/ f «r*V ^ X). ^ . 

<//. N)./*’« tV* . *S' < <S\ . .1/ = /{ u .S [*S0 66] 

*83-31. I-* a X - A . D : IU *S« . * < t^‘X . 5 . 

i :.| .1/1. M t «A‘<* sj X). If - M r * • $ - M r X 1*80 07 ] 

*834 4 . tV'*a - j a“o (*80-45. *02*2) 

-83 41 (• .tj‘»‘flMno |*83 4 . *73*ol 1] 

Thin pro positi«*u shows that a cardinal product of one factor is e.pial to 

t|,;l| isicinr. K..I- tl»«- niaiiila-r of members of «AVa is the product of the 

numbers of numbers ..f im-ml-rs of ,‘a. i.r. it is a product "hose only factor 

is the number of members *•! o. By tlu- above proposition, this product is 

fipml to tlu- munln-t of um-iiiIm-is of a. 

*83 42 H . - i‘t« 1 M - »“«« T 

lh'"' 4 .*83*12 . D 4. I* 

(*62 56] w = (T[ i*ta)±itlla (D 

4.*72181 .*7l-26.DK#r»M«« *2) 

4 . *37*15 . *33 21 . D4.f«*CU,ij 

[*35 65] D4.«M*-a*(Tr*M«) ^ <8) 

4 . (2). (3>. *82-21 . D 4 . (7r «“ah‘l“a = i‘|0 t* '“«>r «“«! 

[rtMl] =.‘(Tr-‘‘a) (+) 

[*0-2oG] =l‘(«10 (5> 

4.(l).(4).t5).D4.Prop 

This proposition shows that a cardinal product whose factors are all 1 is 1. 

For i“a is a class whose members are all unit classes, and thus the numbei 
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of members of e±‘i“a is the product of a number of Is; and by the above 

proposition, £4,tLtta is a unit class, its sole member being a ] 1. This result is 

rendered more explicit by *834344. 

*83 43. = i‘( 7f* *) = t‘(« p *) 

Dem. 

1- . *83 42 . D h : * ■ i“a . D . e*** = i*(i f* *) (1) 

K (1). *1011-23. D 

h : (go) . * = i“a . D . = i*(i p k) : 

[*52-31] D h : * C 1 . D . = e*(t p *) 

[*(i2"55] = t*(e P x) : D 1-. Prop 

*83 44. huCl.D. e 1 [*8343 . *5222] 

*835. h : 72 c €&*k . a^e k .xe a . D./?o,r Jae ^ i*a) 

Dem. 

h . *80 43 . D 1-: Hp. D . x i a e «AVa (1) 

h . *51-211 . D h- : Hp . D . * r» <‘a = A (2) 

t*. (1) • (2). *80-65 . Z> I-. Prop 

It follows from this proposition that if k is a class of classes for which 

there are selections, and if one member (not null) be added to tc, there are still 

selections from the resulting class of classes. 

*83 51. [*80 78] 

*83 52. h : R € eA‘/e . a c k . area . D . J/2—(/2‘a) ^ a) c# x X a « [*80 41] 

*83*54. h:<nX = A.XCl./if * . D . H 0 t p X e ^ X.) 

Dem. 

h . *80 65 . D h Hp . D : &c cA‘X . D . R kj S e cA‘(/c w\) (1) 

H . *83-43 . D b : Hp . I> . « p X e £A‘X (2) 

h.(l).(2).Dh. Prop 

*83 66. A.XC1 • S e eA‘(* u X) . D . S-w p X t f A*/c 

Dem. 

h . *80 66 . D 1-: Hp . Z) . (gAf. A^) . A/e eA‘* . N e cs‘\ . S = M sv Ar. 

[*83-43.*5115] D . (gA/>. A/e eA‘* . S = M v Tp A (1) 

V . *80 14 . *35 64 . D 1- Hp . D : M e c±‘k . D . d‘A/ n CI‘(7p X) = A . 

[*33-33] D . A/ A Tp X = A . 

[*25-4] D . (A/c; 7p X) —Tp X = M. 

[*1312] D-.AfecSic.S-Mw'ltX.D.S^irXceSx (2) 
h. (2). *10 11-21-23. D 

I- Hp . D : (gA/) • M « • S = Af o t p X. D . 5-2-t p X e cjtc 

h . (1) . (3). D h • Prop 
(3) 
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*83 56 K:*aX = A.XCI . 

D . « v \) = j) <'.[ H>. K € c• M = H v 1 [ *•! 
I>em 

K . *s<MH>. D I-II|* -1>: 

.1/ e *V< x yj \». a . 15| /f. »Sl. A' < tiV . *S « <.\‘X . .V = /? ci 6* • 

[**3*431 = .<>|H). He cA‘*. .1/= o 11* X D h . Prop 

The |i»l lowing pr.*p*»>ili'»n is used in the theory ««f cardinal multiplication 

i*l 14-41 >. 

0) 

(2) 

• 83 57 hun\ = A.\Cl.D. e ^ \ > >"• 

bem. 

h . *83 r»i;.*3s i:;i . 3 h : lip. D. t*i« v \ i- (cm |*X >“«*** 

h . *NO I + . *3V34 . D h : 11P . C ^ v . D . < I ‘ A A < I ‘(/ r X) -= A . 

1*33-33] D./IAiTX-A. 

D. A = (Ao7rX)^rx 

I- . c2). *23*481 .*13172.D 

K: Up. It.SetS*. /fci7rx-N«ii[*X.D./f-.S: 

| Kxp.*Mil 3.*3* 11) D h Hp. D : 

/A 6'e eV* . <o 7f X)‘/f - to 11*\YS. 0,:,s • Ji m s: 

|*33 I >.*73 2:.) Dj.o/rXi'VAMnt^ (3) 

h .(1) .(3). D h . Prop 

*83 58. I* . <a‘* *•»» * — 11 

Deni. 

K *24-41 -21 . *22-43. D 

!-.* = (*- 1)v(*a1).(*-1>oi*a 1>~ A **a 1 C 1 (I) 

I- . (I). *83-57 . D h . Prop 

Till* proposition shows that in a product nn.v number of factors each equal 

to 1 may be omitted without altering the value of the product. 

The following propositions, down to *83 74. are concerned with the domains 

of selective relations, i.e. with the selected classes. 

*83 6. V-.Itf <r.‘* . a ( k . O. a ! 0 n 

Deni. 

P.*83-2.3h:Hp .D.-ft'oca. 

[*33-43] D.«‘oea«D‘/f. 

[*10-24] 3.a!«nM:DKPhip 



SECTION D] SELECTIONS FROM CLASSES OF CLASSES 513 

*83*61. b : R e eA‘/c .a<<.an s‘(k — t‘a) = A . D . a r* D‘R = i*R*a 

Vein. 
b . *40*27 .Dh.oA s‘(* — t*a) = A . = : /3 € * — f‘a . 3„ . a r* /3 = A : 

[Transp.*51'15] =:>3e/c.g!ar*^.D/,./5=a (1) 

b . *83*23.3 1-:. Hp . D:xeD*R. = . (3y9). /9 e * . * = /*‘/9 . 

[*10*35.*14*15] ^ : x e a n D‘Ji . = . (g/Sj. /9 « * . x = R‘f3 . R*/3ea . 

[*83*2] = . (3/9) . /3 c *. x = /2*/9 . ft‘/9 e a r\ {3 . 

[(1).*471] =.(a/3).|S«.^^.l?‘^o^.a-/5. 

[*13*195.*22*5] = . a € tc . x = R‘a . R*a e a . 

[ H p.*4*7 3.*83*2] =.x=R*a (2) 

I- .(2). *51*15.3 b . Prop 

*83 62. h : € D“f4‘/£ .3.MCsV [*83*21 . *37*63] 

*83 63. b : s‘icr\s*\= A ./ifD‘V(/fwX). 3 . . /xr>«‘X«D“eA*X 

De/n. 

h . *80*62 . 3b: Me eA‘(* u X). 3 . Mf* e eA‘* . ;l/[*X e eA‘\ . (1) 

[*83*21] 3 . DM/ r * C s*k . DM/ |* X C s‘X (2) 

I-. (2) . *24*494 . 3 b :. Hp . 3 : M e eA‘<* v\).3. 

dm/ r * - (dm/r* ^ D'A/r m - . dm/ r x=(DM/r^ ^ dm/ r . 

| *33 26.*35*412.*80 29] 3 . DM/r< - DM/ - .v‘X . DM/f X- DM/ . 

[*24*491] 3 . DM/[V - DM/ n . DM/[*X = DM/ ^ s‘X (3) 

b . (1) . (3) . *37*6.3 h Hp. 3 : 

Af e €±\k v \) . 3 . DM/ n e D“*A‘* . DM/ *‘X « D“cA‘X : 

[*37*63] D:pe D “*A‘(* uX).3.Ma«‘« D“€A‘* . M n a‘X * D“eA‘X:. 3 b . Prop 

*83*64. b * n \ = A . 3 : 

M 6 D“#A*(* w» X) . 5 . (3p, a). pe D “c^k . <r f D“eA*X . p = p \j <r 

Observe that the hypothesis required here is * r» X = A, not v‘* ^ «‘X = A 
jis in *83*63. 

Deni. 

I- . *80*60.3 b :. Hp . 3 : Me fA‘(* v X). p = DM/ . = . 

(3«. S) . R c c*‘k . ,S'« «A*X ,M=RvS.p = DM/. 

[* 13* 193.*33*26] = .(^R,S). Re eS* . S c eA‘\. M = R\y S. p = D‘R \j D‘,S* (1) 
b . (1) . *10*11*21*281 . *37 6.3 

h :: Hp. 3 :. pe D“*A‘(* uX).= : 

(3 J/, R,S). Re cSk . iST« «A‘X. M = Rkj &. p = D‘/2 c# D‘&: 

[*10*35] = : (3 R, S): R e eA‘* . S € eA‘X. p = D*R v D*S: (3 M). M = R o ,9: 

[*21*2] = : (3 R, S). Re ca‘k . 6’* eA‘X. p = D‘R v D‘6' : 

[*13 22] = : (g ft, 5,p, a) . Ree^K . p = D‘Z2.6VeA‘X . <r = D‘*9 . p = p v a: 

[*11*24*54] = : (3 p, a) : (3 R). Re e*‘* . p = D‘R : (36') . S e eA‘X . <r = 1)‘S. 

M = r o': 
[*37*6.*10*35] = : (3^, a) . p e D“ea V . <r e D^c^'X * p = p.\J <r :. 3 b . Prop 

R&W ! 33 
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The following proposition is user! in connection with cardinal multiplication 

<*1 I.VUl. 

v*83 641. h .n‘* a s*\ = A . 3 : 

n e I >“***( * V X). = .<gp <T). p € . <r € I>“€a‘X . p = p ^ <r 

/)r«(. 

h . *53 2'>. 31-:. Hp . 3 : * a X = A a Hs. v . * a X « f‘A 0) 

h . *83-64 . 3 I* :. * a X « A a <’ls. 3 : p c D“cA‘<* v X). ze . 

(flp. <r). p € D"«4‘« • * * D“€*‘X .n=pv<T (2) 

h . *51 Hi. D H # a X = i‘A . D : A < <f • A « X s 

[*83*11] 3:<a‘*-A .i4‘X-A.<4,(*wM = A : 

| 2!» | 3 : I >‘‘*V* = A . D"*VX - A. 1 >“«aV ^ X > = A : 

|*24‘15] 3 : 0“«a‘(* * X) s (p). P~e : 

| *l i:»5.Transp.*IO*2:>2| 3:p~* 1->“«A‘<* « X): 

-%,<j|p. <r) • P * Dm«aV . <r el)l4tVX . p = o v/<r : 

[*.V2I] 3 : p w»X). = . 

<:.|p. it) . p < . <r € D“«**X . p - p ^ <r (3) 

I- .<1 ).<2>.<3>. 3 I-. Prop 

‘-83 65 h :*«* ax«X - A ./if 1 ^ ^ X). 3 . 
p - *•* € 1)“ca<X . p - *‘X € r>“<A‘* 

Item. 

h . *8.3*62 . 3 H:Hp.3 . p C s‘(k v X). 

[*40171) 3.pCAu«'X (l) 

h .(1). *24-401.3 h : Up. 3 . p — #** ■/lAi'X.p- <‘X « p a «** r2) 

h .(2). *83*63. 3 H. Prop 

*83*66. h :a !«A‘*.3..t4D“<A‘*-«‘* 

Deni. . ,i\ 
h . *4143 . 3 I-. = Wi'tt'* <1 > 

h . *83-25. D h : Hp. 3 . DV«aV = D‘e [ * 

[*(>2'43] - *'* (2) 

h . (1 ).(2). 3 I-. Prop 

*837. h.l)"(1,i‘o = i“« [*83-4. *55-201] 
w 

*83*71. h • 1 )“<A‘i“o= i‘a. 1)‘«1« =a 

/>ew. 

1- . *83a42.3 h . D“€A‘i <«a*D“<‘(a1<) 

[*53-31] SlWlO (1> 

[*35*61] = I*(a a D‘t) 

[*33-2] = i‘(a a Q‘t) 

(2) [*51*17-*24*26] 

1-. (1). (2) .31*. Prop 

= t‘a 
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*83 72. I-:«C1.D. = iV* 

Deni. 
1- . *8343 .Dh Hp . D . D“f,V = D«i«(e f *) 

[*53*31] • = t‘D‘(€p*) 

[*02-43] = iV* : D »-. Prop 

*83 73-731 are lemmas for *83 74. 

*83-73. hunX-A.XCl.D. 

KJ \)= a [(gp) . p € D . a = p\j $‘X| 
Dem. 

V . *83-56 . *37-6 . D h Hp. D : 

€ D“€a‘(* ^ X) . = . (gie, S). Re eA‘* . 6* - /f v f [* X . a = D‘.S'. 

[*13193] 

[*62-43-55] 

[*10-35.*21-2] 

[*37-04] 

(g/*.£) . It € .S=Rvif\.<r = D‘(It VI r X). 

(g/e. ,$•>. ye * «A‘*. s - /eot r x. <r - D‘it ^ *<x. 

(g It) . It e €A*K . <r = D*R yj s*\ . 

(Hp) • P € . <r — pv «‘X D f- . Prop 

*83731. h:.XCl.D: r\ .*‘X = A.D.<nX«A 

Dem. 

h . *53*25 . *51*16 . D H s‘k r\ s*\ = A.3:<ftX = A.v.AfX (1) 

h . *5216 . D I- X C 1 . D : a « X . D. . g ! a : 

[*24 63] D : A~<X (2) 

H . (1) . (2) . D h . Prop 

*83 74. h : 8*k r\ s‘X -A.XCl.D. D“c*‘(* v> X) sin 

Dem. 

h. *83-73-731 .*38131 . Dh: Hp . D . D“€a‘(* X) - (v s‘\)“D“c±‘k (1) 

h. *83-62. *24 13. D 

I- :: Hp . D :. p, v « • 3 : p n *‘X = A . */ r\ s*\ = A : 

[*24-481] D : p ^ «‘X = v v «*X . = . p = i>: 

[*38*11] D : (u &‘X)V = *‘X)‘i/. s . p = i/ (2) 

I-. (2). *73-28 . D h : Hp . D . (v s‘X)“D“*A‘* sm D“«A‘* (3) 

h • (1) . (3) . D h . Prop 

*83 8. h . €A*ac C *,«** . €A‘/c c 

Dem. 

1-. *8014 . *83-21 . *35 83 . D z It e e*'* . D . 22 G f « • 

[*63105.(*63 03>] D . R G £,-* t C* . 

[*64-201] D . ie e W* t «.'*) - 

[(*64-021)] D.Ret*'* (1) 

H . (1) - *63-371. Dh. Prop 

33—2 
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-83 81 y . Ic KlK . I >“*V* € c< 

g rw r#», 
D ./iC a-‘*. 

(*<»3I05.< *0303)] D .fiCt,**. 

[*03 51] 

h . (1). *03 371 . D y . Prop 

*83 9 y .g '• «a*a [*8315] 

*83 901. H !€A‘/4o.= .:•( !a [*.80-4(1. *02 2] 

• 83 902 1- v,\). r .a ! . >| !«*‘X [*8009] 

*83903. 1- : :•( ! eAV« s. #VJ>. = . M ! a • M '• & [*83 901 902] 

>83904 h : '.| ! fA‘<* w i‘£>. - . H • 3 ! ^ [*83-901 -902] 

*83 9-904 lr;nl to an in<luctivr proof (to be Riven later) of %| ! 

ever k is a tinit <- elans of classes nolle ol which is A. 

[part ii 

(1) 

1k when- 



*84. CLASSES OF MUTUALLY EXCLUSIVE CLASSES 

Summary of *84. 

A class k of mutually exclusive classes is one such that, if a and f3 are 

two different members of k, a and have no common members; i.e. it is 

a class composed of non-overlapping classes. Classes of mutually exclusive 

classes have many important properties. They are important in cardinal 

arithmetic, among other reasons, because if k is a class of mutually exclusive 

classes, the cardinal number of $*k is the sum of the cardinal numbers of the 

members of k. Also if * is a class of mutually exclusive classes, the number 

of selected classes of k (i.e. Dis the same as the number of selective 

relations (i.e. €A‘/c). 

"* is a class of mutually exclusive classes" is written "k e Cls* excl.” 

An important case is when no member of k is null; in this case we write 

k e Cls ex* excl. 

For a Cls* excl which is contained in a class of classes 7, we write 

Cl excl‘7, 

on the analogy of the notation Cl‘y. 

The definitions are as follows: 

*84 01. Cls* excl = *(<*, + D.,a.an^ = A) Df 

*84 02. Clexcl‘7 = Cls9exclr*Cl‘7 Df 

*84 03. Cl8 ex* excl = Cls* excl — c ‘A Df 

The propositions of this number begin (*841—-14) with various equivalent 

forms for the definitions. Of these the most useful are: 

*84 11. h k e Cls’ excl. = : a, /9 « * . 3 ! a . a = /3 

*8413. h : k e Cls ex’ excl . = . k e Cls1 excl. A~€ k 

*84 14. z k e Cls’ excl. = . e f tc e Cls —► I 

The last of these is specially important, because it renders the propositions 

of *81 applicable to eA‘/c when tee Cls’ excl. 

We have next (*842—-28) a set of propositions dealing with various 

special cases, such as A and 1. The most useful of these are 

*84*23. h.t'ae Cls* excl 

*84*241. 1-. l“ct e Cle ex* excl 

*84 25. H : k e Cls* excl .XCx.D.Xc Cls* excl 
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w,. |)• • \i have a set ol propositions <*84*3—37) which are immediate 

unices of propositions in *M. by means of *8414. The most uselnl 

• •I t IlfM* IS 

• 84 3. V : k t (‘Is* exel. D . *±‘« Cl —» 1 

\\ .• next have a set of propositions ,*84 4—431 dealing with the domains 

..| seleetions from a (’U-exel. The*.. :,»«• for tlie most part still immediate 

. ..user,lienees of projM.sitions in *M. in virtue of **414. The most uselul are 

• 84 41. H* : « e l 'lssexel . Z>. l>r*V*t I -* I . I >“€.»** sm^** 

84 412. h : * * < Is-exel . D . I >“*V* - A o « * . . n rs a e I : ^ C xV. 

• 84 43. I-i.a.fSti Ms* exel. x*a * OsaCUV^.a^CI >“€A‘a 

This proposition applies to such cjim-s as the relations of rows and columns. 

Imagine miv set of terms arranged in rows and columns so as to form a 

,..r,angle. Then each column is a selection from the rows, and each row is a 

...lection from the ... This is a particular ease of the above proposition. 

We Iie.xl have a set of pio|n»sitions on /{‘V /»*“*, and /V*x (*84\> ’•>•>». 

Tin- most important of these are 

-84 51. I-: //[" «< 'Is—» I . D. It"" • Civ oxcl 

84 53. t-: It. CIs -.!.*«< 'Is' vxcl .0. If"" , Civ ox,I 

Filially wo l.avo a sot.,1 |m.|«Mliuni> (**+-59—UiMuwiiiR circunwtniifou 

11,11 lor whioh ,«xi«a C'lv ox.-l. Tl.o ..nly oi.o ol thoxo which is used s„b- 

seipiently is 

-84 62. + i*& « Clvcxol. 2.aA/Ja.\ 

*84 01. Cls’excl =x(a.tf«* + A) 

*84 02. Cl exel‘7 = CIs’exel ^ Cl‘7 1){ 

*84 03 CIs ex’ exel = CIs3 exel — e* ‘ A 1 M 

-84 1. h k € Clss exel . = :a.^€x.a=4^*^-.tf*an^=^ 

[*20-3. (*8401)] 

*84 11. V x e CIs3 exel. = : a, 0 £ k . a ! a n • ° = ^ 

[*841 .Transp] 

*84 12. h x f Cl exel*7. s : a, 0 € k . a * /3 - 3-.* • a r\ 0 * A : * C y : = : 

* c CIs3exel. x C 7 (*20*3 . (*84 02). *22*33 . *84*1 ] 

*84121. h x * Cl exel*7. = : a, & € *. a ! « n •a * ^: * C 7 

[*20*3 . (*84*02). *22*33 . *84*11 ] 
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*8413. h : K € Cls ex2 excl . = . k e Cls2 excl . Ak 

Deni. 

. *22-33 35 . (*8403). D 

: k € Cls ex2 excl . = . k c Cls2 excl . k~€ c* A . 

[*6221] = . k € Cls- excl . Prop 

*84131. k e Cls ex2 excl. = : a, /9 « k . « + ft. D*,# . a n *3 * A : Ak 

[*84131] 

*84132. I- k e Cls ex2 excl . = : a. /3 € /c . ftlar\ /3. D0><i. a =*/9: A~e k 

[*841311] 

*84133. 1- k e Cls ex3 excl . 5: a, . g ! a a /9. Da>p . a = /3 : a e * . Da . ft l a 

[*84132 . *24-63] 

*84134. H :: k e Cls ex2 excl. = a, fie k . „ zftla.ftl/3:ftlar*t3.0.a=i/3 

Dem. 

h. *11-59. Dh:.ai/f.D..a!«sB:atj8€*.D,iJ.a!o.a!jfl (l) 

h . *4 87 . *11-33 . Z) n a,(31 k . ft \ a r\ f3 . 0 . a = /3 : = 

et,/9 :g! a a/9. D. a(2) 

1- . (1) . (2). *84-133 . D 1- s: * « Cls ex* excl. = :. 

or,£ e k . D.,* . g ! a . ft ! /9 ;. a, /9 e k . !>«.* :g!ar»/9.I>.a=«/9:. 

[*11-391] = :. a,0 c k . Da>* lala.al^gJan^.D.a-^iOl-. Prop 

*84 135. K :: /c c Cls ex3 excl. = a. £ e k . D..* : g ! a a /9 . = . a — £ 

Deni. 

h . *84133 . *22-5 . *13191 . D 

1" :: * * Cls ex3 excl. s:.a,/9«r*.3!aA/9. Da ^ . a = /9 : 

a, /9 € *. a = /9 . D„. * . g ! a r» & :. 

[*1131] = (cr,/9) o ,/9c* .g!ar*>9.D.a=»/9: 

a, /3f/«.a = ^.D.g!ani9:. 

[*4*87.Comp.*1 1*33] = (a, /9) a, /9 e *. D : g ! a a /9 . = . a = {3 :: D \-. Prop 

*84 14. 1- : k e Cls2 excl . = . e f* e Cls —► 1 

Dem. 

h . *1023 . *84-11 .Dh:./ce Cls* excl . = : a, /9 e * . x c a . x e /9 . I>r.a.#» . a = /9 : 

[*35 101 ] = : x <€ ftc) a . x (* [**) /9 . DXi„>ft . a = /9 : 

[*71171] ssef/ce Cls -» 1 D I- . Prop 

This proposition is important, since it enables us to apply the propositions 

of *81 to when k e Cls2 excl. 

*842. l-.An Cls e Cls ex2 excl 

Dem. 

h . *24105 . *11-57 . D h . (a, /9) . a, f3~c AnCls. 

[*11-25-63] D h s. a, >9 c A « Cls . D.,* : g ! a « >9 . = . a = £ :. 

[*84135] 3KAn Cls e Cls ex* excl 
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•84 21. h.l„,C CIs-excl 

.Vote. I,|. is iIk* class <> f all unit classes whose members are classes: 

ibis results Iroiii *(>501. Thus "o* l,,.' is equivalent to “a consists ot 

• •II'- cln>*» 

lit m. 

I- . #22-38 . (*(>50| >. D h a « l,,„. = : a € I . a CCU : 

|*52 1l>) D : £.7 c a . . 8 = 7 : 

| *:<•+!] 3:/J.7eo.a!3«7 - ->‘-y • <* - T * 
| *s4 | | | D : a < I 'Is- exd 3 b . Prop 

1*84 22. b . I f CI'fN rxd 

l)e>ii. 
b . *52 41;. D b a. £ < I . D : 3 ! a o /* . = . a ~ 3 (' > 

b . ( I ) . *X4*ltt5 . D b . Prop 

f.84'23. b . Pa€<'ls-. \cl [*84*21 . *52*221 

*84 24. b : ;.| ! a . D . t‘a » 1 'Is ox= exd 

Dew. 

b . *13*101 . D b Hp .D:£-a.Drt.a!0s 

[*5115) 3:0«fa.D,.:.|!0i 

(*24I53) D:A-wi4a (1> 

b . (1). «*4'23*13 . D b . Prop 

*84 241. b . i“o € t 'Is ex' exd 

lie w. 

b . *5*2 3 . D b £.7 c i“a . D„.r s £. 7 * 1 * 

[*524(5) ^sa!^A7.«./}-7 (1) 

b .(l).*H4135.Db. Prop 

*84-242. b:<Cl . D . * « CIs ox* exd [*524(5. *84135] 

*8425. b : * c CIs3 exd .\C«f.D.X< CIs3 excl 

Dan. 

b . *221 . *1 1 -5ft .Db:. \ 3-.* • a. 0 e k : 

[*| 1 :iH) D : a. £ f X . a * 0 . D..* . a. 0 e k . a * 0 (D 

b.*84-l. D b k c CIs* excl . D s a.&c k . a + • « a A (2) 

b . (1) .(2). *11-37 . D b Hp . 3 : a./9cX.a*£. 3..* . a r» # = A : 

[*841] D : X € CIs3 exd :.Db. Prop 

*84-26. b : * e CIs ex* excl . X C * . D . X € CIs ex3 excl 

Ih'"' b. *8413-25. Db: Hp. D . X € CIs* excl (D 

b . *221 . *10 1 . D b Hp . D : A € X . D . A € * : 

[Transp] D : A~e k . D . AX (2) 

b. *84*13. DbsHp.D. A~c* (3> 

b. (2). (3). Db:Hp.3.A~€X (4) 

b. (1). (4). *8413. Db. Prop 
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*8428. b : k e Cl excl*y .XC/c.7C8.D.X«C1 excl‘8 

Bern. 

b . *8412-25 . D h : Hp . D . Cls*excl (1) 

b . *8412 . Dh:Hp.D./cC7.\C*.7CS. 

[*22-44] D.XC 8 (2) 

b . (1) . (2) . *8412 . D b . Prop 

The following propositions are concerned with selections from a CIs*excl. 

In virtue of *8414, the propositions of *81 which have the hypothesis 

iiT^fCls—>1 become applicable when R is e and k is a Cls-excl. Thus 

€&‘/c has many important properties when k is a Cls? excl which it does not 

have in the general case. 

*84 3. b :«cCls*excl.2.<A*«C 1 -► 1 [*8414.*81 1] 

*84*31. b : k € Clsa excl . R e eA*/c . xe D‘R . D . E ! R*x [*8414 . *8111] 

*84 32. b z k € Clsa excl. R e . * c D‘R . D . ar c R'x. Rlx e k 

[*84 14. *81 11 .*35101] 

*84 33. b : k e Clsaexcl . R e fA‘/c . xe D‘R . D . R*x^{ia) (a e <.xea)-(k *] e)‘x 

[*84-14. *8112] 

*8434. b :. k e Clsa excl . R e «*** . D : xRa . a . xe a . x e 1 )*R .aetc 

[*81*18. *84-14] 

*84 341. b : x € Clsa excl. R e ,0.R = D‘R *1 e f * - € A D‘7* f * 

[*81-14. *8414] 

*84 342. b z k e CIsa excl. R e cA‘tc . a e k . D . l‘R‘a = a D‘/f 

[*81*15 . *84 14 . *62*2] 

*84*35. h k e Clsexaexcl .DzRe eA*/c. = .Re 1 —» 1 . /£ G € *.Q‘12 «■ [* 

Dem. 

b . *8413 . D b : Hp . D . *. 

[*62-42] D.a*e\-K = K (1) 

h . (1) . *71 103. *8014. D 

b:. Hp.D:/lel—»1 .fiGtf * . (1*R = G*€ [ * . D . 72 e e±‘/c (2) 

b . (1) . *8014 . D I-Hp . D : R e eA*K. D . O'fi = d‘« [* * (3) 

b. (3). *80 291 .*84 3. D 

b :. Hp . D : R e eA‘* . D . R e 1-* 1 . R G e[ k . a*R = (!*€?* (4) 

b . (2) . (4) . D b . Prop 

*8437. b : * e Clsaexcl. g ! eA‘* . D . * eCls exaexcl [*83T.*84T3] 

*84*4. b z.k eCls'excl.R,SeeA‘*. DzD*R*=D‘S .= .R = S [*81-2.*84-14] 
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*84*41. :*cn*Vxcl . D . l>r«A‘*« 1 —♦ 1 • !>“<*■* mu €A‘* [*sl*21 .*8414] 

This is :iii iii11>««rinii« |ir<>|x»>itioii. since il shows that, when k is a Cls-excl, 

the numher ol classes ihat can he selected Iroiii * is the product of the numbers 

• *l the various classes that are meiiilicis ••! k. 

-84-411. h:.#Hf.D,.MAa«l [*81-212 . *62-2-8] 

•84 412 h:*.CIs exel.D. I>“€AV = 2 a < * . D« . y. n a « 1 : C***', 
{ysl 2*2. *s4*14.*i»2*2-3| 

I'his |»i..|i..siiion gives vvh.ii mil'll! he taken as the definition of the class 

• >l selected elas-.es. namely 

£ o * k . D* . n n a € 1 : /« C *•*}. 

We might siarliiio with this as our di-finition. deal with the class ol 

selected classes W it honi liis! considering selective relations. The disadvantages 

• •I this method would he first, that it requires that k should he a ('Is-excl il 

ii is in give ihe results desired in arithmetic: secondly, that it is much more 

cutiihioiis technically than the method which proceeds by selective relations: 

thiidlv. that it. does nol enable us to deal with selection from a class of classes 

as ;i particular case of selection from a relation t namely from t [ ), nn«I there¬ 

fore does not yield theorems of such generality as those obtained by the 

met hod adopted above. 

‘84 42 h : * t < Ms- exd . a « * . /* < I>"«**< • ^ I< - ,ta) 

|*M -24.*84 I4.*«i2-21 

‘84 421. !-:«««..rca.p* WtSi* - i‘a>. 0 . ,< v /*.#•« 1>“*V* [*Sl-25] 

‘84 422. h ««Ch»*oxcl «c I>“€aV - t‘a). s .n€ 1 

|*S1-2G.*84 14.*«-2-2] 

*84 43 h :• a./$ < Ols? excl .x‘a-s‘/3. D :oC !>“<*'£. a 

Dnn. 

K *84*412 . D h Hp.D:: 

aC l>"cA7?.s :.^a.Df: ^ ■ :fC 

[*40*18. Hp] ~ :>?«/$. 3,:- 

[*10-542-21] s »/c£. a. :- 

[*40*13.Hp] = »; c £ - 3, : £ ««- • f « c 1 : C s*a 

[*84-412] = s. ti € £. D,: * € V“e^a ss. D H • Prop 

*845. h : CIs-♦ 1 . D .7?“<14/f €CIsex-exd 

4 .*71181 . D I-Hp. D :g ! 

[*30-37] ^.^.r=7?‘y (1) 

4 . *33*41 . *11 *•>?). D 4 : x,//c(I*/? . D,.„ . g ! R€* • 3 I < 2> 
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h . (1) . (2). D h :: Hp . D :.ar,y € G.*R . Dr „ : 

3 ! R‘x. 3 ! ii'y : 3 ! R‘.i ^ R*y . D . 72‘a = 7?‘y 

[*37*63] D a, e R“(1‘R . Da>* : 3 !a.3 !£ 13 \a r\ &.a = 

[*84134.] D ~R“Q.‘R e Cls ex9 excl Prop 

It might be supposed that the converse of the above would also hold. 

But this is not the case; for although /i“Q‘SeCl8e.\!excl secures that 

R‘x and R‘y cannot overlap when the}* are unequal, yet we may have 

R*x= R‘y without having x = y, so that if R‘.c = a—R‘y, we shall have 

z € a . D . zRx . zRy, whence, if 3 ! a . x + y, it follows that R is not a Cls —► 1 

even if R^&R c Cls ex*excl. 

*84 51. h : R [* * e Cls -* 1 . D . ~R“K € Cls2 excl 

Dent. 

K *71*171 .*35-101.3 

h Hp . D : xRy .ye*. xRz . z e k . Dz... y = z . 

[*30*37] ^ Dx.„'t.l?y = 'R‘z: 

[*3218] D : y, z e * . x e /i‘.y r\ R*z . Vi, . R*y - : 

[*10*23] D : y, ^ e * . 3 ! ~R*y r» ~R*z . . R<y-lt*t z 

[*37*63] D : a, e /£“* .3 — 

[*84*11] D:~R“kc Cls2 excl D h . Prop 

*84 52. H s R [ * e Cls -♦ 1 . * C <3‘rt . D . 7?‘* e Cls ex2 excl 

Dem. 

h . *37*2 .Dh. Hp. D : a e ~R“k . D . a cli“(l‘R . 

[*37*77] D.3! a (1) 

h . (1) . *84*51*13 . *24*63 . D I-. Prop 

*84 521. h : R e 1 -* 1 . R“0 e Cls2 excl. Z> . /* f/3 e Cls -* 1 

Dem. 

h. *71*55. *84*11 . D 

h :. 72 [* £ e 1 —>1 . R“(3 e Cls2 excl .Ozy.ze/3. R‘y = R*z . D,/f, . y = z : 

y.x*&.^\Rly e\ R‘z. DgtX .R*y—ll‘x: 

[*11*37] Dzy,zc&. 3 ! R'ynR'z. D,,%z.y=zz 

[*74*62.Transp] D : R [* >9 e Cls -> 1 D I-. Prop 

The above proposition is a lemma for *84*522, which is used in an 

important proposition on relations of mutually exclusive relations (*163*17). 
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-84522 h:./iC<!‘/,’.D: /ff^eC|s-» I . = . /ff/J, 1 -> 1 . /{««,* «CV exd 
/ frill. 

L • H Il|i. D : •/.:*$. D . 3 • 7?//. 3 »7? *: 

I *’--•») =>: // - e ^. K'y = A*'-- .3.3! 7?// A 7?.-: 

[*74,i-l => = /,*f*^tr|s-» | .y.-t3.7?// = 7?.-.D. v = :: 

i*71 v»i => = /-r.^cu^ I .D.7?r^€l -> I 
H -< I >.*M5I . D 

f-:. M |». D : //1* ,3 « CU —► I . D . /f T £ c 1 —» | . J{“J<CIs5 exd 

H .i2>. *84-521 . Dh. 

^84 53 H :/,*«-* *K —» | . *, ('k>xd. D . /C“* <CI.s- .-x, I 

ban 

I- .*72 421 . D 

H : H * < Is -♦ l . /,.tie« . 3 ! /»"‘o a /C73. D . 3 ! a a /J 

^ (I >. Sy II . D !■ !• //1Cl> —♦ I !flA/3.Di 

o. ,3 « * . 3 ! /C‘a a /f“,3. . . « - £. 

[*30-37.*371l 111] D..„./f“a-/?“,3: 

| *37 03.<*37U4>) D : p. «r « /f«“* . 3 ! ^ a <r. D„># . p - ,7 

I- . (2). *M‘I I . DK1V..|. 

(1) 

(2) 

(1) 

(2) 

*s4.v»;; 
*8082] 

>8454. h: It< \ —* CIs. * < CIs5 exd. D . J{,,*k t CIh* excl 

-84 55. K/V‘*«Cls*cxd 

*84 59. I-: * sj \ < i V « xcl. = . *, \ « CIs*exd . *••(* - X> a a‘\ = A 

be m. 

V . *84 14 . D H : * o X « CIs- exd . s . € f*(* u X)e Cl» -* l . 

[*74 821] s.<r^.*p\eCls-* 1 . tu{tc-\) A e“X- A . 

[*84 14.*02 3] = . *\ X * CIs5exd . *'<* - X) a a‘\ = A 

*84 6. h:.«A\-.\.D:«vXc CIs5 exd . = . *. X t CIs5 exd . g** a s‘\ = A 

[*84 59 .*24 313] 

*84 61. h :. £ * . D :k\j i*Jc CIs5oxcl. = . k e CIs5exd . /3 a *«* = A 

[*51-211 . *53-02 . *84 23 6] 

*84 62. f-:.a + ^.D:f‘av C/3 * CIs5 exd . = . a a /3 = A 

[*84 (51 . * >115 . * >3-02 . *84 23] 



*85. MISCELLANEOUS PROPOSITIONS 

Summary of *85. 

In this number certain important propositions are proved, and the other 

propositions of this number are mainly lemmas. The most important propo¬ 

sitions are the following: 

*85T and *8514, which show that if QfK is a Cls -* 1, then the domains 

of Q**\ are the same as the domains of €**Q**\, and Q**\ is similar to e**Q**\, 
thus reducing the problem of selections from many-one relations to that of 

selections from classes of classes. 

*85 27 and *85*43, which show that if * e Cls5 excl, 1***8** consists of the 

relational sums of the domains of 9**P***k and is similar to e**P****; i.e. the 

class of P-selections from s** is similar to the class obtained as follows: take, 

the members of * one by one, and form the 7^-selections of each; we thus 

obtain a class of classes, each class being of the form Ji**a, where a c *; we 

then make a selection from this class of classes; this selection is a member 

of e**P****\ the number of such selections is the same as the number of 

P**8*K. 

*85*28 and *85*44, which are special cases of *85*27 and *85*43, but more 

useful than these. *85*44 is the source of the associative law in cardinal 

multiplication; it states that, if * is a Cls*excl, ****** has the same number 

of members as €**€****. (On associative laws in general, see the notes to 

*42*1*11.) That is to say, if we form the class of selective relations (e^'a) for 

every a which is a member of *, And then form the class of selective relations 

for e****, we get the same number of terms as if we proceeded to form the 

class of selective relations for c**s*k. The way in which this proposition 

yields the associative law of multiplication may be explained as follows. We 

shall define the product of the numbers of members of a as the number of 

ee.*a. Thus e.y. if the numbers of the members of a are yal, ya./t the 

number of e**a is yal x ym3 x Suppose the other members of * are and 

7, and that ft and y again have three members each. Then the number of 

c**€***k is the product of the numbers of eA‘/9, e**y, i-e. it is the product 

of m«, x m.2 x Hu x H* x and y^x x x 

But the numbers of the members of 8** are 

/*«*» M«j.*M*i. Hfif Ho. Hr*- 

Thus the number of ****** is 

X ^ X ^ X X yfi9 X yfi, X y,, X y^ X y^. 
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llc’ii'v -^''•V44 eiial»!••** ii- to conclude (hat 

*^o * x P* » x «/*/». x ft,, x /!„,) x (m», x fiy. x /xv,) 

= /*-. > A*., x /i., X fxa, X fiitx fifi .x fitl x fly. x fiy}■ 

wlim-Ii i- ;i ..I dm awH-iativc law. In fact *<S-V44 gives us this law in its 

• 11• • *11 t■ • iiii wlii-ii flu* number of brackets, and of factors in each bracket, 

may intimre or film** indifferent I v. 

Anodmi iiii|»>itaut pan of |»it»|x»silion> is *S5 ’»:K>4. These enable us to 

reduce the |»i• »bl«-in .»| s.-loetioiiH |br an>f relation to the problem of selections 

11• *|«» n da*s classes. I h«• method is a- follows: Given anv term ./*, form 

dm class .»f ordi-ioil ..pies which j- is relatiun while the referent is a 

term haviii}; the relation /' to .#. ( 'all this class of couples 1* \ r. Form 

tin- class Ibi every .« which i- a member of a: we thus obtain a class of 

cla-ses. namely 1’\"oi. Then dm number of selections from this class of 

cla-ses is the same a- the number of J*A*a. 

We have one otlmi important pair ofpropositious in this number, namely 

*s.Vb! These show that what is called " Zcrmelo’s axiom " is equivalent 

to what is called the "multiplicative axiom." Zennelo's axiom* is to tile 

etiecl that it a is any class. «A‘C*I ex'a is never null, #>. (a).y ! (±*L'\ cx‘a. 

I lm 1 multiplicative axiom* is (o the elfeet that if * t (Jls ex*exel, there is at 

least one class loinifd by tukiiit* one rvprcscntative from each member of k, 

\\ liieh is equivalent to 

* t ('Is ex- e.xel . . y ! tjV. 

In *S.Vt».q. these two axioms are shown to Ik- equivalent. From Zennelo's 

tlieo|-ein*f* it follows that l»otli are eipiivaleiit to the assumption that every 

class can Ik- \\ cl bordered. This will be proved Inter (*2.*>N). 

'I’lie above-mentioned propositions, stated symbolically, arc as follows: 

•851. I .D.IV'fc'X-DvJ'X 

#8514. H : ur\«CI»-> 1 . D . sin eVV“\ 

*85 27. h : * t C'ls'excl. D . ^“D'^'W4* 

*85*28. H : xe Cb-excl. D .«*•*•* 

*85 43. V : * * Chccxcl. D . /V«‘«saiicWV4* 

*85*44. I- : k « CIs* cxcl. D . V* sin ca4**4** 

I'lie followin'* pnqtosi lions depend upon the definition 

#85 5. 7'X.»/= 1//“/'•// 1)1 

l.e. /' I // is the class of all couples whose re latum is y while the referent 

has the relation /* to //. W’e then have 

*85 53. I- . Wa =*“|)“tV/> I“a 

giving a construction for /Va by means of e*, And 

* Sec Milth. AnnaUn, Vol. IJX. t loc. cit. 
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*85-54. h . PA*a sm eA*P l“a 

which reduces the question of the existence of /^-selections to that of the 

existence of e-selections. 

*85 61. h . e I“k e CIs2 excl . \€€k . e^sm €±‘e J“k 

This proposition gives a construction for any e-selection in terms of an 

e-selection from a CIs2 excl, and reduces the question of the existence of the 

former to that of the existence of the latter. A particularly important case 

is when k = Cl cx*a. This is considered in 

*85 63. h : e J"C1 cx*a e Cls ex2 excl : g ! €A‘CI ex* a .3.3! eA‘e J“CI ex*a 

*85 1. h : Q r X e Cls 1 . D . D“QJ\ = D**eA*Q**\ 

Dem. 

h . *81 -3 . D I-: Hp . D . D**QA*\ - fi fa e~Q**\. D. . ,x « at 1 : C s*Q*‘\] (1) 

h . *84 51 .DhHp.D ,~Q**\ e Cls2 excl . 

[*84-412] D . T>**e^*Q**\-$|<n <?‘X .Da./inacl :/xC s'Q^X] (2) 

h.(l).(2).Dh. Prop 

*85 11. H : Q [* X e 1 -> 1 . D . D“(/> Q)±‘\ - D“/VQ“X 

Dem. 

h .*33*431 .*3212. D h : Hp.D.\ca‘Q (1) 

h . (1) . *82-32 . D h : Hp . D . D“(P, Q)A‘X - D“PA‘4?“X OK Prop 

*85 111. h:/lfee.i‘Q“X.D.D«(J/jQrX)-DM/ [*823] 

*85-112. h : Me e±*Q**\ . "D . M ~Q [* * * Q*‘X £*82221 . *62 26 ] 

*86-12. h : Q f X e 1 -» 1 . D . D“QA‘X = DM€*^‘X 

jDem. 
h . *62-26 .DK D“QA‘X - D**(e | Q)±*\ (I) 

h . *82-32. D h : Hp . D . D“(c | Q).>‘X = D"«A‘4?‘X (2) 

I- . (1) . (2) . D h . Prop 

This proposition is used in connection with ordinal multiplication (*17314). 

*86 13. h :~Q r X e 1 1 . R e Q±*\ . D . R | Cnv‘4? c €A‘Q“X 

Dem. 
h . *62-26 -Dh:Hp.D.grXel->l.P€(6| Q)A‘X . 

[*82-231] D.R | Cnv'Qe es*Q**\ : D h . Prop 

The above proposition is used in connection with “families" (*9731). 
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*85 14. I- : 7 r X * rl> I • > • V*4X Mil e.*4 V“X 

hr in. 

b. •SI-21 .Dh: H|».D. V^Xmii1>“Va‘X. 

|**5 1) D.V*‘Xmi. I >“«•.* *7“X 

h . *84 5 I . D h : 11 |i. D . IJ**\ € C Is* i-xel . 

|**44l] D. 

l-.(l).l2).Dh. Prop 

*8 5 21 ’22 ar»* I*’Iiiiiisin lor *n524 which, with *85*20. 

**5-27. 

(part ii 

(1) 

(2) 

is iv<|iiii-c<l for 

*85 21. b :o€#f. M* I**'*1* ,M[ a* Pa‘o |*H0 0. *4013) 

*85 22 h.1/t/VA.D..l/r <1 *1Pa)-.)/ 

llcrc.l/f* * 1 Pa t €±*1**“* can also be written (.1/f) (* 1 Pa)! c (Ca'Pa14*). 

The brackets arc omitted because no other meaning is possible. 

hem. 

h . •85-21 . D h Hp. D : a « * . . g ! P±*a : 

|*8() 81 J D : a. fi t « . / Va * Pa‘3 - 3-.d . a - : 

[*S0* 12.*71 * IOG‘55] D : Pa T < * 1 -> • : 

| *35-52 J D : «1 /’* « 1 -» 1 (1) 

b .(1). *72" 1 4. *71-25. Dh: Hp.D.J/r < *) Pa « 1 —► CIs (2) 

b .*341 . *30*4 . DhsP^/f* *1P*|\. = . 

(ga). P-.1/ra.acff. X — /*a*o (3) 

h. (3). *85-21 . Dh:Hp.D..l/f xj/^Ge (4) 

h . *37-322 . *33-431 . Dh.cpj.l/r *1Pa>U4(«1Pa) 

1*37 4) = VV‘* (5) 

b .(2). (4). (5). *8014 . D h : Hp. D . JJ/T «‘\P*:< *a‘W‘* (<i) 

I- . *37 32 . *35-02 . Dh.DT.ur *i/\>=j/r*v. 

[*41-35] D h . *4D*( J/ r * 1 Pa> = .v |V* (7) 

H . (7). *80 20 . D h : Hp. D . **D‘( .1/ r <1 Pa) = .1/ <*> 

b . ((»).(8).D h . Prop 

*85 24 b . P,V* C *“I>“*a‘Pa“* 

Dem. 
h . *85-22 . D 

b : McPSs'k . D . (g-Y). X e eA‘/VV . M = A‘D‘X . 

[*3707] D . J/*r «“D“eA‘PA“* : D h . Prop 
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The following propositions are lemmas for *85 *26. 

*85 241. h : X e eA‘PA“/c X‘P±‘a e Ps‘a 

Deni. 
h . *83 2 . D 1- X e €A‘Pa“k ,Dz\e P±“k . DA . X*\e X : 

[*37*63] D : a € * . Da . X^P^aeP^a :. D h . Prop 

*85 243. h : /c e Cls2 excl. AT e eWV‘* . D . i‘D‘JY € 1 Cls 

Dem. 

H .*83-21 . Dh: Hp . D . D‘.Y C s*P±ttK (1) 
1- .*40151 .*8011 . DI-.s‘PA Cl —> Cls (2) 
h.<1).(2). Dh: Hp . D . D*AT C 1 -> Cls (3) 
^ . *80 35 . *11-45-55 . D h Hp . D : Af, N c I)‘,Y . g ! (IM/ r> CVN. D . 

(ga. &). a, @ e k . At ~ X'PSa . iV= X'PSp . g ! QM/ n CT'iV. 

[*85 241.*80-14] D . (ga./3) .«,£«*. A/- X‘P*‘a . X = X‘P*‘P, 

g lawna^. a = a‘.i/./3 = ci‘iV. 
[*13 22] D . CI‘A/,(I‘iVr * * . A/ * X‘PS(l*M .N-X'PSWN . 

g ICl'A/^CPiV. 

[*8411] D . (I*A/ — a*N. M = X‘P**(I‘M . N = X'PJCI‘N. 

[*30-37] D.M = N (4) 

h. (3). (4). *7232. Dh. Prop 

*86 244. h : X e <A‘PA“* . D . j‘D‘AT <• P 

Pern. 

I-. .83*21 . *40 4 . 3 h :. Hp . 3 : R e D‘X . 3„ . (ga) . a * * . R e /Va . 

Cm8014] 2K.JiCP: 

[*41*151] 3:WICP:. 3 I-. Prop 

*86 246. I- : X t eSPs"K . 3 . a‘*'D‘^r = *•« 

Devi. 

H . *85*241 . *80 14. 3 I- s. Hp.3 :a«* . 3. . d'X'PSa = a : 

[*50 17] 3 : a“X“PS‘K - *: 

[*80*34] 3 : a“D‘^ = * i 

[*41*44] 3 : OVD1? = s‘* 3 K Prop 

*86 26. h : * e ClsJ excl. X e t.‘P.“ic . 3.6‘D‘X e P.‘s‘k 

[*85*243-244*245 . *80*14] 

*8626. h:«eCls*excl. 3 .«“D“e„‘/V‘*C /VsV 

Dem. 
\-. *85 25 .DI-r.Hp.DsYe f4‘P4“/t. Dx . i‘D‘AT f 7Vs‘* : 

[*37-61-33] D s i“D“€.*‘PA“* C /V«‘* D h . Prop 

*85-27. h : * c Cls3 excl. D . PA V* = P'D“*PPA“* [*85-2426] 

*85*28. H : * e Cls* excl. D . eA V* = £*85-27 

H Ac W I 
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The following proposition is a lemma for *85*31. 

>85 3. h : M * 1V« . s € a . D . M'z G * I>M/ . M'z G #P'z 

I'll.* condition' • significance here and in *85*31 *32*33 34 require 
\YPQ Rel. 

ben*. 

I- . *80 32 . *33 43 . D b : Hp. D . M*z e DM/. M*z € 7”z . 

[*41*13] D . M*z G*‘PM/. M'tGVP'i: D h. Prop 

The following proposition*, down to *85 +2 inclusive, deal with circum- 

stanc. s under which we can infer M* A* from .v‘DM/ = .v‘I>‘Ar. *85*32*33*34 

an* not siihsoqiieutlx used: the remainder are used in proving *85 +3. 

*85*31. y :. € a . : 4s • 3*.*- • «‘lu: A s* D'm ■ A : D : 

.V. .V t / v« . *‘l >M/ = *‘D‘.Y. D . .1/ = .V 
Deni. 

y . *25*5+ . D h : Hp. z. w * a . 3 ! x* JJ,z A s1 Jt,m. D. „ «•; 

(* 11 *351 DhjHp.;.w«o.« (stl,,z) 9. u is*lnw) t. D. ir>,( w (1) 

h . *85 3 . Dh::Hp.;*oJ/lArf iVa. *‘DM/ = x‘D‘Ar. D 

" t ;l/‘: )r,D::<a.« <x‘/>4c) *•. m (.v4l)4Ar) r : 

[*80*351 D::ta.»(x‘/,4.*) *•: (gw). w ta.u( A'4w) e : 

(*85*3.*10*35] D : (gw/) . Zt w«r a . •• {VP*2) r . u (.s,/un)e . r : 
[< I).*10*23] D : (gw) .z-w. n (X*w) /•: 
[*13*105] D:t/(iV<*)f (2) 

y .(2). Kxp. *10*11*21 . Dh. Hp (2). D : r r a . D.. i1/4r G X*z (3) 

Similarly h Hp(2). D : c < a . D,. Ari5 G ,l/4j (+) 

h . (3). < + >. D h Hp (2). D : r e a. 0.. M*z «= A’4* : 

[*33*+5.*30 l+] D : Jf- Ar:. D h . Prop 

*85 32. h 2, w c «. r * w. D.. „• . stC“Ptz o *‘Cu</>*w = A : D : 

il/. A' e /Va • *‘DM/ = x‘D‘iV. D. .1/ — Ar 
Dan. 

y . *41*45 . D 

h Hp.D::,«'tfl.: + tf/.D;if. C‘stPtz r\ C4*4/>4w = A . 

[*33*3+] D...,r. i‘7** A .i‘7“w = A (1) 

h . (1). *85*31 . D h . Prop 

*85 33. y c. w e a . 2 * w. D,.,,. n «‘D“/^w = A : D : 

il/, iY € /^‘a . i'DM/ = x‘D‘iY. D . .1/ = A' [*41 *43. *33*32. *85*31] 

'Phe proof proceeds exactly as in *85*32. 

*85*34. h w t a .:*//•. D-. „•. s'd^P'z r> s'd^PUe = A : D : 

M. iVc P±a . s*\.YM = .v‘D‘iY. D . J/ = iY [*41*44.*33*33.*85*31] 
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The following propositions. *85*4*41*42, are lemmas for *85*43*44, which 

latter are of fundamental importance, since they are the source of the 

associative law in cardinal arithmetic. 

*85*4. h r\ s'f* = A : D : 

M, iV e c±‘k . i-'DM/ = *‘D‘AT .D.M—N £*8581 ~ . *62*2 

*85 41. \~:.K€ CIs* excl .D:a,/3€*.a^/3.0. PPA‘a A PPA‘£ = A 

Dem. 
h . *8014 . DH :® (PPA‘«)y . «(J*/V£) y . Dx.v . y e a . y e 0 . 

[*22*33.*10*24] Dx,y.g!fl^: 

[Transp] Dh:an^ = A.D. PP/a A s‘iV/9 = A (1) 

h . (1) . *84*1 . D h . Prop 

*85 42. \-ik* CIs* excl . M, iV € . i‘D*M = PD*Ar . D . A/ = Ar 

Dem. 
h . *30*37 . Transp . D h : 2Va * 7Vrf . . a + /3 : 

[Fact] Dl*uf CIs* excl. a, /3 « * . /Vot * /V/3 . !>.*. 

* * CIs* excl . a, 0 e k . a + # . 

[*85-41] D.i# . *‘PA‘« A *‘PS0 - A : 

[*37*63] DFuf Cl s’*’ excl .\,^c /VVr. X + ^ . DA „ . A s*u = A (1) 

h. (1). *85*4. Dh. Prop 

*86 43. h : * e CIs* excl . D . PA V* sin «a‘PA“* 

Dem. 
h . *34 41 .Dh. (Af) . - (* | D YM. 

[*1312] Dl-:. M.Nt'JPS‘K.i‘VM^i‘D‘tr.0,, v.Af=JV:0: 

H . (1) . *85*42.0Ml N * f*‘P*“* • (*1 DrM = (*1 VyN <1 > 

h :• * « c,sS excl *SPS‘k . <# j D)‘A/ = (* j D)‘A . „ . A/ = JV : 
[*73’25] D : (i | D)“«A‘PA“* sm cA‘PA"«r : 
[*37*33] D : sm «A‘/V‘*: 

[*85*27] D : PAV* sm *SP*“k DH. Prop 

*85 44. h : /c e CIs* excl. D . sm *k £*85*43 

The following proposition is used in connection with cardinal multiplication 
(*114*301). 

*85 46. h : * « \ = A . D . €A*<* w \) sm eSii'cS* ^ 
Dem. 

h . *85*44 . D 

h : t‘/c w t<Xe CIs* excl. D . ejs‘(l**c v i‘\) am v t‘\) (1) 

h . *24*57 . Dh:. Hp .D:*4=\.v.* = A.X. = A: 
[*84*62 23] D s i*k \j i*\ e CIs* excl (2) 

h . *53*11*32 .Dh. *‘(i‘x o t‘\) = * w X.. eA“(l‘tc v l‘\) = l‘ej*c v (3) 
h • (1) • (2) • (3) .Dh. Prop 

34—2 
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The purpose of the follow it*rr proposition^, down to *85"55, is to show how 

to o«-t from a class of classes a class of selections having the same number of 

terms as ]\*k. For this purpose wv introduce a new notation, representing 

a lather im|x>riant analysis ..| tin- couples contained in a given relation. 

A couple .• I >/ is contained in a relation /' when jPy\ thus if, keeping y 

fixed we form the class of couples l 7“7"// all these couples are contained 

III /'. We pill 

-85 5 P ly=ly“7”y 1>I 

Then 7* J‘*0*P* CIsex*excl. Also .**7> J**< VP is the class of all 

couples contained in /'. and *V/* J**(l*/* * P. We shall now prove that 

/'_ ‘o -r I >“«„*/'!“<». so that every member of I*.‘a can be derived from 

a member <»f «r<i*7,J“o. and the problem of the existence of l*\la is reduced 

to that o| tin- existence of selection* from a class of mutually exclusive 

existent classes. 

*85 51. h . PSl'.r - l P‘7" r = 7'J .r [*80 4-5 .|*K5‘5>] 

*85 52. h . 7V*'“a = PJ “a [*37*35 . *85*51] 

*85 63. h . 7Ya = .v“ I )“«.»* 7* I “a 

Pew. 
I-. *84-241 . *53 22 . D h . /“a « < Is- excl. 0 = a . 

[*85*27) D h . /V* -*“l>“e./7V‘i“a 

[*8.5*52] = .i“D“<*‘P I “a . D h . Prop 

-85 54. h. /VosnuV/'T'a 

I)nn. 
h . *84 241 . *53*22 . D h . /“a « CIs* excl. .v*t“a = a . 

[*85-43] D h . Pa*a sin «*‘PA“l"a . 

[*85-52] D h . /Va sm €A‘P J “a . D H . Prop 

The following proposition is frc«|Ucntly useful. 

*85-65. h . 7Va sin I>***,‘P J**a . l> J*‘a < CIs* excl 

Pc m. 

h . *85*51 . *80 14 . D h : 7? * 7J J j- . D . 0*7? = /‘.r: 771 P J // . D . 0*77 = i‘y : 

[*3 47) 

[*13-171.*51 23] 

[*30-37] 

[*1011-23] 

[*3-42.*l 111] 

[*37t>3] 

[*8411] 

[*84-41] 

[*8554] 

DhsPePJaAPJy.D. 0*7? = i*.r. 0*7? = t‘y. 

D = y. 
D.PI-r-PJy: 

D h : 3 ! 7* J .i- n 7* J 1/ . D . P J s = P J y : 

D h : x.y (a.^ll'ljrsPly. Dr.y. P J x = P J y : 

D h : X./ifPI"o .3 ! X A/t. 3a.m • X - y : 

DH.PJ“ae CIs* excl. 

D h . D“€A*P J*‘a sin «A‘P J“cc. 

DKP^asm D'VPf'a 

h . (1). (2). D H . Prop 
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*85 56. K: P f- a e Cls —* 1 . D . e±‘P“a am e.‘P J“a [*85-14,-54] 

*85-6. h . = £ |(3/3). @ e k . p ^ 0“/3\ = <: 1“k 

Deni. 
h . *37-67 . D K . €A“c“* = £ j(a/3). 0 e k . ^ 

[*834J =A!(3/3).^e^.M = |/3“/3j (1) 
h. (1). *85*52. DK Prop 

The following proposition is frequently employed. 

*85 601. h .<•!<*«! a“a . e J a sm a . e sin * . € J e 1 —► 1 . E ! * J'a 
Dein. 

K *8551 .*622. D h . e I a = i a“a (1) 

[*73611] Dh.ejasma (2) 

h. *3812. D K E! e I'a (3) 

[*71-166] DKe J«l->Cls (4) 

h . (2) . *73-47 . Dl-:a«A.€jas=fJ/3.D.6l/3=A. 
[*73-47.(2)] D./3«A (5) 

h . (1) . *38*131 . Dh:a;«a.«Ia»fJ/3.D.a;|a€i /3“/3 - 

[*38-131] D . (g.y) . x i a = y l /3 . 
[*55-202] D.a=/3 (6) 

h . (6) . *1011-23-35 .Dh:a!a.cIa = eI/3.D.a = /3 (7) 

h.(5).(7). Dl- :<I (8) 

h. (4). (8). *71-54. Dh.«jcl->1 (9) 

h . (9) . (3) . *73-26 . Dh.e J“* sm * (10) 

h . (1) . (2) . (3) . (9). (10) . D I-. Prop 

*85 61. h . e J“* e Cls* excl. \“k . sm €A‘«? J“* 

*85-53-54-55 

*85 62. h : g ! . = . g ! cA‘* J"* [*85 61 . *73*36] 

*85 63. h : e J“C1 ex‘a c Cls ex* excl : g ! *A‘C1 ex4a . = . g ! I“CI ex‘a 

Dem. 
h. *85 6. *60-21 . D 

\-:\€€ J“C1 ex'a . = . (g/3) .0Ca.g!£.X-i /3“/3 (1) 
h . *73-611-36 . D h : g ! 0 . X - J, . D . g ! X : 

[*3-42] Dh:^Ca.g!/3.\ = | /3“/3 . D . g ! X: 

[*1011-23] D h : (g0) ./3Ca.g!^.\ = 4r . D . g ! X (2) 
h . (1) . (2) . Dh:Xf(f J“C1 ex‘a). D . g ! X : 

[*1011 .*24-63] Dh.A«v<(f J“CI ex‘a) (3) 
h . (3) . *85-61 . *8413 . D h . e J“C! ex‘a c Cls ex* excl (4) 
h . (4) . *85-62 . D h . Prop 

Note. (a) . g ! ca'CI ex‘a is "Zermelo’s axiom.” The above proposition shows 
that this is true if 

k e Cls ex* excl .D,.g! eA*K, 
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which again is true it’ 

x € ('1$ ex* excl. D : (1 

hi virim* of *84*412. The last of these is the "multiplicative axiom," which 

is thus shown to imply “Zcrmclo's axiom. 

The following pro|H>sitions lead up to *85*72. which is used in the theory 

of double similarity <*1 I 1*8). 

*85 7. h 01 X . . H't3 C ^ : M € : D . 

M It rx««jcX.D'(,l/ J<[\) = D*M 
hem. 

h . *14*21 . D h 11 p . D : & t X . Da . E l K*£ : 

|*74 1 I | !>:/* [A* 1-»CI«.\CU</{ (1) 

| *80* 14.*7 I -25] D : .»/ /f f X ( I -> Cl* (2) 

h . < l). *71 -7.*857 . D K H p . D : a (.V li [ X . D . >9 < X . xM </?*£). 

(*80*'ll.lip) D.£eX..«’«7*4£. 

[Up] (8) 

I-. *80-14. *74*44.3 

I- : U p. D . I >4( il/ U r X> - 1>M/.<I4(.1/ rt^-X^d4/* 

KD] -X (4) 

K . (2). (3). (4). *80*14 . D h . Prop 

*85 701. V \ . D* . /f4£C£: 3 . l>44€A4/f44X C 1>,4*VX [*85*7] 

*85 702. H :. £ « X . D,t. /PCIVf € Cl4£ : 3 . I>44<A4tf44tT4X C D44*a4X 

[—O' *Jr] 
*85 71. h : 7*«€A4CI44X . 3. ])“<A‘D‘ftC D“<»4X [*85*702 . *83*2] 

This proposition asserts that if we can select one sub-class out of each 

member of X (where X is a class of classes), then selections from the sub-classes 

so obtained arc selections from X. 

*85 72. I- :.(.N'“/3)1 tfcl -> 1 

L)4<«i4/i4<X C D44€a‘*S'44X 

Dem. 
h . *14*21 . *38*43. 3 h Hp. 3 i&*\ . 3. ficd'S (1) 

h.,85-701 
If, \ 

h7 «S“\ .0,.(R' S)‘y C 7 : 3. D“ta,‘R“S“8“\ C D“e4‘S“X (2) 

h. *37-03. *14-21 . 3 

I- :: Hp. 3 7 « S“\ . 3, • (« S)‘7 C7: = :/3e\.3s.(«i S)‘S‘£ C S‘5 : 

[♦74-53.(1)] = :0€\.O,.R‘ffCS‘ff (3) 

I-. ♦74-171.3 H : Hp. 3. S“S"X = X (4) 

1-. (2). (3). (4) .31. Prop 
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(1) 

(2) 

(8) 

The following proposition is a lemma employed in the theory of double 

similarity (*111-313). 

*85 81. hr.Xf Cls’excl : /9e \ . *‘<3 “T*& C £ : R € €±‘T“\ : D : 

/3eX. D,.(«<D<ft) f&-R€T*0 
Dem. 

(-.*14 21. D (-:. Hp . D : /9 e \ . D . E ! T‘0 : 

[*83'2.*37'6] D : 0 e \ . O . R‘T-0 « T‘0 . 

[*35'452.Hp] D . R-T‘0 = (R‘T‘0) f 0 

(-. (1) . *83 22 . D I-:. Hp . D : /3 e \ . D . E ! R‘T‘0 . 

[*33-43.*4113] D . R‘T‘0 G ,i‘D‘R . 

[*35-461] U . (R‘T‘0) [ 0 G(s‘D‘R) [ 0. 

[(»)] O.R‘T‘0C(s‘D‘R) f0 

I-. (1) . *37 6 . *83-23 . D (-:. Hp . D : D‘tf = M |(a-y) . y t \ . M = R‘T‘y\ : 

[*41-11.*18-195] D : x(i‘D‘R)y . = . (37) . 7 f X . x(R‘T‘y)y : 

[*35101] D:xl(i‘D‘«) t 0} y . = . (&y) .y f\ . x(R‘T‘y) y . y e 0 (5) 

I- .(2). *33-14 . D (-:. Hp .7«X .3: x(R‘T‘y)y. D . y ed‘R‘T‘y. R‘T‘yt T‘y . 

[•40 4] D . y t »'Q.“T,y. 

tHP] O.yey (6) 

(-.(5). (6). DI-::Hp.3:./9,X.D: 

x |(*‘D‘/f) r/9|y. = . (37) -0,yt\ .x(R‘T‘y)y . y e 0 . y ty . 

[*841 l.Hp] o . (37) -P.ytX.x (R‘T‘y)y. 0 = y. 
[*13195] O.x(R‘T‘0)y (7) 

I-. (4). (7). 3 (-.Prop 

(+) 
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Su in uni rii of *-SH. 

Tin- existence nl selection' cannot, so far as i> known a! present, be proved 

in general, That is. \\i- cannot prove any of the following: 

«/\#):#C<l‘/'.D.3|8/V* 

</'.*>: /'«CI*-» I ^C(IT.D.;.| ! /V* 

t/O-H ! /VO*/' 

<*): k . 0 . a ! *±‘x 

t k>: x t Cl*» **x* e\cl. D . 3 ! «4V 

la). 3 !«.‘Clex‘o 

<*>:.*«< *D..\5,-xel . D : (gp): au.D.^Aafl 

These various propositions can be shown to be all equivalent inter se; and 

111 virtue of Zermelo* theorem tef. *2">K). they are equivalent to the proposition 

“every class ran hi* well-ordered.*’ In the present number we have to prove 

the above equivalences. a> well as certain propositions giving the existence of 

selections in various particular cases. 

The most apparently obvious of the above propositions is the last, namely: 

If k is a class of mutually exclusive clashes, no one of which is null, there is 

at least one class p which takes one and only one member from each member 

of#." This we shall define as the " multiplicative axiom." 

Wo will call l* a multipliable relation (denoted by "RelMult") if 

PjiVP exists, or. what is equivalent, if * C CVP. D. . 3 ! /V*. Thus we put 

Rel Mult => P !3 ! PJQ'P\ Df. 

We will call k a multi friable class of classes if cA‘# exists, i.e. we put 

Cla* Mult = * |g ! €±‘*\ Df. 

The multiplicat ive axiom will be denoted by “ Mult ax.” Thus we put 

Mult ax . = k e (-Is ex*excl. D. : (g/*) zaetc. ./* a a* 1 Df. 

In the present number, we shall first give various equivalent forms of the 

assumption that V is a multipliable relation (#881—To); we shall then do 

the same for multipliable classes of classes (*88*2—*26); next we shall give 

various equivalent forms of the multiplicative axiom (#88*8—*89). (Some 

important equivalent forms cannot be given at this stage, as they depend 

upon definitions not yet given, such as the definitions of cardinal multiplica¬ 

tion and of well-ordered series. Cf. *114*26 and *258*37.) Finally we shall 

give propositions showing that various special classes of classes are multipliable. 

Most of these propositions will not be used in the sequel, but they illustrate 
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the nature of the difficulties involved in proving that a class of classes is 

multipliable, and some of them show that mere size does not prevent a class 

from being multipliable. For example, *88 48 shows that, given any class of 

classes k. if each member a is replaced by Pa, the result is a multipliable 

class of classes; but the only effect of this change is to increase the number 

of members of each member of our class of classes by one. 

The chief propositions in this number which are afterwards referred to 

are the following : 

*88 22. h : * € Clsa Mult. X C * . D . X « CIs3 M ult 

*88 32. H Mult ax. s : k e CIs ex*excl. D„ . g ! 

*88-33. H : Mult ax. = . (a) . g ! €.>‘01 ex‘a 

*88 361. h Multax . = :* = *.. .g ! R±‘k 

*88 37. h Multax. = : A~e* . D, . g ! cP*c 

The above is usually the most convenient form of the multiplicative axiom. 

*88 372. h Mult ax . a : A <•*.=„. eP* — A 

This proposition is used in *114, to prove that the multiplicative axiom 

is equivalent to the proposition that a cardinal product vanishes when, and 

only when, one of its factors vanishes. 

*88 01. Rel Mult * P (g ! 7VU‘P\ I)f 

*88 02. Clsa Mult = k (g ! eA‘*} Df 

*88 03. Mult ax.-:./c« CIs ex3 excl . D„ : (g/x) :of<.D«./ioael Df 

*88 1. z P e Rel Mult. = . g ! PA‘d‘P [*20‘3 . (*88 01)] 

*88 11. h : P * Rel Mult. X C d‘P . D . g ! PA‘\ 

Dein. 

I-. *80 6 . Dh iRt /VCI'P. XCdT.D .RfXePPX . 

[*10 24] D . g ! PA‘X z 
[*10*11‘23*35] D h : g ! PA‘d‘P . X C d‘P . D . g ! PA‘X (1) 

I" . (1) . *88*1 . DI-. Prop 

*88 12. I-P c Rel Mult. = : X C d‘P . DA . g ! Pp\ 
Dein. 

I- .*88*11. Exp. *10 11 21. D 

I-:. P € Rel Mult. D : X C d‘P . DA . g ! PA‘X (1) 

I- . *10 1. *22 42 . D 

I-X C d‘P . . g ! PA‘X : D . g ! PA‘d‘P . 

[*881] D. Pc Rel Mult (2) 

I- . (1) . (2). D h . Prop 

I-: P « Rel Mult. = . g ! eA‘P J“d‘P [*85*54. *73*36 . *88*1] *8813. 
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'88 14. b :. * C <I‘7'. D : P [ x € Kd Mult. s . g ! iV* 

Dl'in. 

b . *80‘23. 0 h : a ! /V* • = • 3 ! (P [ *)i‘* (1) 

I- . *35 05. D h : « C (l‘JJ .DAlUPf x) = x (2) 

I-.(1 ).(2). D b lip . D : 3 ! TV* . = . g ! (T'f * VIJ'U'r*> • 

[*88l] = . 7V * * Kd Mult :.Dh. Prop 

• 88 15. I- < I‘J> = V . D : 7'[ x *- Kd Mult. = . g ! TV* [*8814 . *24 11 ] 

*88 2. I- : k t (.'Is7 Mull . = . g ! V* [*203 . (*88 02)] 

-88 21. b : Pt Kd Mull . 5 . /'J“CI‘7'« CU= Mult [*8813~2] 

>88 22. h : * «r CV Mult. X C «. D . X « CIs- M ult. 

hem. 
V . *80*i». D b : /{ ( . X C * . 3 . 7J f X « *a‘X . 

[*1024] D.g !ca‘X: 

|*I011-23-35)3 I- :g IfA.XC^.D.g !«A‘X (I) 

I-. (1). *88-2 .31-. Prop 

-88 23. b : x e CU- Mult. 3 . CP* C CIs* Mult [*88-22 . *60-2] 

-8824 b 7't Cls-> 1 . 3 : 1\ Kd Mult. = . P“(\‘P e CIs3 Mult 

Dem. 

b . *85-14 . *73-30 . 3 h lip. 3 : g ! 7V< I*/'. a . g ! €A<y,“(J</> 11) 

b . {I). *881-2. 3h. Prop 

-88 25. I- :.7V*<Cls-> I . * C iPP. 3 : Pf KdMult . = .7“* cCVMult 

Deni. 

b . *85-14 . *73-30 . 3 

I- :. lip. 3:g ! TV*. * .g ! : 

[*8814-2] 3 : 7*f* * * Kd Mult. = . 7^‘* * CIs5 Mult:. 3 b . Prop 

-88 26. P :s c Cls2exd . 3 :. * * CIs5 Mult. = : (g/z): a e x . 0a . p r\ a e 1 

Deni. 

b . *88-2 . *37-45 . 3 I-: * « CIs3 Mult. = . g ! D“ V* (1) 

h. (1). *84-412. D 

b :: Hp . 3 :. x e CIs* Mult. = : (g/*): <* €*.3. ./x^ael :/*C s*/c: (2) 

[*10-5] 3:(g/*):o€*.3„ 1 (;*) 

h . *40 13 . *22021 ,DI-:flu.D...v‘/frta = o. 

[*22 481] 3a ./z a = /z r» a : 

[*2 77.*10‘27] Dhj.atff.D.^nael :D:acx.D,./tn s1k nail (4) 

b . (4). *2243 . DP:.ac«.Da./t/\acl:D: 

a e x .Da . p r\ s‘k nofl :/ios‘< C s‘*: 

3 : (gv) : ae*.3a.i'r»acl tv C s‘/e (5) [*10-24] 
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h. (5). *101123. D 

•• (3/*) :ac*.D«./*nael:D: (gy) : a e k . Da . v n a e 1 : v C s*k (6) 

K . (6) . (2) . D h :: Hp . D (g/*) :a€«.D../tnaf 1 O./te Cls2 Mult (7) 

h . (3) . (7) . D h . Prop 

*88 3. 1-:: Mult ax . = k «Cls ex* excl. DK : (g/*) :a€*.Da.^^a<:l 

[*4'2 . (*88 03)] 

*88 31. h : Mult ax . = . Cls exaexcl C Cls2 Mult 

Detn. 

h . *88 26 . *5‘74 . D h :: k e Cls ex5excl . D, . k e Cls* Mult: = 

k e Cls ex5 excl. D* : (g/*) :a««.Da./tnad:. 

[*88*3] = Mult ax :: DH . Prop 

*88 32. I-Mult ax . s s *« Cls ex* excl. D, . g ! eS* [*88 312) 

*88 33. I-: Mult ax . = . (a). g ! €A*C1 ex'a 

Note that (a) . g ! e.»'CI ex'a is Zermelo’s axiom. 

Deni. 

h . *88 32 . *85-63 . D h : Mult ax . D . g ! €A'* J “Cl ex'a . 

[*85*63] D . g ! cA*C\ ex'a (]) 

h . *60-57 . D h . * C ClV* . 

[*60-24] D h . * - £' A C Cl ex's'* . 

[*84-13] D H : k € Cls ex3 excl. D . * C Cl ex's'* (2) 

h .(2). *80-6.3 h : k c Cls ex1 excl. R c eA‘Cl ex's'* . D . R f * « *.*'* (3) 

h . (3) .*1011-28-35 . 3 h : * « Cls ex* excl. g ! cA‘Cl ex's'* . D, . g ! e.»'*: 

[*10 1] D h (a) . g ! eA*C\ ex'a . D : * e Cls ex* excl. . g ! e*'* : 

[*8832] DsMultax (4) 

h . (1) . (4) . D h . Prop 

*88 34. h : Mult ax . = . Cls -* 1 C Eel Mult 

Detn. 

h . *84-5 . *88-32 . D h :. Mult ax . D : R e Cls -> 1 . D 

[*85 14.*73-36] D 

[*881] D.Re Eel Mult (1) 

h . *84 14 . D H Cls -*1C Eel Mult. D : 

* e CU ex* excl. D . e f * e Eel Mult. 

[*88-1] 3.g!(er*U‘a'«rr*. 

[*8413.*62-42] D.g!(«f • 
[*80 23] D. g! «A'* (2) 

h . (2). *1011-21. *88-32 . D h s Cls —* 1 C Eel Mult. D . Mult ax (3) 

h . (1) . (3) . 3 h . Prop 

nlcSR“(I‘R. 

g ! RSd'R . 

R e Eel Mult 
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#8835. h 

1 >e m 

: Mult ax . = .(/?». R € Rol Mult 

H . *37*4') . #55*121 .(*83*3). D h : a ! /' I x . ? . a 2 7“.r • 

|*33-4I) s.xfiVP (1) 

H . ( 1 ). *10*11 . *37*63 OhjafP J "<!*/'. D. . a 2 * : 

[*24*63] <*> 
h . <2). *84 1 3. *8553 . Z> I-. /' I“< l‘I'c CIsex3 excl. 

[+S8-32] D H : Mult ax . D . a 2 cA‘/J 

[*8.vr>4.#73 3u| D - a 2 . 

|*ss-1] D.)% HelMult 

h.*IO1 .*NVI .DH:(/^./MMM«iU.D.a !(4 Clex‘a^(l‘(€rciex'a). 

[*H2’421 D . a ! <« r Cl cx'aU'CI ex‘a . 

[*sO*23] 3. a ! <*‘C1 ex‘« 

h . < 4 ». * 10 11 -21 . *8* 33 . D I-: (1{). /{ c Rel Mult. D . M ult ax 

h.<3)•(5).3 h• Prop 

#88 36 H Mull ax . 3 s < C <Wf . D/:. . . a 2 [*88-35-12] 

#88*361. H Mull ax . a : * C <l‘/f . E#r.. . a 2 /?■*'* [*88*3«. *8(>~>] 

+88 37. H Mull ax «V* 

(«) 

(4) 

(«) 

I Jem. 
h . *88 36. #62*231 . D b Mult ax . D : A*>*€ * . D« . a • *.»'* (1) 

I-. *84*13 . *88*32. Dl-:. A<w«. >a 2«*"« : D.Multnx (2) 

h . (1). < 2). 3 H . Prop 

#88 371. I-Mult ax . a : A~««.sfl -3 2 [*88*37 .*831) 

#88 372. h Mult ax . a : A e * . =« . €A‘k = A [*88*371 . Transp] 

This proposition shows that the multiplicative axiom is equivalent to 

the assumption that a cardinal product is zero when, and only when, one 

of its factors is zero. 

*88 373 H : Mult ax . s . CPtCU — f*A) C CIs* Mult 

Item. 

I- . #24*63 . #53"5 . D H «c. = :a€K.3J.a( CIs — t* A : 

[*221 ] = : k CCIs — t*A s 

[*60-2] =:*«CI‘(Cls-i‘A) (1) 

I-. (1). *88*37 . D h Mult ax . = :«€ CP(Cls —1‘A). . g ! t^ie z 

[*88*2] = : CP(Cls - l‘A) C CIs3 MultD h . Prop 

*88 38. h : Mult ax . = . CIs - t‘A c CIs3 Mult [#88*23-373] 

*88 39. h : Mult ax . = .(g/S). lie 1 -»Cls. RQe . D‘R = V . (I*R= CIs — t'A 

Deni. 

K #88*38*2 . *80*14. D 
h : Mult ax . = .(gi?). R * 1 —► CIs. RQe. Q.‘R = CIs — t‘A 

h . *31*161 . *53*5 . D h : Cl*/? = CIs -1‘A . D . I'xeQ'R 

(1) 
(2) 
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I- .*23-621 .Dh:RGe.O.R = R*€ 
h . (2). (3) . D I :RGe. Cl‘R = Cls - e‘A . D . i‘x € Cl\R A €) . 

[*33131] D • (ay) - !/Ri. y e ilx. 
[*5115] D . (jjy) . t/Ri‘x. y = x. 

[*13195] D.x Ri*x. 

[*3314] O.xcD'R (4) 

h . (4). *10 11 -21 . *24 14 .D\-:RGc. <1‘R = Cls - t*A . D . D‘rt = V (5) 

h.(l).(5).Dh. Prop 

The following propositions are concerned with certain cases in which a 

construction exists by which the existence of selections can be proved. 

*88 4. h./f 1Cl«cA‘Cl“* 

Deni. 

H . *72 19 . *71-27 . D I-. * ] Cl e 1 -► Cls (1) 

h . *35-52101 . Dh:a(<c*]Cl)\. = . ac<.\ = Cl‘a . 

[*60*34] D.aA (2) 

K (2). *1111. DK**|C1G« (3) 

1- . *35-52 . D 1- . d‘<* 1 Cl) - D‘(C1 T *) 

[*37-401] -Cl“* (4) 

h • (1) . (3). (4) . *80 14 . D h . Prop 

*88 41. h . CI“* c Cls3 Mult [*88-4-2] 

*88 411. h . * c D“*A‘C1“* 

Dent. 

h . *35-52 . Dh. D‘(* 1 Cl) = d‘(Cl [ k) 
[*3505.*33'431] = * (1^ 

h . (1). *88-4 . D h . (&R) . R € «A‘CI“* . D‘/i = * . 
[*37 6] D H . * e D“«A‘C1“* . D H . Prop 

*88 42. h : * e Cls3 Mult ,g!a. = .«w i*a e CU3 Mult [*83 904 . *882] 

In virtue of this proposition, as will be proved later, every finite class 

of existent classes is a Cls3 Mult. For we have Ace^'A; aud, by the above, 

a Cls3 Mult remains a Cls3 Mult when one existent class is added as an 
additional member; hence the result follows by induction. 

*88 43. h : e Cls3 Mult. D . e Cls3 Mult 

Dh.a‘<*1CI)«D‘(Cir «) 

Dem. 
h . *88-2 . D I-: Hp . D . g ! . 

[*85-24] 3-3! i“D“€je±“K. 
[*37-45] D . 3 ! e*‘e±“K . 

[*88 2] D . e Cls3 Mult: D h . Prop 

*88-431. h :. * « Cls* excl. D s eA“* e Cls3 Mult. = . s*k e Cls3 Mult 
[*88-2. *85-28. *37-45] 
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*88 44 H : ('I -xV* e Cls* Mult A e Cls3 Mult [*60*57 . *88*22] 

-88 441. f* : A vtv.Cl ex‘x‘#r e Cls- Mult .D.^f Cls3 Mult [*8844] 

*88 45 H : 1 >‘ /7 a < I ‘ /7 = A . 7' = .75 )x * <1 ‘ 7? . a = 7?., v, ,3 . I> € 

hem. 

h . *21*3 . D h Up . 0 : .rJ*a . =, 4 . x< (1*77 . a = R*.c w #*.r. (1) 

|*5I 10] 3*.« "•>’«« (•>) 

l-.tl).*33*13.*51 2.D 

H Up . D : j l*a . D,. a — /7‘x /«x. 7?x C 1)‘77 . tVCG‘7? . 

1*24 194) D,.a-l)‘77-iV (8) 

H . 13). * 11 *59. D I*H p. D : .r/’a . ///'a . D, „ . a — I)‘ 77 = t ‘.r .a — 1)‘ 77 = / * #/ . 

(*2o*23.*51 23) 3*.*. 

|*7I 171 D : 7*« I —>Cls (4) 

I- . < 2). (4). *8(>-14 . D h . Prop 

*88 46 H : 1 /7 n (1 ‘ 77 = A . \ = 5 ;i ^jx). e (I * /7 . a « 77‘x u (V) . D . 

X € Cls- Mult 
Dcm. 

I-. *21 *3 . * 10*281 . *33 131 . D h :. - .75 |.r « < I ‘ 77 . a - 77V u / V| . D : 

ac<J‘/V h. . <a.r). x «CI‘77 . a - 7?V v, #V (1) 

h . ( I ). *88*45 . D 1* : lip.D..75 ;x«(J‘/7.a- 77 V v iV) c €A‘X . 

|*10 24) 3. a 8tA«X. 

[*88*2] D . X c Cl** Mult : D h . Prop 

*88 47. K : /' = atf |a € *• . 0 - #“a u i«a|. D . /'« *V<I‘7J 

l>em. 

h . *21 ‘3 . D H II|». D : a/’/3. =i># . fl « «r. ^ = i"a w f‘a . (1) 

1*5116) :>*...«€£ (2) 

h . (1). *11*5H . D h Hp . D : aP&. yl*0 . ^m.n.y • 0 - /“a ui'a./Ss /“y u /‘y . 

[*40 171 .*53*22 02] 3..*.Y . *‘0 = a.s‘0 = y . 

[*20*23] D«>1i.>.a = 7 

[*71*17] D : 7V 1 —► Cls (3) 

h . (2). (3). *80*14 . D I-. Piop 

*88 48. K.^:(ga).ac/f .0 = i“a wi'aj 

The proof proceeds as in *88 46. 

€ Cls3 Mult [*88 47] 

*885. H . A a Cls € Cls5 Mult [*83 9 . *88-2] 

*8851. h : 3 ! a . D . e* Cls: Mult [*83 901 . *88-2] 

*8852. 1-. t“a € Cls* Mult [*83-42] 

*88 53. h:/fC1.5 . Cls’ Mult [*83*44] 



SECTION E 

INDUCTIVE RELATIONS 

Summary of Section E. 

The subjects to be treated in this section are certain general ideas of which 

a particular instance is afforded by mathematical induction. Mathematical 

induction is, in fact, the application to the number-series of a conception which 

is applicable to all relations, and is often very important. The conception in 

question is that which we shall call the ancestral relation with respect to a given 

relation. If R is the given relation, we denote the corresponding ancestral 

relation by "/£*"; the name is chosen because, if R is the relation of parent 

and child, R+ will be the relation of ancestor and descendant_where, for 

convenience of language, we include x among his own ancestors if a- is a parent 
or a child of anything. 

It would commonly be said that a has to z the relation of ancestor to 

descendant if there are a certain number of intermediate people b, c, d, ... 

such that in the series o, bt c, d, ... t each term has to the next the relation 

of parent and child. But this is not an adequate definition, because the 

represent an unanalysed idea. We may then try to amend this definition by 

saying that there is a finite class a of intermediate terms such that one member 

(6) of a is a child of a, one (y) is a parent of z, every member of a except b is 

a child of one (and only one) member of a, and every member of a except y 

is a parent of one (and only one) member of a. This definition is open to 

several objections. In the first place, it is very complicated; in the second 

place, there will, in regard to a general relation, be difficulty in securing the 

uniqueness of the member of a which is to be a parent (or a child) of a given 

member of a; in the third place (and this is the really fatal objection) the 

proposed definition states that a is to be a finite class, and we shall find that 

finitude, in the relevant sense, is only defined by means of the very conception 

of the ancestral relation which we are here engaged in defioing. In fact, if N 

denotes the relation of v to v + 1, where v is a cardinal number, then a finite 

cardinal (in the sense we require) is one to which 0 has the relation N+, i.e. 
one of which 0 is an ancestor with respect to the relation 

vfi 0* - + i). 
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IIflic** iini'l not use tin* notion of finit nde in defining the ancestral 

relation. In tact, the ancestral relation i< defined as follows. 

v/ 

Let us call p a licnt/iton/ rhiss with respect to It it littp C p. i.e. if successors 

of n(with respect to A’lare//s Thus. For example, if p is the class of persons 

named Smith p is hereditary with resj»ert to the relation of father to soil. If 

p is the Peerage, p is hereditary with respect to the relation of father to sur¬ 

viving eldest son. If /a is numbers greater than KM), p i< hereditary with 

respect to the relation ol i* in i> + I ; and so on. If now a is an ancestor of z. 

and p is a hereditary class to which n be lout's, then z also belongs to this class. 

i 'oiiver>cly. if z belongs to every hereditarv class to which a belongs, then (in 

tlie sense in which a is one ot his own ancestors if a i-% anybody's parent or 

child) u must be ail ancestor ,,f *. For to have a for one's ancestor is a 

hereditary pr«»peity which belongs to a. and therefore, by hypothesis, to z. 

Hence a i> an ancestor of j when, and only wheii.u belongs to the Held of the 

relation in tpicstioii and z belongs to every hereditary class to which a belongs. 

This property may be used to define the ancestral relation; i.c. since we have 

a lt*z : It* *p C p . u € p . .: c p 
we put 

It* —!** ( C*/i s R**n C p . n e p . . • c p\ I >f. 

We then have 

h : a * tHR . D . /T*‘" = 3!/?*> C p . u e p . . z e p\. 

Here It**" limy be called "the descendants of a.'' It is the class of terms of 

which u is an ancestor. 

To make plain the relation of the above to mathematical induction, put 

0 for n. and a/5(/$ = a + 1)' for It. Then, since 1 =0+1, we have 0 e C‘lt. 

Again 
V/ 

/f‘V .« + \ e p. 
Thus we find 

li*‘0 = /§|ae/x.D*.a + 1 e p : 0 e p : . £ e ft.]. 

Thus if iB is a descendant of 0, belongs to every class to which 0 belongs 

and to which a + 1 belongs whenever a belongs. Hence mathematical 

induction, starting from 0. will prove properties of In elementary mathe¬ 

matics it is customary to speak as if this held of all integers, i.e. as if It* 0 

(as above defined) included all integers; but in fact only finite integers (in 

one of the two senses which the word finite may have) belong to the class 

%‘O.nnd they belong to it &// definition, being defined as the class 

/§ |a e p . Da . a + 1 € p : 0 e p : . $ e /xj, 

i.e. as It* 0 in the above sense. To infinite numbers, inductive proofs of this 

kind starting from 0 cannot be applied. 
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The study of R* will occupy *90. The relation R* holds between .1: and 1/ 
if x(I [ C‘R)y or aRy or xRry or etc. The study of this “etc." occupies *91, 

"on the powers of a relation." We may, for many technical purposes, regard 

I [ C‘R as the 0th power of R: the other powers are R, R', etc. If S is a power 

of R, so is R. Now 5 | R is | R‘S, according to the definition in *38. Thus 

if we have 

R € y: jS c y. D<y. 5 | R e y : DM . P e y, 

P must be a power of R, because the class of powers of R is a value of y which 

satisfies the hypothesis 

R e y z S e y . Dg . S | R e y. 

Conversely, if P is a power of R, then P is reached by repetitions of the pro¬ 

cess of turning .S' into 51 R, starting this process with R. Hence if P is a power 

of R, we shall have 

R e y ; S € y . D, . S | R € y : . P e y. 

Consequently, if we denote the class of powers of R by Pot'72, we have 

P e Pot‘R . = R e y : S c y . . S \ R c y : Z>M . P c y. 

We might use this as the definition of Pot'72; but we can get a somewhat 

simpler form. For the above is shown, without much difficulty, to be equi¬ 

valent to 

Pt Pot'7*. = . P(\ 72)* R, 

that is, P belongs to the ancestry of R with respect to J R, in other words, P 
is reached from R by proceeding along the series 

R, \R‘R. | 72'j 72*72, etc. 

which is the same as the series 

R, R*, R\ etc. 

The relation (| 72)* is important on its own account. We put 

72t. = (| 72)* Df, 
and then we put 

Pot ‘R = ItJR Df. 

We often want to include I f* C‘R among the powers of 72; the class con¬ 

sisting of Pot'7* together with /[* ClR we call Potid‘72. The definition is 

. Potid‘72 = 72^'(7 T C‘72), 
whence we easily prove 

Potid'72 = Pot'72 w t'(/r C‘72). 

The relation of being related by some power of R (other than I \ C*R) is a 

very important one. We denote it by Rpo, and put 

Tip,, = *'Pot'72 Df. 

Thus when xR^y, we have one of xRy, xRly, xR*y, etc. It is easy to prove 
that 

R 4C W I 

R* = RDOv If C‘72. 
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In a "'li's in wInch ••very term (except rlu- first, if* there is a first) lias an 

muiM 'lintf |>i.. ami every term (except the last, if* there is a last) has 

an immediate •tiicre-SMi' it I* i^ the relation of a term to its immediate 

**ner,e-«.or /1*(„ i» tin- iii«>n of any earlier term to anv later •me. 

1‘lie next nuiiiher coiicitiis itself with some special properties of the 

powers nf one-many. many-one and one-one relations. 

The next iiiiiiiIh i analyses the field of a relation into successive 

iit’iirmtiiw*. ni. it tie- relation is that of |uircnt and child, the first generation 

will ei.nsisi o| Adam and live, the second of their children, the third of their 

giandehildren. and >•» «m. taking always the longest route from Adam and Eve 

when there have l»e.-n mteimarriages lietwecn generations. That is, taking 

any relation /*, the tii^t generation is l)‘/> — (I4/*, the second is <WJ — (I*(/’•) 

the third is (l*t 7**i —«|‘( !*•). and so on. (Senerally. if 7'is a power of /* (in¬ 

cluding / T 1 ''7*). ila* correspniiding generation is 

< 14 7' - < 14( T P). 

i.v. <1*7*— 

In order to express this more conveniently, we iii(r«»diice a new symbol 

min/., which is n-ipiired a Is.. «»n other grounds, esjiecinl I y in series. •• mill/*** 

may lie read " uiitiiinniii with respect to P." We regard "sPy" as ".r 
preee.les #/ tlien iii a class a, tin- "minima of a will be those members of 

a which belong to lHP and are not preceded by any other members of a, 

/>. q rs(HP-/'“a We put therefore 

xmin/.a . = ./< a r\ CHP - luta. 

min,, i-.ra(x t a r\C*P — P“a) L)f. 

•nee we have 
in in/.‘a = a n C*P — JHla. 

i.e. miii/.‘a consists of those members of* a r\ ('*P which are not preceded by any 

other members of a. (It a has a single first term, this term is min/.'a.) Thus 

we have, when T is a power of P, 

tmnr'CPT^aT-P^n^T. 

Thus min/.‘G47\ where T is any power of P (including I [ C‘P). is the 

generation of P corresponding to 7’; thus the whole class of generations is 

miii/.4‘< I “Pot id4/'. Hence we put 

gen4P = inin,.“(J“Potid‘P Df. 

where "gen stands for "generation.” 

The notation " mill/." will not be much used until we come to series, but 

then it will be constantly used. At present, we shall only give such properties 

of miii/> as are necessary for our immediate purposes, but in Part V (on series) 

we shall devote a number (*205) to its properties. 
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In this number we also introduce the uotation “xBP” for “x e D‘P — (I‘P.” 

may be rcad "* begins P.” If there is a single beginning of P, this 

is B‘P\ otherwise the class of beginnings is B*Pt which = D‘P — d‘P. 

Thus if P is the relation of father and son, B‘P = Adam; if P is the relation 

of parent and child, P‘P-Adam and Eve. B‘P will be the end of P if 
I . -► V ’ 

there is one; generally, JJ‘P will be the class of ends, i.e. (1‘P-D‘P. The 

first generation of P is P‘P. If p€ 1 CIs. any generation of P is f“]?P, 
where T is the corresponding power of P. 

The field of a relation consists, in general, not only of the generations of 

P, but also of another part, the part in which, however far we go backwards, 

we never reach a beginning. This part is p‘CI“Pot‘P. The two parts 

s‘gen‘P and p‘CI“Pot‘P are mutually exclusive, and together exhaust ClP. 

I he two next numbers, *94 and *95, are hardly ever relevant in subsequent 

propositions, and may therefore be omitted by any reader who is not interested 

in their subject-matter. *94 deals with powers of relative products. It is 

only used in the following number (*95), on " cqui-factor relations.” The 

matter to be dealt with in this number (*95) may be explained as follows. 

In dealing with correlations and similar topics, we often wish to consider 
the series of relations 

B.P\R\QtP*\RiQ*,P»\R\Q>, etc. 

Now we have not yet at our command a definition of P-, where v is any finite 

number; thus we cannot define a general term of this series as P¥ j R J Q*. 
We need therefore a different method of definition. We have 

P\R\Q = (P || QYR, P*\R\Q* = (P\\ Q)urf 

and so on. Thus if T is any power of (P |) I (! Q). a general term of our series 

is 'PR. For convenience of notation, we put 

P*Q = sg‘(P||Q)* Dft 

Then our series consists of (P*Q)*R. The sum of all relations of this class 

is considered in this number. 

The principal propositions proved in *94 and *95 are two which have the 

same hypothesis as the Schroder-Bernstein theorem, namely 

RfSc 1-+1. a‘S C D‘P . d‘R C D‘S. 
These two propositions state that, with the above hypothesis, 

^gen^P | S) sm «‘gen*(S | R) 
and p'a^Pot'CPIPjsmp'a^Pot^J R). 
The two combined reconstitute the Schroder-Bernstein theorem, since 

*‘gen‘(P | S) u p‘<3“Pot‘(P | S) = D*R • 

and a'gen'OSI R) wp‘(3“Pot‘(S| R)= D‘S. 
Thus they present, so to speak, an itemized account of the equality proved by 

the Schr5der-Bern8tein theorem. 
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*fl(>, on tin- |M»*iU*rity of a icriii, i** concerned with the properties of 

chieHv when If 1. In tln^ case, in general. R+f.r consists of two parts, 

first an open .series and then a cyclic series. Either of these may vanish, or 

may reduce to a single term. If we call the two parts ,3 and 7. the whole of 

,3 precedes the whole of 7. and & *1 If. 7*] If € 1 —> 1. Thus if either j3 or 7 

vanishes. R+r] /.*»!—> I. If7 vanishes, the series never returns into itself, 

that is. | If^.GJ. If 7 exists, there is a definite power of If. say T. 
such that // €7. . //7//. If and 7 both exist, there is one term, namely 

1 lie successor tin- last term of f3. which has just two immediate predecessors, 

one in t3 and one in 7; every other term of lf^*.r has only one immediate 

predecessor in Thus /»’**.'• 's *haj>ed like a (J. with r at the tip of the tail. 

*07 deals with the analysis of tin* field of n relation into families. Taking 

jiiiv member .1 of <u/f. the family of x with respect- to If is If+*.v v If#‘j'. which 

we write lf*,.r. 'finis the class of families is /{+“&!{. Those families which 
—> 4— —► ~ —► 

contain a member of Il*/f are If^'H'lf. If we regard as arranged 

in a rectangle, in which the generations are the successive rows, then 7f*“77‘77 

will ho the columns. Thus the relation of gen1 If to lf+‘*H‘/f may be regarded 

as a generalized form of tin* relation of rows and columns. Under a suitable 

hypothesis, each row is a selection from the columns, and each column a 

.selection from the rows. This is expressed in the following proposition: 

h ; 7? c 1 -> I . H‘Ii * gen*If u t* A . D . 

77*“ 7? 77 C I >“<.»*( gen *77 - t*.\). gen 'If -i'AC D“*V77*“/?77 

whence we derive existence-theorems for selections in the cases concerned. 

The importance of the ideas dealt with in the present section is very great. 

These ideas dominate the treatment of finite and infinite, the theory of pro¬ 

gressions ami N... and the transition from series generated by one-one or many- 

one relations of consecutive terms to series generated by transitive relations 

of before and after. Wherever, in short, mathematical induction is used the 

ideas treated in this section are required. The portions of our subsequent 

work in which this section is most referred to are the two sections on finite and 

infinite cardinals and ordinals (Part III, Section 0 and Part V, Section E). 

In the general theory of cardinals, t.c. in Part III, Sections A and B, before 

the distinction of finite and infinite has been introduced, the present section 

will be seldom if ever referred to#. 

• The present section is based on the work of Frege, who first defined the ancestral relation. 

See his Begrifftehri/l (Halle, 1879) Part in., pp. 55—87. Cf. also his OrundgettCe dtr Ariih- 

ntftik, Vol. 1. (Jcno, 1893), §§ 45. 46 (pp. 59. 60). In this work the ancestral relation is usod to 

prove the properties of finite cardinals and N0. 



*90. ON THE ANCESTRAL RELATION 

Summary of *90. 

If R is any relation, “ xR+y" is to mean “ x is an ancestor of y with 

respect to R,” where a term counts as its own ancestor provided it belongs 

to the field of R. The definition of R# is as follows: 

*9001. R* = Zf){xeCtRiR“rQp.xcvL.'}l>.yefL) Df 

That is, xR+y is to hold when x belongs to the field of R, and y belongs to 

every hereditary class to which * belongs; a hereditary class being a class m 

such that R“/xCfx, i.e. such that all successors of ft’s are m’s. 

*90 02. R* = Cnv'R* Df 

This definition serves merely to decide the ambiguity between (It)* and 

Cnv‘R*. either of which might be meant of R*. It will be shown, however, 

that the two are equal (#90-132). 

The most important propositions of this number are the following: 

*90112. h xR#y : <f>z . zRw . „ . <f>w : <f>x : D . <f>y 

I.e. if xR#y and if <f>z is a hereditary property belonging to x, then it 

belongs to y. 

*9012. V ixe C*R . = . xli+x 

I.e. R* is reflexive throughout the field of R, but not elsewhere. 

*9014. K . D‘R* - d‘R* = C‘R+ = C‘R 

*9015. h . / r C*R G Rtf, 

*90161. KRGR* 

*90 16. h . R* • R G R* 

*90 163. f- . R“R*‘:rC R*‘* 

I.e. R**x is a hereditary class. 

*9017. h . R£ = R* 

*90 21. h : a C C‘R . = . a C Rm“a . = . a C R*“a 

*90 22. h : R“a Ca. = . R*“a C a 

I.e. the classes that are hereditary with respect to R are the same as those 

that are hereditary with respect to R*. 

*90 31. H . R* ~IfC‘R c/R*|R 

*90 32. h.R|R* = Rc/ R|R*| R = R*|R 

*9033. h . R+“a = (an C‘R) w Rm“R“a = (a n C‘R) w R“R+“a 

*90-4. h . (R*)* = R* 
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'•90 01. /i’# » ‘5 ! »t ('' //: /i ‘ V C f /i. D, . </ f /i 1)!‘ 

• 90 02 /7.* = rnv‘77* IM 

*90 1 H .'7(*y . = :.. t (" 7/: 77*> C ^ ..*• // t ,z f^21 :J . <*90" I )] 

*90 101. I- : /7“/z C //. = . /.*“ - u C - M 

H . *:»7 17 1.31-:. //'V .»77v • X.., • //«/*: 

| I ran*.|.| s ://« — n . .'77y. 

| .*.'57’ 17 | 3 : 77" — /i C — D H . Pi*oj» 

f.'MI' 102 I' a l«aliillisi !• il* *90" 1 1. 

90 102. H 3 : /•** V C /*.//* m • ^#* • •*' * 

Itr in. 

h . *!MHII| . 3 

I- a : 77‘* - /z C - /* ..rc/z. 3 . #/ € /a : 

| Ti:iIin|> | S : 77** -/I C - /z . .»/€-/! . 3 ..r*-/z (ll 

H .111. *10-11 271 .3 

1* : * : 77“ — /< C — /i • // * — ^ . 3„ • .r « — /z: 

|*22 941 = : 77* V Prop 

♦ 90 11. 1- .*77+// . ^ : ./•« ("77 : 77‘V C/i.//c/i. [*90 1102] 

*90 111. H 77+v . :../•« f "77« /z . * 77 //•. 3:tr. »/ < /z 

|*!>0 1 .*:17 171] 

*90 112. H :. .# 77+// : 0: . c77«-. D. ,r. 0//*: 0/ : 3 . 0// 

hr in, 

K *90111 
M 

1* s: •,'77#// . 3 : e: [<f>z). cJhv. 3.. *.. /»• * 2 ( 0j ): ./ 6 2 (0-1: 3 : // e ? (0: >:. 

| *2(K1] 3 :. 0: . r77w. D.„. ibw :0r:D. 0// (1) 

H . (1). 1 ni|>. 3 h . Pmp 

*9012. V -..rtC'li . = .jR+t 

Vein. 

h . *90 1 . 3 h : -i77*.t . 3 . .* € t"77 (1) 

J- . *:P27 . * 10 11.3 h : 77*‘/z C /z . j* * /z . 3„ . .c * /z : 

[*3 21 ] 3 h X t C"/7.3 : x € ("77 : 77“/z C /z . x e /z. 3M . x e n : 

1*901] 3:x/7** (2) 

h.(l).(2). Dh. Prop 
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*9013. h : xR^y . D . x, y e C*R . xR^x. y7£*y 

Dem. 

h .*37 16. *33161 . DK R“C‘RCC‘R (1) 

h.*901. D h : xR^y .D.xe C‘R (2) 

K . *oo i Dh:. xR*y . D : R“C*R C C‘R ..ceCHR, D . y € C‘R : 

[(1).(2)] Dsy«C*K (3) 

*"•(-)• (•*) • *0012 . D h : xR^y . D . xR^x . y7?*y (4) 

h . (2) . (3) . (4). D h . Prop 

The following proposition is a lemma for *90132. 

*90131. H :.xR*y .= z y € C‘R : R“ p C p . y t ^ 

Dem. 

H .*901118. D 

h *7f#y . D : y e C‘7* : 7*“M C/i.ye/t. DM . e /x (1) 

h . *37 15 . *33161 .Dh. 7*“C‘7? C C‘7f (2) 

f-. *101 . D h :.y e C*R : R“fx C /*.yc/i.DM./f/*:D: 

y c C‘/i : /*“C‘/e C C‘7* . y <• CVx‘. Z> . ,‘f C*R : 
[*5-33] D : R“&R C C‘7< .O.xeC'R: 
L(2)] DzxeC'R (;j) 

H . (3) . *53 . D h y e C*R : 7?‘V C /x.yeM.DM.xc^:D: 

# f (J*R : R“fj. C ft. y e fx . . x e /x z 
[*9011] D: xlt+y (4) 

K<1).<4). Dh.Prop ' 

*90132. h.(7i)*=7<* 

Dem. 
h . *3133 . *33 22 . *90 1 . D 

h s. y (/*)*«. a : y « C‘7* : 7?‘V C /* . y . a; c M : 

[*90131] = zxR+y : 

[*3111] = zyR+xz. D h . prop 

In accordance with^our general convention as regards suffixes, and with 

the definition *90 02, R+ means Cnv‘7f*. not (Ii)+. 

*90 14. h . D‘7?* = d‘7?* = C‘7<* = C‘R 
Dem. 

I-. *9012 . *33 1417 .DH:k C‘R .Z>. xt V>‘Rm ,Iea'/(, .xt&R* (1) 

V . *33-13. D h : x t D'R*. = . (gy). xR*y. 

[*9013] 0.xeC‘R (2) 

Similarly h :xe a‘R0.2 .xe C'R (3) 

I-.(2).(3).*3316. Dl-:xeC‘R+.O.xeC‘R (4) 

I-. (1) . (2) . (3) . (4) . 3 I-. Prop 
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*90 141 h : ;.| ! A*. = . 3 ! R [*9014 . *33 24] 

*9015 K /fr-AC A* 

l)e>n. 

I- . *50 I . *33101 . D y : x(/ [ C'R)y . = ../= y. y € C‘A . 

[*90 12] * =.x = y. yR+y. 

(*1313] D . x A*y: D h . Prop 

Noir that I [(UR may be conveniently regarded as the 0th power of R. 

l»y *5O 04'6’». when multiplied by R it gives A; also it is contained in R \ R, 
w 

R- A\ etc 1 ha*» propm ties. as regards relational multiplication, analogous 

to those o| | m Midinaiy multiplication: thus to regard /['C,‘A>as the 0th 

powei ol R is analogous to regarding 1 as the 0th power of n, where n is a 

miuibei. 

*90 151. y . R G A* 

Dem. 

y . * 11 * 1 . D *■ :: z t n • zRw • D.. *. • IU € f* ! D '• x t f* , x Ay . D . y t m :• 

| Kxp.f.'omm] D :.xAy. D :x€/x. D.yep (I) 

h . ( I ). ('•>miu . Imp . D 

I- :: xAy . D z */x . zRm . Df<M.. w e y : x c y : D . y c y (2) 

y .(2). *1011 21 . D 

y :: x Ry . D * /x . : A//*. . y e y s. 

|*90l I I.*33 171 D :.xA*y ::Dh. Prop 

*90 16 h . A* R G A* 

Dem. 

h . *1 I ‘ I .DH:.:</x. zRw . ^I ir. w e y : 0 : y € y . yAi». D . w e y (1) 

K *90111 .*101 . Fact . D 

y :: xA*y. yRv. D : f /x . zRm. w e y: x * /x : 0 . y e y. yRe (2) 

K(l).(2>. D 

I- :: xA*y. »/ R r ,D:.;e/x> *Am» . D,.*.. we yzxe yz 0 . ve y (3) 

h . (3). *10*11 '21 .*90111 . D 

h : xA*y . yAe . D . xA#r (4) 

h. (4). *1011 23. *34 1 . Dh. Prop 

*90161. h 5 G R+.O.S R G A* 

Dem. 
y . *3434. I> I-: Hp. D . Sj A G A*J A (1) 

I*.(1).*90*16.DK Prop 

*90162. H . A= G A* [*90151-161] 

*90 163. I-. «“fi.‘xcS*‘i [*37-301 . *3219 . *901(>] 

This proposition is important, since it proves that R*‘.c is a hereditary class. 
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*90 164. h . R“R*“a C R*“a [*37 33 201 . *90*16] 
v 

This proposition shows that R#“a is a hereditary class. 

*9017. \-.Ri = R# 

Note that R& means (R+y, not (R2)#. 

De/n. 
b . *9013 . D b : xR+y . 3 . ar/**y . yR#y . 

[*34*5.*10*24] D . xRly a) 

b . *90*163*1 — 
ft 

. D h yR#z . D : y c 7^‘ar. D . s c R*‘x : 

[*32181] D : xR+y . D . xR#2 (2) 
b . (2) . Imp . D 1- : xR+y . yR+z . D . xR+2 : 

[*11 11.*34*55] Db-.R^CL R+ (3) 
h.(l).(3).DK Prop 

*90171. b .R+“R+“a- Rm“a [*90 17 . *3733] 

*90172. b .R\RmG Rm 

Deni. 
b. *90151 . D b . R\ Rmd R£ (1) 

b. (1). *9017. Dh. Prop 

*90 18. b s P G Q. D . P* <2 Q* 

Dem. 

b . *33265 .Dh:.Hp.D:x« C'P .D.xe C‘Q (1) 

h . *37*201 . D h :: Hp . D C Q‘V :• 

[*22*44] D Q‘V C /* . D . C M:. 

[P act] D s. Q,4^x C/i.xf/ii 3. Pft ft C. /t. x e ft 
V V 

[Syn] ^*”P“fACfA'X€ft.5.i/cft:D:Qt‘ftCft.x€ft.'D.yeft (2) 
h. (2). *10*11*21*27. D 

h:: Hp.D:. P*‘ftC ft. x * ft. . y e ft: D :Q“y. C ft. x e ft. . y e ft (3) 

h . (1) . (3) . *90*1 . D h Hp . D : xP+y . D . a:Q*y D h . Prop 

*90 21. b:aCC‘R. = .aC R+“a . = . a C R+“a 

Dem. 
I-. *4*7 . D b :. a C C*R .Dsarca.D.arca.arc ClR . 

[*90"12] D . x e a . xR#x. 

[*10*24.*371 105] D .arc . a:c R*“a (1) 

b . *37*16 .DP:aC . D . a C <3‘.R*. 

[*9014] D.aC C‘R 

h . *37*15 . *90*14. D b s a C . D . a C C‘/i 

h . (1). (2). (3). D h . Prop 

(2) 
(3) 
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►90 22. h/kco.E.VoCft 

I.h'iii, 

^ . *90* I . 0 h .»7i*4,'/ . D, , : /.’“o C o ..#•«& . D . // t o 

|»*••1111111 D f- /.’“o C o . D : .«7?#v ..« t a . D, . y < a : 

[*:iM7l| D:/VoCo <1> 

h . *90 151 . *37->Ol . D I-. /7“o C //*“« • 

(♦22-4+| D V : //*“» Ca.D. /7“o C a ( J > 
H .(I).<2>. D K . IV..,. 

‘90 23. K : a C C*lt. /7“o C a .-.<* = /7v“a [+90-2122] 

vImi J'l i> iis.-,ii| in the iIm'..i v *.f section* «.f a scries (*21 I). A section of 

:li.- v,^••n.'iai.'.l l»y /«’ i* 'li'Hiuil a> a cla**- q Miti'fvinj' 

o C'" /.’. /.’“a Co. 

•90 24 I- : /> V C/i. a C /i. D . AV‘ft C „ 

/>»/«. 

H . *37 2 . D H : 11. D . /.’*“«. C //*> (11 

»-.*90>2. Dh II,.. D. ZfwC/i (2) 
H .< I >,<2>. Z) h . Prop 

I lii^ |H'o|»>Niiioii hIm.xvs dial if n i> a li.-i*•• lit;ii*y rlas*. which contains ft. then 

H oiiraiiiN all tin* ili'M'cnilants *.| o <*. 

+90 25. h : o C(HR. /7*“o C/*. D.oCp 

//e##i. 
K*9021 . Dh: Hp.D.ftC/.V’ft. 

(II|»J D.oC/.:DK Prop 

*90 26. H o C r*/,*. yj‘> . D : a C ^ . s . /7*“o C ^ 

//*•«#. ^ 

K*90 24. Dh. H|».D:aC/#.D. /^"oC*t (I) 

H . *5)0*25 . D h 11 p. D : /?#“o C^.D.oC/i (2) 

K . (1) .(2). D h . Prop 

*90 27. I-a C C/f • D : a w //“/* C M . = . //*“« v 7/‘V C M 

Item. 

h . *90-26 . Exp . *5'32 . D 

h a C 6*‘7? . D : 5-V C/i.oC/i. = . X-V C M . //*"« C ^ : 

[*22-59] Dsawi'V C /i. = . /7*“o \j R**ft C /iD h . Prop 

*90 31. H .//*=/ T ^7? 

Dem. 

h . *901510 . I) h . / r C*‘J? u //* // G //* (1) 
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[Fact] D H : .r (/ I* C‘72 c; 72* | R) z . zRw . D . xR*z . *72«-. 

[*10-24.*341] D.*(72* R)W. 

[*23 58] > .x(I f C‘Rv R* R)w (2) 

h. *9013 . *50 3. D b: .r72*y . D . xlx . x € C‘R . 
[*35101] D-xilfC^x. 
[*23*58] D . x (/ r C‘72 w 72* ; R) x. 

[*4-7] ^ .xR*y .x(I [C'Rsv R*\R).r (3) 

I-. (2). (3). *90112 rS.r-L^'t,i^ R*J R>*. o 
<f>z 

b : xR+y . D . a: (7 [* C“72 o 72* 72) y < 4) 

b.(1).(4).D b . Prop 

In the last line of the above proof, the process is as follows. Writing <f>2 

for x(I f C*R «/ 72* | R)zt (2) becomes tf>z. zRw. D . <f>w, while (3) becomes 

xR#y . D . xR+y . <f>x. Hence, by (2) and (3), 

^ • xR*y ’• <\>z • tRw . D7>tr . <£?«/: <f>x. 

Hence, by *90112, xR^y. D . <£y, which is the proposition to be proved. 

*90 311. b. 72*-/[* 0*72 0 72 72* 

Dem. 

b. *90 31 ^. *90 132. D 

b . /2* = / r C‘72 « 72* i R 
[*33‘22.*34*2] = / f C‘72 o Cnv‘(72 ; 72*) 

[*50-5-51] = Cnv‘(7 r C‘72) o Cnv‘(72 j R*) 

[*3115] = Cnv‘(7 r C‘72 o 7? i 7?*) (1) 

b. (1). *31-32. DI-. Prop 

*90 32. b . R | 72* = 72 o R | 72* j R = 72*1 R (2) 

Dem. 
I-. *90-31 . D l- . R I 72* - 72 | / r C‘72 o 72 72*j 72 

[*50*64] = 72 o 72 j 72* 72 (1) 

[*50-65] - (7 r C‘72) I 72 o 72 j 72* 72 

[*90-311.*34-26] = 72* j 72 (2) 

b.(l).(2).Db.Prop 

*90 33. I-. «»“a = (a « C'R) xj Rm“R“a = (a r. C‘R) xj R“R„"a 
Dem. 

K . *90-31. *37-221. D 

h . 72*“a = (7 r G“72)“a yj (72* 172)“a 

[*37-412-33] = 7“(C‘T2 n a) v 72*“72“a 

[*5016] = (C‘72 r> a) /2*“72“a (1) 
Similarly, by *90 311, 

H . 72**‘a = (C‘72 « a) 72“72*“a (2) 
b . (1) . (2) .DK Prop 

C
i 
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-90 331 b . Va = (anC‘R) w 7?*“7?“« = <a o C‘R)vR“R*“a 

( Proof as in *90*33J 

*90 34 b:aC 'HD.O. R+“a = a ^ 7f*“7f“a = a u R“R*“a 

[*9o33. *22«>2IJ 

*90 341 haC C*R . D . /7*“a ^ a w ]{**']$“a = a v R“R+“a 

(*9033I .*221121 | 

90 35 b:..,R !<*: . 3 s 7i‘V C M. ^7‘.i C M . * c ft 

Dem. 

K *32 181 . D 1- .i-Rif ,D:yc /f *.#•; 

[*22 4i») D : /f.r C ft.Z> . ye ft: 

(Pad | 0:R,'t*Cn.4R*.rCfi.D.R“ftCn.,€fX (1) 

1- . *90 1 . ^ !/K+z • ^ •* R‘V c fi. •/€ fi.D . z € fj (2) 

K<1).<2> 

[* 10*11*2.3. 

. D H :. xRi/. yR+z . D : RtlftQ ft. R*.r C ft. 0 . z e ft 

.*:U 1J D 1- Wf, 7f*: . D : 7f« > C M .%.r C ft.D.ztft (*> 
h.(.*<).*1011-21 .Dh.lVop 

*90 351. b :. /?‘V C M . 7f‘.r C fi .DM. z € ft:D .xR 7f** 

Dem. 

V . *!!()• 172. Pad. D 1- : .r/f 7f*; .zRm.D. j-R+z . ;/?w . 

[♦3+i J D..//^l/ew*. 

1*90-32) 0..rR\R^w 

K<1). *37*171 . Dh.D“2(.,R Rmz)C z (sR l R+z) 

h . *90 32 . Dh: .#•/*„. D . W* 7?*y : 

[*321.31 .*20-3] Dhr^c/Tv.D.y^SCr/; R^zU 

(*1011 .*221] D b ./<V C?(x/; | 7?*r) 

b .(2).(3).*10-1 . D 

H :. Rlt ft C /z . 7tf*.r C ft. D,. • z e n i 0.2 e 2 (.r7£ | 7?*j). 

[*20-3] D. *7? | R*z z.Db. Prop 

*90 36. b :. .cR . R^z . = : /f“/i C ft. 7?‘.r C ft. . z e ft [*90‘35'351 ] 

*90 4. Mtt*)* = tt* *904. 

Dem. 
1-. *90151*18 . D K . 7?* G ( 7f*)* (1) 

h.*90 1l2 W*'Xf*Z.D 
IX, <p: 

I-:. .r (7?#)* y : xR#z . zR+tu. Df>tr. j-7?#i<» : xR&v : D . .r7?#y (2) 
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\- . *9013 . D h : *(/?*)* y . D . xe C‘R* . 

[*9014] O.xeC'R. 

[*9012] D.xR+x (3) 

f- . *9017 .Dbz xR#2 . zR+vj . D/iM, . xR^w (4) 

K(2).(3).(4 ).D\-:x(R*)*y.D.xR*I/ (5) 

h . (1) . (5) . DK Prop 

*9041. h . C‘P* [a = an C‘P 

Dem. 

I-. *37-41 . 3 K C‘P* [ a = a n (P*“a ^ .P*“a) (1) 

h . (1) . *371510 . *90 14.31-. C*l\ [ a C a ^ C‘P (2) 

I-. *90-33-331 . DKqa C*P C />*“<* w; P#“a (3) 

H.(3).(l). DKa«C‘/JCC‘P*t« (4) 
h.(2).(4) . 3 K Prop 

*90-42. I-. (Q* [ a)* = Q* C a 

Dem. 
K *9018. 3h.(Q*[a)*G<(?*)* 

[*90-4] G<?* (1) 

K. *9013. 3h:*(Q* [ a)#y . 3 . x,y « C‘Q* [a. 

[*90 41] D.x.yea (2) 

h.(l).<2). 3 !-.(«* C«)*GQ*C« (3) 

K . (3) . *90151 .Dh. Prop 



*91 ON I’nWKHS OF A RELATION 

Sum mor>f of *!l|. 

In f In* |»l**s«-lit IiiiiiiIht. we consider the r|;i>i of relation'* 

It. If. If. 

I‘«:n*11 "l these has to it** |inilm,»sor the relation 77: hv have 

It■* If It. R»m It* If. etc. 

I I*'Is • ■ very term of tin- series ha** I! tin* relation ( 77)*: hence the powers 

m! It may I"* defined a** those relation^ which have to It the relation ( 70*. 

I It** serfs "I |N»\\er> starting with l[('t/t instead ul' with It is similarlv 

composed "I those relations which have to / fC‘77 the relation ( 70*. (This 

'•lass i*MiiM't> of the pre\ ioii> class together with / [ Cu It.) To say that the 

relation 77* holds hetweeii .* and y turns out to he equivalent to saying that 

one ol t In* relations 

IfC-lt. It. If. It. ... 

holds heiween .i and //; and to say that the relation 77 77* holds between 

and >/ turns out to Ik* equivalent to saying that one of the relations 

77. If. If. ... 

holds between and if. Thus we might have begun hv defining power* of 77. 

and jiroi.tied to fletine 77* a** their sum. 

For tftational convenience we put 

77,. — ( 77)* Df. 

Then the definition of powers of 77 excluding / f* C*It is 

Pot177 = 77, ,* 77 Df. 

and the definition of j lowers of 77 including I f" 7**77 is 

Pot id* 77 ■*"/?„*( 7 r C*77) Df. 

(Here the letters "id” an* added to suggest that identity is to be added to 

Pot* 77.) 

We put also 

77|l0 = v* Pot ‘77 Df. 

Many of the propositions in this number are very often used. Among the 

more important propositions are the following: 

*9117. I- P € Pot id *77: <f>S. D,. <f>(S\ 77): (7 f C* 77): Z>. «/,7» 

*91171. I- 7* c Pot* 77 : <f>S. D.s. <t> (*’ i : ^77-: D . 07* 

*91*373. h P c Pot*77 . Dr. <f>P : ^ z 4>Ii : S e Pot*77.0.S*. D,. <f> (S, It) 
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These are formulae of induction. The first two state that if the property 

<t> is hereditary with respect to , R, then if <f> belongs to I T C‘R it belongs to 

any member of Potid‘7?, while if <f> belongs to R it belongs to any member of 

Pot‘i2. The third gives a form of induction which is sometimes more powerful 

than the second. It states that if <p is hereditary provided its argument is a 

power of R, and if <f>R, then every power of R satisfies <f>. and vice versa. 

*9123. b . Potid‘22 = P(1 f C*R) vj Pot‘R 

*91 24. b . Pot‘R = | P“Potid‘P 

These two propositions are very useful as giving relations of Pot‘if and 
Potid'iS. 

*91 27. b : P e Potid'P . D . C*P C C*R 

*91 271. b : P e Pot‘R . Z> . D<P C D‘R . (VP C(l‘R 

We do not have in general Pe Pot‘R . D . D*P = D‘R . (I‘P = (PR. If 

R is the sort of relation which generates a series (i.e. is either itself serial, or 

such that Rvo is serial), the above would characterize a series without a first 

or last term. To illustrate the matter, consider a series of four terms, x, xj, z, tv, 
and let R be the relation of immediately preceding in this series. Thus R 
holds between x and y, xj and z, z and w. Then R3 holds between x and z, // 

and w\ thus z, which belongs to D‘R, does not belong to V*R3. R3 holds only 

between x and w\ thus neither xj nor z belongs to D‘/£a. All powers of R 
beyond the third are null. On the other hand, if we take a cyclic relation, 

such as that of left-hand neighbour at a dinner-table, we shall always have 

D‘P« T)*R . (PP = (\‘R, whatever power of R P may be. 

*91 282. b : P € Pot‘R . D . P | R € Pot‘R 

This proposition shows that Pot*/7 is a hereditary class with respect to ' K. 

*91 34. b:P,Qe Potid *R . D .P\Q=Q\P 

This proposition states that the relative product is commutative when 

each factor is / f* C*R or a power of R. 

We come next to propositions concerning RlM. We have 

*91602. b.RGR^ 

*91 604. b . V'R^ = D‘R . CPR„ = CPR . C‘R%„ = C‘R 

*91611. b.R^RGR^ 

*91-62. b . R^ = R* | R = R R* 

*91 64. b . R+ = 1 \ C*R kj R^ 

*91-52-54 are fundamental in the theory of inductive relations. 

*9T642. b : xR+y. x + y. = . xR^ .x±y 

This proposition is particularly useful when (as often happens) we have 

7£po G J• In that case, it gives R^ = R* A J. 
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*9155. b . /{# = x* Pot id4 R 

*91 56 b . /i,;, G /i„. 

Thus A',*, i> always transitive, which is one of the three characteristics 

• »f serial relations (cf. *20+). We shall find that is often serial when II is 

not so. 

*91 574 b. K* R„=R*. R+ = R„=R 

*91602. K(/i,„,>*«/<* 

*9101. /*.,-(* >* l>f 

*9102 /{,. = t R>* I)f 

*9103 Df 

*9104 V»t\i\‘R-l<ut(/[CtR) Di¬ 

*9105 R^-V Pot* R or 

The first two of the above definitions are introduced merely for notational 

convenience. The other three represent ideas of great importance. The last 

is especially useful when a series is given as the field of a one-one relation 

between consecutive* terms—as. e.y., when the series of natural numbers is 

given as the field of the relation of n to a + I. Then ii|M, is the relation of 

any earlier term to any later term—e.ff., in the above case of the natural 

numbers, the relation of a less integer to a greater. 

*911. b :: PR^Q. a 8* n . 0S. R S t n : Q € n : . I* i fx 

Drm. 

b . *4 *2 . (*9101) . D 

b :zPRmXQ.rnz.P(R\)0Qz. * 

[*9011] 

[*+3-3.*33*161) s (R \ Y‘n C y.. Q € M . D* . iJ€M 

[*3761] = Stm • • R *R«t x : Q * fit: . I* e 

|*+:M1) = :. .S’ e n . Ds. R \ S * f, i: Q e fx:0H . I* t fizz D H . Prop 

*9111. 1- :: J*RtJj • s •• S e ft • 0S • 8! R * ? M : Q € /x : . P € y. 

*9112. bzPcPot*R.s.PRuR [*3218. (*9103)] 

*9113. b zz P € Pot*R . = St /* . D,. S R t ft i R € fX Z m P € fX 

[*1)11112] 

*9114. b : R « Potid*R. = . l’RuVX C€R) [*3218 . (*910+)] 

*9115. b zz 1* c Potid*ii . s S « /* . 0S. S j /i € /a : / [* C‘ R e y z . P r y 

[*91111+] 

*9116. 1-:: xR^y . = (g/*)Se/a . Ds . S R e y z R c y z . P e yz. xPy 

[*+111 .(*9105). *9113] 
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*9117. bft € Potid'ft : . 3S. *(-S| ft) : $ (/[• C*ft): 3 . ,£ft 

*91171. b :. ft « Pot'ft : . 3, .<f>(S\R): <pR .<t>P 

[*91-13 *<M>] 

These propositions are of great importance, because they enable us to 

prove that a property <f, belongs to every power of ft if it belongs to ft 

(or I [• C‘Il) and also belongs to £ | ft whenever it belongs to -S. 

*91 2. 1- : Qft„ft . 3 . (Q | ft) ft,.ft 
Dem. 

h.*43101.(*91-02). 3I- :Hp.D.(4»|ft)(|ft)Q.Q{\R)mp. 

[*90 172] 3.(0|ft)(jft)*ft. 

[Id.(*91 02)] 3 • (Q! ft) ft,.ft: 3 I-. Prop 

*91 201. I-: Qft.,ft. 3 . (ft j Q) ft„ft [Proof as in *912] 

*91 204. I- : ft (ft,. | ( | ft)] Q . = . ftft,. (Q | ft) 

Dem. 

1-. *34-1 . 3 b : ft |ft„; (, ft)| Q . - . (a7*) . ftft,.ft. ft(| ft) y . 

[*43101] -.(aft), ftft,.ft. ft=Q(/e. 

[*131951 = • (Q | ft) : 3 b . Prop 

*91 205. b : ft (ft., | (ft |)] Q . = . ftft., (ft | Q) 

*9121. h.ft,.-/oft„|(|ft) 

Dem. 

I-. *90 31 . (*9102) .31-. ft,, = 7|" C‘(l ft) w ft,. |(( ft) 

. [**3-311] -= / w ft,. | (| ft). D f . prop 

*91211. I-. ft.,=./o ft.,|(ft|) 

*91 212. b :. ftft„Q. = : ft = Q. v . ftft,. (Q|ft) 

Dem. 

1-. *91-21. *501.3 I- :.ftft,.e. = :ft=Q.v. ft (ft, .|(|ft))Q: 

■>”1 '204J = : ft = 0. v . ftft,. (Q | ft):. 3b. Prop 
*91 213. b :. ftft.tQ . = : ft = Q . v . ftft., (ft | Q) 

*91-22. b . R„‘Q — t‘4> w ft„‘(Q | ft) [*91-212. *3218. *5115] 

*91221. *-.~R.l‘Q = i‘QuR.t‘(R\Q) 

*91 23. b . Potid-ft = t‘(7 f- C‘ft) vPot'ft 
Dem. 

h • *91-22 . (*9104) .DK Potid'-ft = i\I f* C"ie) w /£/((/ f C‘R) j /2} 

[*50-65.(*9103>] = e-(/r « Pofc'A. D K Prop 

36 
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*91231. b = vPot‘/f [*91 22.<*91 <>3).*n0-4] 

*9124 h.lW/t- /ir“Poticl‘/f 

lk'in. 

p . *91-12. d p : /*« Pot*/;. =. . 

[*50G5] = /?>. 

(*91 204) 2. t /?)!(/rcvo. 

l*9o-32.<*9i 02i] s./'K /e> /;„!(/pc*/?). 

1*373] =./'* /;“/;„*(/pc*/?). 

[*4 2.<*91 04>] = ./*€ /;“Potid‘7? : D P . Prop 

*91241. p://;,</'. d.«/ 7?)/;,„(<? /') 

J fcin. 

P.*9I 2I2.DP.((/ //,.!<? /') (1) 

P.*9P2. DP:«/ 5) /;„<<? 1>).3.(Q S li) Iiln{Q\ 1>) <2) 

Till- last line of thr above proof is obtained ns follows: writing fi for 

S|(V *>/;,.«/ /*)!.( 1) becomes 
/*«/* (1). 

while (2) becomes 6’e fx . D . 6' /? c (2). 

Hut bv *01 11. writ ing T for the /' of *9111, and l* for the Q. we have 

THtJ>. D 5 < Ai • 3s - S H e p : /'«/*: D . 7’« 

Hence, by < 1) and (2). TRtJ*. D . 7*€ /i. t.c. 

mj’.O.iQ T)Jtl%(Q\P), 

which is the proposition to be proved. 

*91242 biSIitAV PUD.S*Q\“l?tSP 

Deni. 

P. *9122. *4311 .DP.y ^!“/?,//' (D 

P.*371 .*431 . D 

h : .S'« y “«„'/*. s . O'n. T<Tr,.‘P .S-Q\T. 

[»!)l-2] 3.(3^- T\Rt %.‘P .S\R<=Q\T\R. 

(»:t71.*431] O.S\R(Q\"li,.‘P (2) 

h. (1) .(2). *9111 Q .Ob. Prop 

*9126. b .RU‘(Q P) = Q ,"R„‘P 
Dent. 

P . *91 242 .DP. 7V(0 |P)CQ 
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H.*91-241. Dt-: T t R„‘P .J! = Q\T .0 . S e~R„‘(Q\P) : 

[*1011 -23] D f-: (a T). Tj~R„‘P .S=Q\T.O.S e~Ute‘(Q | P) : 

[*37 1 .*431] D I- :SeQ\“~R„‘P. D . S\ P) 
H.(l).(2). DKProp 

(2) 

*91251. f-.RM‘(Q[P) = \P“R,t‘Q 

*91-26. H ■~R„‘Q=Q\,‘Rt,‘T 

[Proof as in *91 25) 

*91-25 1 

*91261. I-. R„‘Q = | Q“P„‘7 

P 

.9. 25! £«] 

*91 262. h : CI‘Q C C*R . D Jr^Q = Q j “Pot id‘.ft 

[*91*267|tp*. *50*62 . (*9104)J 

[ ft 
*91 '25 -p . (*91 03) j 

*91*22*263^1 

*91263. Kftu‘(Q|ft)-Q|‘‘Pot‘ft 

*91 264. h . Pot‘ft = i*R u ft |“Pot‘ft [ 

*91 27. h: P e Potid'ft . D . 0*1* C C* R 

Dem. 

1-. *50-5-52 . D h . C‘(/ r C'ft) - C‘ft . 

[*22*42] D I-. C*(I rC‘ft)C C‘ft 

H . *34*38 . D 1-: C‘S C C‘ft . D . ft) C 0*11 

0*SQ0*li 

(1) 
(2) 

K(l).(2).*91*17 
<p& .DK Prop 

(1) 
(2) 

*91 271. I-:Pe Pot ‘ft . D . D‘ft C D‘ft . a‘ft C <3‘ft 

Z>cm. 

H . *22*42 .DK D‘ft C D‘ft . d‘ft C CI‘ft 

H . *34*36 . D h : D*S C D‘ft . D . D‘(5| ft) C D'ft . Cl*(S\ft) C d‘ft 

H ■ (1) ■ (2). ,91171 weyycw ■ 3 h. Prop 

*91 28. h : ft e Potid‘ft . D . ft | ft c Pot'ft [*91*24] 

*91-281. I- : Pot'ft C Potid'ft . | ft“Potid'ft C Potid'ft [*91*23*24] 

*91-282. h:ftePot‘ft.D.ft|ftePot‘ft [*91*28*281] 

*91-283. h : | ft “Pot'ft C Pot‘ft [*91 282] 

The following propositions show that the relative product of two powers 
of ft is commutative, i.e. (cf. *9134) 

P,Qe Potid‘ft . D . ft j Q = Q | ft. 

We also have (cf. *91*341) 

ft, Q e Potid'ft . D . ft ( Q e Potid ‘ft. 

36—2 
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II i«v iIh-m- propositions (as will appear in the sequel) which arc the source 

• >f f ht* commutative law for the addition of finite ordinals. Ordinals in general 

an- in it. com mutative, just as relative products in general arc not commutative; 

l»ni owing to the fact that relative products whose factors are powers of a 

given ielation are commutative, finite ordinals are commutative. 

*913. h:/’*P»tiil<!?.D./t P = P R 

hem. 

K*:>0i;+I>;.Ob.R Ifi-lt-tt&R R d) 

h.*342l. Ob.R (S /0-(/f .S) R (2) 

l-.*3427 . 0\-:R S-S R . O . (R S) /*-(.* R)\R. 

|(2)| 3-R (S[R)-{S\R))R <3) 

K.,U7A' N-S' ".3 
If}.'' 

H:.7M,»tid-/f:/f S-S R.O^.RiS R)-(S /f) /* : RI [ C'R - / [ C*R,R: 

O.R P-P R <4) 

b .( 1 ).(•!). (4). D b . Prop 

*91301. biPiJtSHtWUi'l-tt P-P\R (Proof as in *9 13] 

>91302. b . /{“l*otid‘/f — R “PotuP/f 

liem. 

I- . *91*3 .*13*182 . D 1- /*«s Potid*R . D : N- R ; . 2 . Sm P\R : 

[*431101] D : N(/f|) 7*. s . N(| //) 1* (1) 

b . (I). *V32 . D H : /* < Potid* . .V(/M /'. e . 7'c Pot-id*/? . .S*(j /f) : 

1*10-11 2*1] D 1- s(a/,)« /*« Potif VR.S{R ) P. = . 

. /*« Potid */f . S( \ R) J* z 

1*37-1 ] 0b : Sc R “ Potid* 7f. h . Sc /i“ Potid* A :0b. Prop 

*91 303. b .| R'UtJilX&R)- R “1<«V \ tHR) (Proof as in *91302] 

*91304 I- . /f“Pnt*/f — R ,**Pot*/f (Proof as in *91*302] 

*91 31. b . Pot'R = R i**Potid*R [*91*24*301] 

*9133 I-. PotifPA =/?.,*(/ T C*R) 

hem. 

I- . *!11 *23,0b . J [ C*R c Pot id* R {1) 

H .*91*3 . Ob : Pc Potid*R .O.R\P = P\R. 

[*91*281] 0 . R; P c Potid‘7? (2) 

V . (1). (2). *911 Potl,l‘A . 3 h : />/?„, (/ r C‘R). 3 . P ( Potid* ft (3) 

I-. ,91 301.31-: PR„ (/ r CPR) . 3. ft | ft = ft | ft. 

[,91201] 3. (P | «>/*„</rC*) (+) 

H . ,91213.3 I-.(/ r C‘R) R* (/ r C‘R) (5) 

I-. (4). (5). *0117 .Oh:Pf Potid'ft. 3 . ftft„ (/ p C‘R) (6) 

h . <:)). (6). 3 I- • Prop 
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*91331. h . Pot*P - Psl*P 

Dem. 

1- . *9124 33 . D K Pot*P = | P**PHt*(/ f C*R) 

[*91*251 .*50-65] =~Rtt‘R . D h . Prop 

*9134. h:P,Q€Potid‘P.D.P|Q=:Q P 

Dem. 

*50-62 . *91-27 .DhPe Potid*P . D . P j (J f C*R) = P 

[*50 (»3.*91-27] = (/ [ C*R) \ P (1) 

K *34-27. D h:P€Potid‘P.P|5=-5|P.:>.P|£ R = S\P\R 

[*91*3] = 5|P|P (2) 

H • U) • (2) . *9117 J> ‘ P.Dh. Prop 

This is the commutative law for the relative product of two powers of R. 

*91-341. h : P,Qe Potid*P . D . P | Q e Potid* P 

Dem. 

I- . *50-62 . *91-27 . D h : P « Potid*/* . D . P | (/ f C'P) - P . 

[*13-12] D.P|(7 rC‘P)«Potid‘P (1) 
h . *91-281 . D h : P15< Potid*P . D . P | S\ R c Potid *P (2) 
. P| Se Potid*P p ■ .(1).(2)• *91 17 J-. D I-. Prop 

*91 342. H : P c Potid *P . Q e Pot*P .D.P\Qe Pot‘P 

Dem. 
h . *91-28 . Dh:Pe Potid*P . D . P | R e Pot ‘P (1) 
h . *91 -282 • D I-: P | Q « Pot* R. O. P\Q\ Re Pot ‘P (2) 
K (1). (2) . *91*171 . DH. Prop 

*91-343. h : P, Q e Pot*P . D . P | Q e Pot‘P [*91 -342 23] 

*91-36. h./rC*PcPotid‘P 

*91351. KP«Pot‘P 

*91352. h.P’€Pot*P 

*91 36. h : P e Pot*P . D . P | P, P | P e Pot‘P 

[*91-23] 

[*91-264] 

[*91-282-351] 

[*91-343 351] 

*91-37. 1-Potid‘P C M . = : / r C*P c ^ : Se Potid*P. Re/x. Ds. 5| P €/* 

Dem. 

h. *91 281 35. D 

h /[* C*P€/x:56Potid*P.«S*€/x. D5.5|Pc/*:s : 

/f* C*P € Potid*P . 1 [* C*R e ft: Se Potid* R. S e /x. Os.S J Pe Potid*P . S \ Re fx: 

[*9117] D: Pc Potid*P.D.P€/* (1) 

h . *91-35 . Dh: Potid'P C ^ . D . / f C*R e fx (2) 

h . *91-281 . D h Potid*P C/* . D s 5 c Potid*P. D5.5| P e/x: 
[*3-41] D:5ePotid*P.5c^.D5 .S\Rcp • (3) 

h . (1). (2) • (3). D h . Prop 
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*91 371 b P< Potid4/? . D/.. 4>P: = : 

</> (/ T <H /?»: *s’ € Pot id11 /? . <f>S. D s:. <f> (.S'1 /?) (*91 *37] 

*91372. H:.P»t4/?Cji.s:/?cM:£cP»t</?.tfc#t.D<..? /?€/x 
[Proof as in *9137] 

*91 373. h :. /'* Pot4/? . D,-. <*>/': = : <*>/? : tfc Pot4/? . <f>S. D,. 0 (,S* /?> 
[*91*372] 

*9141. f-.7?,.4</,|rt>«/> 44Pnt4/? 

*91411. h ."/?.,*( /? /') = P“Pot*/? 

*9142 I-./?„•/' = i4Pw/'44Pui4/? [*91*22*41 ] 

*91421. b.liJP-PPs* P“Pot4/? [*91*221*411] 

*91 43. 1- : 7't Pot4/?. ?//?,./'. D . Pot4/? 

I trm. 

b .*91*42. Dh:. Hp.D:Q-P.v.QtP 44Pot4/?: 

[*37 1 .*+3*1) D : ?/ - /'. v . <g '/*). T e Pot4 /?. - 7' /’: 
(*1312.*91*343 J D : f/c Pot4/? :.Dh. Prop 

*91 431 bi P< Potid4/? . <//?„/*. D. Q« Potid4/? (Proof ns in *91*43] 

*91 44. b :. /'. Potid4/? . D : <//?„/>. v . /'/?,.?/ 

Item. 

b .*91 14. Dh : /*€ Potid4/?. D . /'/?„</ T ?*'/?> (1) 

H . *91*2. 0bzQRtnP.2.((J R) RtnP <2> 

h . *91*212. ^ h s. PRt,Q . D : Q. v • PRt%(Q\ /?) (3) 

h* . *91*212. D b : /*-=?/. D . <//?,./'. 

[*91 *2] D.<f/|/?)/?„/' . (4) 

h . (3). (4). D h />/?„<?. D : (Q i /?) /?„/*. v . PRU (Q j /?) (5) 

h . (2). (5) .Db:. <}lixJ>. v . /'/?„</ : D : (Q /?) J?u/>. v . PRtn{Q, /?) (0) 

h.( I).(«). *91 *17. DK Prop 

*91 45. h :. P. Q * Potid4/? . D : (gT): Tc Potid4/? : Q = /' T.v.P=Q T 
J)em. 

h . *‘11*202*27 . D b :. Hp. D : /?„*/>- /^“Potid4/? . /?„4(/ = Q“ Potid4/? : 

f *37 *l .*43*1 ] D : QRUP. = . (g7’). Tt Potid4/? . - 7J | T: 
PRUQ. h . (g T). 7’ * Potid4/? .P=Q\T (1) 

h . (1). *91*44 .*10 42 . D h . Prop 

*91 46. h :. P. Q r Potid4/? . D : (giT): T< Potid4/? iQ=T P.v.P=T\Q 
[*91*45*34] 

The remainder of this number is concerned with /?|lQ and its relations 

to /?*. 

*91502. b ./?G/?I>0 [*91*351 .(*91 05). *41 13] 

*91503. b.R-dR^ [*91*352. (*91 05). *41*13] 

PR 1 
*91 25 fj ^.(*9103)1 
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*91*604. b . D‘721MJ = D‘R . d‘RlMi = d‘22 . &R£ = C‘R 

Dem. 
b. *91*502. D b. D‘R C D‘72|K> (1) 

b . *91-271 . *40*43 . D b . s‘D**Pot‘R C D‘R . 

[*41-43] D b. D*RlHt C 1V72 (2) 

K.(l).(2). Db.D‘72 = D‘72|K) (3) 

Similarly h. Cl*R = Cl*/?,*. C‘72 = C‘RlHt (4) 

b . (3) . (4) . D b . Prop 

The following propositions are concerned mainly with the relations of Rlnt 
and RThese relations are embodied in the propositions 

Rll0 = 7?* ! R = R j 72* (*91 -52) 

72* = / |* C‘72 w 721>0 (*91-54) 

and 72* = *‘Potid‘T2 (*9155) 

*91*51. b.72|(0|72 = 72|721(0 

Dem. 
b . *43*421 .(*9105). Db. 72^172 = ** 72“Pot‘72 

[*91-304] = 6‘72|“Pot‘72 

[*43*42.(*91 05)] = R | 72l>0 . D b . Prop 

*91-611. b - 72|K> I R G 721io [*43-421 .*91-283. *41-161] 

*91-512. b . 72|)0 G 72* | 72 

Dem. 
b . *90-32 . D b . R G 72* | R (1) 

b . *90*16 . D b tS G 72*|R. D . SO. 72*. 

[*34-34] D. S! 72 G 72* | 72 (2) 

b. (1). (2). *91171'SrG^-^.Db :7>ePot‘72.:>..PG72*|72: 

[*41151.(*9105)] D b . 72|K) G 72* j 72 . D b . Prop 

*91*513. b . 72* G i‘Potid‘72 

.Dem. 

K *90112 
<t>2 

b xR’+y : x (£‘Potid‘72) z . ^72m; . DZtW. a:(s‘Potid‘72) w : 

a; (*‘Potid‘72) x : D . a:(i‘Potid‘72)y (1) 

b . *43-421 . D b . (*‘Potid*R) | 72 = i‘| 72“Potid‘72 

[*91*281.*41-161] G s‘Potid*72 . 

[*341.*10*23] D b : a:(i‘Potid‘72) * . zRw . Dr>u,. a:(*‘Potid‘72) w (2) 

b . *9013 . Db: a;72*y . D .xeC'R . 

[*50-3.*36101] D.a(7[ C‘72) a:. 

[*91-35.*41-13] D. a:(i‘Potid‘72)a; (3) 

b . (2). (3). *4 71-73 . D b : Hp (1) . = . xR+y (4) 

b.(l).(4).Dbs a»72*y .D.x (7‘Potid‘72) y: D b . Prop 
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-91514 I-.77* HQ It,., 

hem. 

K *91*513. DI-. 77* Ii G (.v‘Potid‘7?) R 
[*43 421J G x* 77"l\>ticl‘77 

1*91-2+) G*‘Pof‘77 

[(*9105)) G 77,„ . D h . Prop 

-9152. I-. 77,.., = 77* 77=77 77* [*91*512-514. *90-32) 

*91 521. h : /'t PotiiP77. = . h( Poti.l•% 

hrm. 

h • *91 151 MX ,4.Dh:: /*< Potid‘77 . D 

7 [* C‘77 t < *iiv4> : N € (,'uv‘V . D%. .5* 7.’« Cnv“/i: D . 7* e Cnv'V (I > 

H . *72 5131 I . Dh: ]>( Cnv‘V . = . 7'f ,x (9) 

h .(2). *505-51 .Dh: 7 |* (’*77« 1’nv‘V . s . 7 f* 7'*77 f/x (.-{> 

h . *3 151. Dh .S' € < •„v“/x . >N. N 77 «• Cnv'V : = : 

S«Cm'V.X..S' ^cCnv-V: 
|<2).*34‘2] “:N</i,D».7/.Nc/i (4) 

H . (I ).(2).<:t>.<+>. D 

H :: 7* e Pol ii I* 77. D 7 f* 7"77 «/*: A7«/x. D,. 77 Nc /x: D . P « M (5) 

H .(5). *1011-21 .*!H i :W.D 

h : 7*« Poiiil‘77. D . 7*< PotiiP77 ((}) 

:/*« I VUWf.D. 7'< l*..ti<l-/? (7) 

K(li),("),Dh. Prop 

*91 522. h : /* € Pol*77.3.7** Pot‘77 [Proof as in *91-521) 

*9153. K77l,, = (70„. 

hem. « ^ w 
h.*91-52.Dh .77ll0=77 77* 

[*!>0 1»21 =77 (7? 

[♦9P52] =(77),... Dh. Prop 

*9154. h . 77* = I T <'*‘77 77,.. [*90-31 . *91 -.52] 

*91-541. H . 77* n./ = 77,mi *./ [*25*401 . (*50 02). *35 +41 . *91 54] 

*91542. h :./77*»/ ..»• + y . = . aRlHly [*91 541 . *50*11] 

*91 543. h . 77*“£ = (^n C‘77) u 77,„“£ 

hem. 
K *91-5+. *37 *221 . D h . 77*“£= (7 f C‘R)“/3 o 77, 

[*50-59] = ^ (7*77) w R^‘0 . D I-. Prop 
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*91-544. 

*91*545. 

*91-546. b 

*9155. h 

Dem. 

*91*56. t 

Dent. 

*91561. b 

*91-562. b 

*91-57. b 

*91-571. b 

*91-572. b 

*91-573. b 

*91-574. b 

Dem. 

*91-576. b 

Dem. 

*91-68. h 

*91-581. b 

*9169 b 

Dem. 

: 0 C C‘R . D . /?*“£ = 0 v, RXH>“0 [*91-543 . *22 621 ] 

: 0 C C*R . D . R*“0 = 0yj Rik,“0 

. 7?* = 6‘Potid‘7? 

h . *91-23 .DK 2* Pot id M2 = f* CM?) u Pot*/?] 

[*53-17 .(*91 *05)] - / r C‘R v Rlto 

[*91-54] = 7»# . D f-. Prop 

• R£> C Rlto 

h.*91-52.Dh .R*,-R+ R\R*\R 

[*90*16] 

[*90-17] 

[*91-52] 

G 7?* /?*1 R 

GR+\R 

G Rl>0 . D h . Prop 

•.SCR^.TGR^.D.S TQR 
'1*0 

: S G 72|IO. D . S| 22 6 22*,. 221 SGRlM> 

. Rlto= Rv Rlto\R-Rv R\RlKt 

.Rlto\R~R\Rlo 

.221io^(/2po|22)G22 

[*34-34. *91-56] 

[*91-561-502] 

[*90*32. *91*52] 

[*91-52] 

[*91-57 .*22-9-43] 

[*91-571-572] 

7?*|P1K) = 7?1.0|7?*=PI,0 = it 

H. *91*52. DK.7?* .1* 
[*90*17] = -R.I-R (i) 
h. *91-52. Dh.P(IO | if* = it i /e. 1*. 
[*9017] = «!•«* (2) 
b . (1). (2) . *91*52 .Dh. Prop 

R,io=R Ruo = Rpo\R*=R:\ R* = R*\R2 = R\R*\R 

h . *91-574-52 . D b . R£ = P J P1K> = 7?IK> J R (1) 

b . (1) . *91-52 .Dh. Prop 

P e Potid<R . D . P G P* [*9155 . *4113] 

P 6 Pot‘P .D.PG Ppo [*4113 . (*91-05)] 

PG-S.D.PpoG^ 

I-. *90 18 .Dh:Hp.D.fl*G5*. 

[*34-34] D . P* | P G P* | P. 

[*91-52] O . Ppo G Ppo : D h . Prop 
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*91 6. h : <Je P..C/7 . 3 . C Pot«77.0wG77H, 

Dem. 

h /' < : .V « l’ol«/7 . 3, . .S' Pr,t«77 : Q, P„t‘77 : 3 . 1‘e Pot‘77 

h . *!>r:m. 3 h P..t‘/7. 3: .yf Pot1/?. Pot‘77 

h •' I l ■ (• 3 H : /** P»I‘V. Q « Pot‘77 . 3 . /' t P..t‘77 : 

I lv\p.*IO I I 21]3 h : y* Put* 77. 3. Pot‘VC Pot‘77. 

I*+Il,i'l 3-Vh. C«... 
H <4).3K Pr..|» 

*91601. /f... 

Dan. 

U) 

(2) 

(3) 

(4> 

H.*!»l.-,02.3K/71„G(/fl„>1„ (I) 

h /*« I*-"*/>•,-.: * e /7... .3, . .s 77,., G 77,.,: /7,.„ G /7,„ : 3.1‘ G /7,., (2) 

H . »:1+ :I4 . . 3 h : .s' G 77,„. 3, . S 77,,, C 77,.. (») 

H .< 2 >.(.•»>. *2:142.3 H : 7’t Pot* 77,.,. 3.1‘ G /7,„ : 

[•*'■131] 3 h. (77,.,),., G 77,,. (4. 
K(h.(4).Dh. Prop 

*91602. I-. (//,..)» = 77* 

Deni. 
b . *91-54 . D I-. (/<„.)* « / r t?*/*,,, c; (7*li0)|iw 

[*9 1 *504 601 ] = 7 r CH liv RIM 

[*91*54] = ft* . D 1*. Prop 

*91*603. H.(7?*U-7^ 

Dem. 
b . *91-52 .Dh. (Rm)%nt - (7f*)* | /?* 

[*90*4] = 7?* 17?* 

[*9017] = 7f*.DH. Prop 

*9162. b xRIMty. = z R,tfi Q ft. R*x C jx • . y €/i [*91*52 . *90*36] 

This formula should be compared with *901, in which an analogous 

formula is given for 7?*. It will bo observed that here we do not require to 

add x € C*R, for if Rlx = A, the above formula leads to xRxtoy . D . y e A, i.e. to 

~(x7f,*,//). Hence xRlHJy . D . 3 ! R*.r, i.e. J*7?1KVy. D . xe D‘R. It will be ob¬ 

served that xR^y holds whenever y belongs to every hereditary class which 

contains the immediate successors of a*, whereas xR+y holds whenever y belongs 

to every hereditary class to which x itself belongs. 

*91-7. b . R^'Q'R = V‘R . R^WR = (l‘R [*91*504 . *37*25] 
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*91-71. : R“n Cp. = . R,v“p. C M> C M 

Dem. 
h . *90-22*132 .Dh R“ft C M. = . P*‘V C /x . (1) 

C*S>l-602] =.(U'VCM. 

[<]> %] -VVC, (2) 

h.(l).(2).Dh. Prop 

*91*711. = 

Dem. 
I-. *91-71*52 . *37 2 . D h : Hp. D . RC P“/* (1) 

h. *91 502. Dh.R“pCRlM>“p (2) 

K(1).(2).DK Prop 

The above proposition is used in the theory of minimum points in a 
series (*205 68). 

*91 72. h . R“(a u R^'a) =» PI>0“a 

Dem. 
y . *37 22-33.51-. P“(a u Rt„“a) = P“a w (R \ P1K>)“« 

[*37-221] = (Pc/P|P|K))“a 

[*91-57] = /ei(0“a . D y . Prop 

*91721. y.R“(a»RV0“a)=Rl>o“a [*9172 j*. *91*58 J 

*91 73. y :. P, Qc Potid ‘R .P + Q. D: (aP): P e Pot‘P :Q-P|P.v.P-Q|P 

Dem. 

y. *91-45. D 

h:.Hp.D:(aP):PePotid‘P:Q = P| P. PjP+ P. v.P- Q|P. Q| P*Q (1) 

y . *91-27 . *50-62 . D h : Pc Potid‘22 . D. P17|* C‘P - P: 

[Transp] D h : P, P c Potid'P . P J P* P . D . P+ If C‘R (2) 

K(1).(2).D 

h Hp . D : (aP) : Pc Potid'P . T+If&R : Q = P | P. v . P = Q | T (3) 

K . * 91-23 . D h : Pe Potid'P . P+ / f C"P -O .Te Pot ‘P (4) 

h . (3) . (4) .5 h. Prop 

*91 731. h P, Q c Potid'P .P+Q.D:(aP):Pc Pot‘P :Q=P|P.v.P-P|Q 

[*91-73-34] 

By means of *91-73 or *91-731, the powers of R can often be arranged in 

a series, the rule of arrangement being that P comes earlier than Q if 

Q = P | P, and later in the converse case. But we shall only get an open series 

from this arrangement if P c Potid'P . Pc Pot‘P .D?ir.P| P+P; otherwise 

the powers from a certain point onwards form a cyclic series. 
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*91732 P, Q € Potid 'K.P + Q.O: 

(hS>: Sc Potid‘7* :« = .$• R P.v.P = S\jR Q 
Dem. 

K*!H 731-24. D 

h:.Hp. 3:(?|N.7'>:.S'€l>«tid^.r-.S|/?:Q-2> P.v.I^T^Q: 
[*13P»5] D : (jjS) : Sc P«»ticl‘77 : (J=S R P.v.P=S R Q D h . Prop 

•9174 h . 7t“4Rm''rm4fiiJ+m R"!?^ =~RtJ.r (*01*52. *37 :302] 

*9175. K /f*o A>* = /f*u A,..- o if, = H,„vl[C‘Itu I{,„ 

hem. 

h.*50'.V.>l . ^b.Cu\\IfCtR)=/[CtR. 

l*!M .341 D 1-. 7tm m If* t*‘77 u iJ|i0. (i) 

[*0P54,*2*.7lip»-. (2) 

[*01.74] = R* v 7<„ (3> 

KD] (■*) 
H .(21.(3).(4). D H . IVo|» 



#92. POWERS OF ONE-MANY AND MANY-ONE RELATIONS 

Summary of *92. 

If #eCls-> 1, it follows that, starting from a given term x, there is only 

one series of terms xXt x2, x2, ... such that 

xRxx. xxRx2 . x2Rxt. 

Thus for example the relation of son to father is a Cls—► 1; and starting 

from a given man, the series of ancestors in the direct male line (which is the 

above series xx,x2, x3, ...) is unique and determinate. A result of this property 

of many-one relations is that if, starting from a term y, we go backwards a 

certain number of steps to a term x, and then forward a greater number of 

steps to a term z, we must pass through y in going from x to z\ while if the 

number of steps from x to z is less than that from x to y, z must lie on the 

road from x to y. These facts are expressed by the proposition: 

R e Cls —► 1. D . R# | Q R+ sy R+. 

In the present number, we have to establish various propositions of this 
kind. 

We prove in this number various propositions which are used in the dis¬ 

cussion of “families'’ in *96 and *97, and some which are used in the theory 

of finite and infinite. But on the whole the propositions of this number arc 

not much used. The most important of them are the following: 

*9211. b : R e 1 —> Cls . D . R„ | It <• R* . R^ | R = R* f* D*R 

with a similar proposition (*92-111) for Cls—> 1. 

*92 132. b : R e 1 -» Cls . Q, Te Potid ‘R .D.Q\T\QdT 

with a similar proposition (*92133) for Cls—► 1. 

*92 14. b : <1‘R C D*R . Q c Pot'R . D . D‘Q = D'R 

On this proposition, compare the remarks on *91271 in the introduction 

to *91. If R is a serial relation, d*R C D‘R is the condition that the series 

may have no last tern*. 

*92 31. b : R c 1 —♦ Cls. D . R+ | = R* o R# 

*92311. b:.R€Cls-*l.D.J?*|/?* = /?*w.fl* 

*921. 1*: R e 1 Cls. D . Potid*R C 1 -> Cls 

Dem. 

b . *7217 . *71-26 . D b . / f* C*R e 1 —* Cls (1.) 

b . *71-25 . D b Hp . D : Se 1 -» Cls . D . £ | R e 1 Cls (2) 

b . (1) . (2). *9117 . D b . Prop 
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*92101. h: /fet'ls-* I . D . P»ti«l'/f C Cls 1 [Proof as in *921] 

*92102. H : /f € 1 —» 1 . D . Potid'tfC 1 1 [Proof as in *921] 

*9211. h:/f«l->CU.D.tfIl0 7?-7?*rD‘7f 

Hem. 

*•.*91-52. D h. R„ R = 7f* 7f £ (1) 

h . *71*19 . D I-: Hp .3.7? 7? = /|-l>‘7f (2) 

H . (1). (2). *50 G. D h : H p. D . R„ R - 7f * |* 1 VJt (3) 

h.(.l).*:i5 441 . D h . Prop 

*92111. h:/f«eiH->l .O.R R^QR+.R /^-((p/01 77* 

[Proof as in *92 11 ] 

*92112 h:/tc l-»('U.D./f 7f(-. R - R„ f* D‘7f [*9211 . *9I-.V2] 

*92113. h:/f€CI»-»l.D./7 /f,* 77 = <U‘7f) 1 77,., [*92111 . *91-52] 

*92 12. h : 77 c 1 -* Cls. cP77 C I >‘77 . D . 1?,,. if - 77* [*92-11 . *35GG] 

*92121. h: /f<Cls-> 1 . 1>‘77C<1‘77.D.77 77|l,,«=77* [*92111 . *3503] 

*9213. I": /f € I —► Cl- . if. T € Puti«l*77 . D . 7' \)*Q 

Deni. 

h .*92 I . Dh: Hp.D.Qc 1 -*Cls. 

[*7119] D.Q 

1*50-6] D . T Q| Q - 7* r 1VQ s D I-. Prop 

*92 131. h : /7 f Cls-* l . Q. Tt Potid‘7? . D.Q Q\T=(i\tQ)yr 

In this iiiiidIkt, when proofs have been given for R * 1 —►Cls. we shall omit 

the proofs of corresponding propositions for 77 cCIs-* 1. as these are always 

exactly analogous to the proofs for 77 € 1 —*Cls. 

*92132. H : /t e 1 -» Cls. Q. Tt Potid‘77. D . Qt T| Q C T [*92 13 . *91 34] 

*92-133. h : 7 7 c Cls -*l .Q.Tt Potid ‘77. Z> . Q, T QQT 

*92-14. h : (I‘77 C D*77 . Q c Pol‘77 . D . I >‘(7 = D‘77 

bem. 

h . *91-271 . D h :. Hp . D : U‘Q C D‘77 : 

[*37*321] D : D\Q I 77) = D'Q : 

[*13182] D : l)*Q = D‘77 . D . D‘(Q R) = D‘77 (1) 

H. *1315. Dh. D‘77 = D‘77 (2) 

K.(l).(2).*91171 D<S^,VI?-. D 1-. Prop 

*92141. h : D‘77 Cil'R.Qe Pot ‘77. D . (I‘Q = C1‘77 
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*92142. h : <1*11 C D'/e . Q c Potid‘R . D . D'Q = D'/e 

Rein. 

h . *50-5*52 . D h : Q = / f C‘R . D . D*Q = C‘R 

h . *33181 . D h : Hp . D . C‘R = D*R 

h.(1).(2). D h : Hp. Q «/ T C'/e . D . D'Q = D'/e 

H . *91-28 . I) h :. Hp . D : Q = / f* C‘R . v . Q e Pot ‘ft 

h. (3). (4). *9214. DK Prop 

*92-143. K : D'/e C a*R . Q e Potid'/e . D . d'Q - Cl*R 

*92-144. h : Cl'/e C D'/e. Q c Potid'/e . D . d'Q C D'/e . d'Q C D‘Q 

Dem. 

I-. *91-271 . D h : Hp . Q e Pot‘/e . D . d'Q C D'/e 

»-. *50-5-52 . D K : Q = / f C'/e . D . d'Q = C‘R 

h . *33181 . Dh:Hp.D. C'/e = D *R 

h . (2) . (3) . *23-42 . D h : Hp . Q- / f C*R . D . d'Q C D'/e 

H . *91-23 . D I-Hp . D : Q ~ / [* C‘R . v . QePot'R 
h . (1).(4). (5) . *92-142 .Dh. Prop 

*92145. I- : D'/e C d'/e.Q« Potid'/e . D . D'Q C d'/e . D'Q C d'Q 

*92146. h : d'/e C D'/e . 0, 7*6 Potid'/e . D . 7* r D'Q - T 

Dem. 

H . *92142144 . D h : Hp . D . D'Q = D'/e . O'/CD'/i . 

[*13*13] D . Q'f C D'Q . 

[*35-66] Z> . 7* p D'Q = 71: D h . Prop 

*92-147. h : D'/e C (I‘/e . Q, ft Potid'/e . D . (CI'Q) ] T - T 

*92*15. V : /e 6 1 -> CIs . CI'/e C D'/e . Q, Tc Potid'/e . D . T\Q | Q - T 
[*9213*146] 

*92 151. V : R € CIs -> 1 . D'/e C d'/e . Q, Te Potid'/e . D . Q | QI 71 = T 

*92-152. I-: # e 1 —* CIs . d'/e C D'/e . Q, 7*6 Potid'/e. D . Q| 7*| Q — 7* 
[*9215. *91-34] 

*92163. h : /e e CIs —* 1 . D'/e C d'/e . Q, 7Tt Potid'/e . D.Qf7\IQ = 7’ 

*92*16. hz.Re 1 -> CIs . P, Q € Potid'/e . D : 

(1) 
(2) 
(3) 

(4) 

(1) 
(2) 

(3) 

(4) 

(5) 

(3T) : Te Potid'/e :P\Q=Tf D'Q . v . P | Q - Cnv'CT* f D'P) 

Dem. 

I- . *91-46 . 3 I- Hp . 3 : (gF): 5", Potid'ft : Q = T| i>. v . P = T\ Q (1) 

*■. *9213. 3 i-: Hp. T e Potid ‘R .P=T\Q.O ,P\Q=T\-D‘Q (2) 

h • *9213.3 h : Hp . T « Potid'fi . Q = T | P. 3 . Q | P - 71 f D'P. 

[*34-2] 3 . PI Q - Cn v‘( T [ D'P) (3) 

H . (1) . (2) . (3) . 3 I-. Prop 
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*92161. I-7? « CIs -► 1 . R. Q e Potid‘7? . D : 

•a*’): Tt Poti.l*«:Q /< = (<|.y,-| T.v.Q P-Cn\'\((l‘P)-\ T\ 

*92 17. H : /ft I —» C’ls . /’. Q e P.»tid*/f . D . <g T). Te l\>li<l</f . P Q G Tv T 
Dem. 

441. D!-:/' $= 7* [* I>‘<7 . D . 7' $ <• 7’. 

[*2.T:>.S| D.RIQQTsjT (1) 

^ . *35 52 44 . D f-: 7' $ - < *nv‘< 7* |* I>‘7*) .3./',^G 

[*23*58] D . 7J J £ G T yj T ( 2) 

K.<1>.<2>.*92 lO.Dh. Prop 

*92171. h : /?«<'Ih-» I . 7\<?c Pot id* 7?. D . (g 7’). T e Potid‘7?. Q RGTv T 

*92 18. K : 7?r I ->Cls.tl‘7?C I >‘7?. Pj)e Pot id‘7?.:>. 

R t}< Potid‘/?o PoticP/7 
Dan. 

h.*02*l<>14(». Z> 

Hi. Up. D : (%(7*): Te Potid‘7?: R (J-T.v.R D=T: 

|*I042) D:t:.|7f). Te Potid‘7?. R Q - 7*. v . t^T*). 7’c Potid‘7?. R £■?: 

| *!U 521P s < a T). T e Pol i.P R.R Q * T. v . (a 2*). 7’« Pot id‘7?.7' 7*: 

[*13*195] D : R ijt Potid‘7?. v . R Qe Pot id‘A*:. D h . Prop 

*92 181. h : 7? * < Ls -> 1 .1>‘7? C (P R. 7'. V € Pot id* A*. D . 

V 7't Putid‘7?u Potid*/? 

*92 19. I*: 7? « 1 -> CIs. (I‘7? C 0*7? . R. (Je Potid‘7? . D : 

/' £ c Potid‘7?. v . Q \ R e Potid‘7? 
Dan. 

h. *92*18. DH:. llp.D:7> Potid‘7?. v . P\Qe Potid‘7? (I) 

I" • *01*521 . *84*2 .Z)bzR Potid‘7?. = . (J R € Potid‘7? (2) 

h . (I). (2). D h . Prop 

*92191. b:Rf CIs -> I . IV R C < I‘7? . R. (j < Potid‘7?. D : 

R\Qe Potid‘7?. v . Q R t Potid‘7? 

*92 3. b :?77 e 1 -► CIs . R. Q e Potid* H .D.R QGR*v 7?* 

Dem. 

b . *01*58 . DbzTe Potid‘7? . D . 7’u TO. R* v 7?* : 

[*23-44] D I-: Te Potid‘7? . R| £ C 7'o r. D . R, $ G 7?* o 7?# : 

[ *10-11 *23] Dh:(g7').7'f Potid‘7?. 7> j Q Q T c; T. D . 7^: Q C 7?* u (1) 

l-.(l). *92*17. Db. Prop 
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*92 301. b : R e Cls -* 1 . P, Q * Potid‘/£ . 3 . P \ Q C R* w R* 

*92 31. b : R e 1 -* Cls . 3 . Rm | .ft, = Rm o if. 

Bern. 

I-. *90-14 . *50-64 . 3 I-. R* = R^\/fC‘H 

b . *9015132 . *33-22.3 I- .IfC‘R C Rm . 

[*34-34] 3 I- . R* 11 [" C‘R G /{,j R+ . 

[(1)] 3 b . Rt G Rm | R0 

Similarly 1-. Rm G R^ I 

1-. *91 -55 . *90132 . 3 b . R+1 R0 = i'Potid'R) i‘Potid‘fl 

[*41-51] = i‘T Kai», Q).Pt Potid<« . Q ( Potid'P . T= P \ Q\ 

[*91-521] - i‘r KgP, Q).P.Qc Potid'P .T~P\Q) 

b . *92-3.3 I- Hp. 3 : (3P, Q) . P, Q e Potid‘R . T- P | Q. 3r. TG Rmw j?„ : 

[*41-151] 3 : i‘f{(3P, Q,. P. Qe 1‘otid‘ft . JT = P\Q\ C 77* w Rm (5) 

• (4) • (5) .31-: Hp. 3. R+1 Rm G Rm tu 0+ (6) 

b . (2) . (3). (6) .31-. Prop 

*92-311. h: PfCls-»l . 3 . if*, «„ = ft. c; i<* 

*92 312. 1- : R e 1 —► 1.3 . ft* \ ft* = ft*1 ft* = ft* kj ft* [*92 31 -311] 

U) 

(2) 

(3) 

(4) 

1.3 . (ft* w ft*) I (ft o ft) C ft* w ft* *92 32. I-: R e 1 

Deni. 

b. *34-25-26. 3h.(ft*wft*)|(ftwft)=ft*|ftw.R,l|.ftK, R^RvR^R (1) 

I-. *9016132. 31-.ft»|flCft*.ft*|ftGft* (2) 

K *90-151. 3 I" • R» | ft G ft* | ft* . ft* | R G ft* | ft* (3) 

h • (3) • *92-312.3 1-: Hp. 3 . ft*; ft G ft* w ft* . ft*1 R C ft* a ft* (4) 

. (1). (2) . (4) .31-. Prop 

*9233. H:ieel-»l.D.(/{o«V-fl)((w«„ 

Dem. 

H.*9018. D h . R+ G (R c/ R)0 .RmG(R c; R)m. 

[*23-59] D h . -ft* c; Rm G(Rw j?)# 
a) 

1- - *33-272. D h . / f* C\R c; .ft) = / f C*R. 

[*9015.*23-68] D K . / f- C*(R c; ft) G Rm sy R0 (2) 

K. *92-32. *34-34. . D H :. Hp . D : S G R+ u R+. D . S | (R c; R) Q Rm c; R# (3) 
R Ac W I 37 
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h . (2). (3). 7 *”,S'c **"«* . ;> 

h :• Hp. 3 : /'« H..ti<l*(/f 

(•4-I-1.5IJ D : *‘Puti<l‘( /fo«)G ff# o : 

t*!,|'55J 3 ff.ojL (4) 
P. (1 ).(■*)• 3 KPi.>|> 

<92 34. . 2) . < R c /?),.. - R+ o /?„ 

Dem. 

K*!I2'3;}.«!»1 *.>2.D 

1-sHp.D. 

(7?o/7> 

[•34-25-2CJ -77* 77^77* JlvR0‘it w K+\ K 

[*np52 54 57] = 70 77c/(/|‘C‘/7u77u77*|77) /7 vy77 

[*50 «5.*71-l!)2.*72 r>f»-5f»l ] 1,0 

= 77,... o /? ci /fn-/r o X* /?o/ MVJiv 77* l*D‘77c/77 

[*3.V412.»9l-502] 

- 7?,„ wlfC'RvjitfiVRw 77* f ly/i u /J 

[*°1 7 r,l - 77* v 77* V 77* r < I‘77 V 74 M>‘77 

[*35*441 ] = 77* o 77* : D h . Prop 



*93. INDUCTIVE ANALYSIS OF THE FIELD OF A RELATION 

Summary of *93. 

For this number, we introduce three new notations, of which the first two 

will be used constantly, especially in the theory of series, while the third will 

be seldom used except in the present section. The two which are constantly 
used are 

xBP, meaning x e D‘P — G‘P 

ai*d x min/.a, meaning xear\ C‘P — P“a, 

i.e. x is a member of a and of C‘P, and no member of a precedes x in ClP. 

The letter B may be regarded as standing for "begins.” Thus if we take 

any member y of C‘P, and proceed backwards and forwards as far as possible 

by P-steps, we obtain a scries which may be called the “family” of y: this 

series, if it has a first term, has one which is a member of D‘P — (I‘P; thus 

the members of D*P — G‘P are the beginners of families. For example, if P 

is the relation of a peer to his heir, "xBP" will mean "x is a peer who is not 

the heir of a peer”; thus x is the first of his family. If P is the relation of 

parent and child, “xBP” will be satisfied only by Adam and Eve; and so for 

other relations. 

The definition of B is 

B^SPixeD'P-a-P) Df. 

Hence P‘P~ D‘P — G‘P. If P is the generating relation of a series which 

has a first term, that first term is B*P\ if there is a last term it is B*P. 

If a is any class, we may call a term x a minimum of a with respect to P 

if it is a member of a and of C‘P, but does not follow any member of a, i.e. is 

not a member of P“a. We denote this relation of x to a by “ min/."; thus 

we have 

x min/, a . = . x c a n C*P — P“a, 

and the definition of min/» is 

min Df. 

We shall also, when convenient, write "min (P)” in place of " min/.." 

We have minp'a = a r\ C*P — P“a. 

If P is serial, minp'a reduces to a single term if it is not null; thus if a 

class a has a first term, this term is min/»'«- We also put 
*-* 

max/. = min (P) Df, 

and then maxp'a, if it exists, is the last term of a in the P-series. Thus if a 

37—2 
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is the class »f peers, and P is the relation of father to son. uThi,.‘a consists of 

tho,o |>«cTs who are the first of their line, while n^x,.‘a consists of those 

peers who are the last of their line. If a is a class of numbers, and P is 

the relation of less to greater, min/a is the smallest member of a (if it exists), 

ami max,.‘a is the largest (if it exists). 

H and “ max,. ‘ and min,." will be used constantly in connection with 

senes, where the two latter will be considered in detail, but the present number 

is more specially concerned with a less general idea, namely that of genera- 

fions. Take. e.</, the relation of parent and child; let us call it P. Then 

the^first genenttion consists of those who are parents but not children. 

M'- ,,K‘ st‘co,,<1 consists «f those who are children but not grandchildren. 

''' l\‘p-tl‘i» i.e. <I‘P-P“<J‘P. U. ‘P: the third consists of those 

who aiv grandchildren but nut great-grandchildren, i.e. <I‘P-_(I‘P\ i.e. 

■" Pii^ltPJ, t.e. iniii,.‘(\*P*\ and so on. Also we have 

IPP = iniu,.'<J*(/ f C*P); 

hence the generations of P are miii/.“(|<<|>otid</>. Thus we put 

gcn‘P = min,."(l“Potid<P Dr. 
when* “gen" stands for "generation." 

When P is a one-manyj-olation, such as that ..f father and son. every 

generat ion is of the form P'li'P, where T is a power of P (including /[* C1 P). 

When P is not a one-many relation, this is not in general the case. 

The generations of P do not in general exhaust the field of P. For a- will 

only belong to a generation of P if .r can be reached by successive P-steps 

starting from a member of li'P. If some of the families constituting the 

field n! P have no beginning, the members of these families will not belong 

to any generation of P. Such terms together constitute the class 

/>‘U“Pot‘P. 

or />‘(I“Potid‘7>, 

which is the same class. 

Thus the field of P may be divided into two mutually exclusive portion* 

s'gcii‘P and p‘U“Pot‘P. 

The present number begins with some elementary properties of B and 

min,, and max*. We then (*93*2—275) consider such properties of genera¬ 

tions as do not demand any hypothesis as to P. We prove 

*93 25. P . gen‘P e Cls? exc! 

*93*261. P ./>‘CI“Pot‘P = p‘d“Potid‘P.p‘(I“Pot‘PCG'P 
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And we prove (*03474475) that s‘gen‘Pand p‘<I“Pot</> are mutually exclu- 

sive and together constitute C‘P. We then proceed to a set of propositions 

Hr ~'41) d0mand'n» that P should bo one-many or many-one or one-one. 
We prove 

*93-32. h p € l Cls. D : a e gen'P . = .(^T).Te Potid'P . « = T"~B'P 

*93 36. h : P € 1 —> Cls . D . s'gcn'P = P^"~B'P 

*93 381. h P € Cls —> 1 . D : x c p'G"l)ot'li. = . *Pm'x CD 'P.xeC'P 

and various other properties of gen‘P and //CI“Pot‘P when Pe 1 -> Cls. 

The propositions of this number are used throughout the rest of this 

section; they are also used in the cardinal theory of finite and infinite. The 

early propositions, down to *9312 inclusive, are also used in the theory of 
series. 

*93 01. B = &P(xeD'P-G'P) Df 

*93 02. miny, = min (P) = (* f a n C'P - P"a) Df 

*93 021. maxy> = max (P) = min (P) Df 

*93 03. gen'P - in?ni»“a“Potid‘/> Df 

*931. f- : XBP. s . a: e D'P - G'P [*21*3 . (*93 01)] 

*93101. \-.~B'P=D'P-G'P [*931 .*32 18] 

*93102. V:x= B'P. s . a: = 7‘(D‘/> - G(P). =. D'P - CVP cl.xe D‘P - CL‘P 

[*93101 .*53-4] 

*93 103. 1- 7b*P = C'P - G'P 

Bern. 

h . *22-9 . *3316 .DK C'P - G'P = D'P - G'P (1) 

H.(l). *93101 . Dh. Prop 

*93 104. h : xBR . D . ll+'x = i'x . R^'a: = A 

Bern. 

h. *931 . DhHp.D.x £C‘R. 

[*9012] D.xc~R#'x (i) 

K *91-504 

[Transp.*931] D h : a:RR . D . Rpo‘* = A (2) 

h. *91-542. D h : y R*a:. y + a;. D . yRpo* : 

[*3218] D 1-yR*a^.D:y = x.y.yc Rpo'a: (3) 

h.(2).(3). D h Hp . D :yR*ar .D.y=x (4) 

h.(l).(4). DhsHp .D.R#'x=i'x (5) 

K(2).<5). D h. Prop ■ 
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*9311. 

*93111. 

*93112. 

I >em 

*93113. 

*93114. 

*93115 

: .#• niin/. a. = . a-e a CP- P"a ((*<13 02)] 

H . inui/ ‘a = a n C'P - lHta [*93*11 . *32*18] 

H . 7P7' = nun/.<6*</> 

f-. *93*111.3 h . iiim#.<I)</* = D‘7> - P“ 1 >‘7^ 

[*37 25] = D^-CIV' 

(*93101] = 2?»7> 

Similarly h . miiVC^ =7*7' 

K(l).<2). Dh . Pn.p 

—► 
h . mm,.‘a Cart 6“ 7* [*93111] 

w 

I-. max*/. = min (P) [(*93 021)] 

h :max/.a .c.xcan C'P — P'*a [*93*11 114] 

*93 116 h . mux/.‘a -an C'P - 7'“a [*93*115 . *32*18] 
—► « —► —» 

I-. 77*7'™ nmx/.‘(l<7>— maX|.*C'<7** (*93*112 114] 

H . max/.‘a Can C‘7* [*93*116] 

h . 7? 7* = CI‘P - 1>'P = C'P - 1 >‘ 7' [*93* 101*103 . *33*2*21 22] 

V . miii|»*( !<(/[• CP) - 7P7> [*50*5*52 . *93*112] 

K i.T?n,/< I‘7'= <I‘7'- <I‘7>- 

I-. *93*111 . D b . lnin/.,a<7, = <1*7* - P“d‘P 

[*37*36] = (I<7^ - (i<7». D I-. Prop 

i-. min/zcpr = c'p n d'T — a*( t \ p) 

h . *93 1 11 . D K imnr‘<l‘r= C'P n Q'T- P"(S'T 

[*37*32] = C'P n a'T-a'(T\P) . D h . Prop 

H : a € gen‘P . = . (g7) . 7* Poti(P7>. a = mm,,‘CP 7 

[*37*67 . (*<13*03)] 

1- : a € gon<P. s . (g7). 7 c Potid'P. a = Cl<7- (I‘(7| 7J) 

[*93*2*132. *91*27]- 

1-. 77‘7J c gen<7> [*93*2*13 . *91*35] 

!■. GPP — (l'P: e gcn'P [*93*2*131 .*91*351*23] 

*932. 

*9321. 

*9322. 

*93221. 

*93117. 

*93118. I*. mnx/.‘a Can C‘7> 

*9312. 

*9313. 

*93131. 

Dem. 

*93*132. 

Dem. 
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*93-23. b . gen'P = u mint'd" Pot'P 

Bern. 

K *91*23 . *37 22 . D 

b . gen'P = miDj»“a«c<(/ f C'P) w i^fn/.“(I“Pot*P 

[*53-31] = e'mtnya^/ f* C‘P) v miiij»“aMPot‘P 

[*9313] = i<B‘P sj rnni*“(I“Pot‘P 

*93-231. b S,Te Potid'P . £+ 2\ D : a‘SC/,,,a<7'.v . 

Bern. 

b. *91*732.3 

I-:. Hp. D : (giV) : S = ilf | .P | 2". v . 21 = J/ j P | S: 

[•91 *8] 3:(ail/):S=il/|r|P.v.r=iViS|/> 

I-. *34-36 . 3 I-: S- if j 2*jP. D. d‘S C d‘(T \ P) . 

[*37-32] 0 .(l‘SCP"a‘T 

Similarly h:r=jl/|S|P.:>. d'TCP-d'S 

!■. (1) . (2) . (3) .31-. Prop 

(1) 

(2) 

(3) 

*93 24. 1-: S, T « Potid'P . S * T. D . imnr‘Q‘S r> iri^'CP‘ T - A 

Bern. 

I-. *24-3 . 3 1- : d‘S C P"Q‘T. 3 . d'S-P-Q-T- A . 

[*24-34] 3 . Q‘S r\ (l‘T — P‘‘Q‘T — A . 

[*24-34] 3 . (d‘S- P“Cl‘S) « (d‘T - P“d‘T) = A . 

[*93111] 3. imn/a,Snmii)f,a,7’=A (1) 

*■ • w • 3 *■ ■■ a'TCP“a‘S. 3 . min/a'Sn n^n,<a*r= A (2) 

I-. (1). (2). *93-231.31-. Prop 

*93-26. I- . gen‘P t CIs’ excl 

Bern. 

b . *30 37 . Transp . D 

b S, Te Pofcid'P . a = rainp‘Q‘5. £ = min^G'P .a + /3.D: 

S,Te Potid'P .S^=Ti 

[*93’24] D:an/9 = A (1) 

H - (1). *11*11*35-54. D 

b (aS) . S e Potid'P. a = r^np'd'S: (aT) . Te Potid'P. 0 = : 

a^:D.an5 = A (2) 

^ - (2) . *93'2 .Dha^f gen‘P ,a + ^.D.an^= A (3) 

• (3) • *84*1 .Dh. Prop 
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*93 26. h : N. Tt Potid‘7*. TV\ S“VoVP. D . min/d*# a iuin//Cl<7,*= A 
hem 

I-. *01*24 . D I-: Hp. D . 7 V |.s'“ 7J“Potid‘/\ 

[*4311 l.*37'G7] D . (gJ7). T= M\ P S. 

D.fgAt). T- M s p. 

(*34 30.*37*32] D . (VTC P'WS. 

[*24-3] 0 P“(1*S= A . 

[*24 34] D. - P^iVS) r* (Q‘7*-/*“<!*7*) - A . 

[*031 1 1 .*01-27] D . A : D f* . Prop 

*93 261. H . //< |“ Poi*/'» p,Cl“Poiid‘7J. //<l“Pot‘7> C (I4/1 

Dem. 

*■ • *01*23 . D h .<I“Potici‘7>-([“Pot4/' w i‘(V(I f C‘P) 

[*50-5*32] -CI“Pot«/> v PCUP (1) 

H . (I) • *33*14 . DH • />‘(I“|*otwl‘/'-/j'(I“Pot‘7>A C‘P (2) 
h . *40*12 . *01*351 . D K . |»‘C|,iP«t‘7' C <l47' (,*{) 

H.(2).(3).*22621 .DH. Prop 

*93 27. H :./f f’*7'. D : .**~ t j'gcn^. = . .#■«/j<(l*,Pot‘7* 

hern. 

K*40*ll .*10*51 . D 

f- .#•**#€ *‘g»*ii‘7*. 3 : a € gen‘7** .D..,i>v(a: 

[*03-21] s : 7V Polid‘7' . Dr. * <I‘7’- <|‘( T P): 

[*4*53.*.V0J = : Te Potid‘7\ x e < l‘7\ Dr. jfd^ p) (i) 

H . *50-5*52 . Dh z.reCHP. D.xc <!*(/[* C*7J) (2) 

h • (I). (2) • D h :: xeC*P. D •r«w«*gcn*/>. = : 

.r«Cl‘(/r C*P): 7V Potid‘7*..r«(1*7*. Dr.4t <P(2’| 7"): 
[ *91 -371) = : TV Potid‘7>. D r. x e <I* T: 

[*40 41] = :4-€7><<l“Potid<7': 

[*93 261]= : .r c//(J“Pot *P ::Db. Prop 

*93 271. J-. CHP - 4‘geii‘P = //CP'Pot'P 

Dem. 

I- . *5-32. *03-27 . D H : .r € C‘P - s'gcn'P . = .xc C‘P . x epW'Fot'P. 

[*93-261.*4-71] = .xepWPotfP : D h . Prop 

*93 272. h . s‘gcn*P C C*P 

Dem. 

1-. *93-2113 . D H : a c gen‘P . D . (g T).Te Potid lP. a C d'T. 

[*9127] D.aCC'P (1) 

I-. (1). *40151 . D H . Prop 
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*93 273. I-. C‘P-/)‘(I“P0t‘P = s‘gen‘P [*93 271*272 . *24 492] 

*93 274. h . C*P = s'gen'P v/><Q“Pot<P [*24 411 . *93-271*272] 

*93-275. h . s'gen'P n p‘<I“Pot‘P = A [*93 271 . *24 21] 

*93-3. H : P e 1 —> Cls . T c Potid‘P . D . mfni»‘a‘2,= T“13‘p 

Dem. 

H .*71-38 . *93101 . D h : Hp. D . T“li‘P= T“D‘P- r“(I‘P 

[*37-25] 

[*37-33.*91-3] 

[*93*111.*91*27] - mi'n/»‘7,“D‘P (1) 

H .*91-271 .*37-271 . D f-: 7*« Pot'P. D . P“D‘P = Cl‘T (2) 

H . *50-5-51 *59 . D h : T= If C‘P . D . T“D*P = D‘P. 

[*93112] D . imn/.T'D'P =Z?‘p 

[*9313] * nTfny/CPP (3) 

h • (2). (3). *91-23 . Dh:Te PoticPP. D . Jn/^'D'P -■= nmiPCPT1 (4) 
^•(l).(4).DH.Prop 

*9331. hP«l-» Cls . D . P“nrni/.‘a‘r = m?n/a*( Tj P) 

Dem. 
K *71 38 . *93 111 . *37*265 . Z> 

h : Hp . D . P<<nim/><CI‘P = P“(1*T-P“P“Q.‘T 

[*37*32] = d‘(T\P) - P“C1‘(T\ P) 

[*93111 .*34-36] = min/.<a<(7lJ P) : D h . Prop 

H P e 1 Cls . D : a « gen-P. = . (3 T) . Tc Potid‘P. a = ?'“7pp 

098-2-3] 

*9332. 

*93-33. h:Pfl —>Cls.ae gen‘P. 0 . P“a t gen‘/J 

[*93-2-31 .*91-28 281] 

*93 34. (-:P<l-.Cls.3.P“5,‘Pegen‘/> [*93-22-33] 

*93 36. b : P e 1 Cls. a t gen'P. T . Potid'P .O.T“ae gen ‘P 

Dem. 

V • *91-341 . *37*33 - *34 2 . D 

*-:S,Te Potid‘P. a = $*‘S‘P. Z> . e Potid‘P . P“a = {Cnv‘(S| 7*)] “if'P (1) 

*" • (1) - *93-32 . D \-: Hp (1) . P e 1 -► Cls. 3 . 7*“a e gen'P (2) 

h • (2). *10-11-23-35 . *93-32 .31-. Prop 



aW PROLEGOMENA TO CARDINAL ARITHMETIC [PART II 

*93 36. h : P € I -> CIs. D. s‘gen‘P = P*“1i'P 

I)em. 

h . *93-32 . D h :: Hp.D:. 

'/ « ^geii‘7*. = : (3 T). Te PoticPP. y e T“H*P : 

[*37105] = : (3 7». Pe Potid'P . x c 7?P. xfy : 

[*11*55] = U\[.t)ix( li'P u^T). PePotid^.xPy: 

[*4111) = : (gx). x C Z?P . x(*‘Potid‘P) y : 

[*1)1*55] = : <gx)./f 7?P . xP+y : 

[*37*105] s :;/ c P^f7?P ::Dh. Prop 

*9337. >-: /> ff 1 -» Cl*. D . C‘P = P*“7?7' u />‘(I“Pot‘/> [*93*274*3(5] 

*93 38. h Pc 1 -> CIs . D : x <;>‘<I“Pot‘P . = .!*+** C (VP . .r e C‘7J 

Item. 

h . *93*271*3(5. D 

H :: Hp. D i. x * p‘(Vt¥oli P . 2 :x« C‘P .x^e 7y*Z?P: 

(*37 • 103.* 10*51 ] sue C‘7': yP*x • • //~ e 7?P : 

[*!)3 101.*22*848) = s xeCPPiyP^x. Dv. y e (4*7' u - WP: 

| *90*13.*33*16] = ix<LHP : yP+x. D„ . 

y t ((VP v - IVP) n ((VP u l)‘P): 

[*22*69.*24*21] = : * « C‘P: yP*x • Dy. y « <I‘P:: Z> H . Prop 

*93 381. h 7>«Cls—► 1 . D : x€p,dttPottJJ. = . P*‘x C 1>‘P . x € ClP 

*93 382. I*P c 1 1 . D : x e7>‘CI“Pot‘P n ;,‘<I“Pot‘7~. = . 

P^xsj 7V-rC D‘PnG‘P.xcC‘7^ [*93*38*381*261 . *90-31*311] 

*93 4. I-: Pc 1 -* CIs. CPP C D‘P. 3 ! 7?P. Te Potid^ . D . 3 ! liun/a'P 

Vein. 

I-. *93*13 . D h : Hp . Z> . 3 ! ndli/d'a f* C‘P) (1) 

h . *93*113. *33*181 . D h :. Hp . D : min/U'PC D‘P : 

[*37*431] 3 : 3 ! D . g ! P‘Wr‘(I‘2\ 

[*93*31] D.aIm?n/.<a^(7,|7,) (2) 

h. (1). (2). *91*17. DK Prop 

*93 41. h : P € 1 -> CIs. d‘P C D‘P . 3 ! JVP. D . gen‘P e CIs ex3 excl 

[*93*2*4*25 . *84*13 . *24 63] 
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*93 412. h . P‘‘p‘d“Pot‘P C p‘d“Pot‘P 

Deni. 

I-. *93-261.31-. P“p‘d“Pot‘P = P“p‘(I“Potid‘P 

[*40 37] Cp‘P‘“d“Potid‘P 

[*43 411] Cp‘d“|P‘‘Potid‘P 

[*9l-24] Cp‘d“Pot‘P .31-. Prop 

*93 42. h : P « 1 _► CIs . 3 . P“p‘d“Pot‘P =p‘d“Pot‘P 

Dem. 

I-. *93-261.3h .P"p‘d“Pot‘P = P“p‘d“Potid‘P (1) 

- (1) . *72-34 . *91-35 . *10 24.3 

I-: Hp . 3 . P“p‘a“Pot‘/> = p,P“,a“Potid‘7> 

[*43-411] = p‘d‘‘|P“Potid‘P 

[*91-24] -p‘d“Pot‘P: 3 \-. Prop 

*93 431. I- .p‘d“Pot‘P = p‘d“|P"Pot‘P 

Dem. 

h. *91-264-304 . 3 I-. Pot‘P -i‘Pu| P“Pot‘P . 

[*53-14] 3 I- ,p‘d“Pot‘P = Q‘P n p‘d“| P“Pot‘P . 

[*91-271-283.*40 151-23] 3 I-. p‘d“PofP = p‘d“ | P“I>ot‘P . 3 . Prop 

The following propositions, not being needed in subsequent propositions, 

are here inserted without proof, merely for the sake of their intrinsic interest. 

*93 6. 1-:Tt Potid'P. 3 .~PJT-~P«‘T= T\ “Potid'P = | 7'“Potid‘P 

*93-61. 1-: T« Pot‘P. 3 . Pot'TC~P„‘TC Pot‘P 

*93 62. I-: Te Pot‘P. 3 .p‘d“Pot‘T=p‘d“'pu,r~p‘d“Pot‘P 

*93 63. h:S.Te Pot‘P .xSx. 3 . (ay) .y(S\T)x 

*93 64. I-:Se Pot ‘P .xSx. 3 . x e p‘d“Pot‘P 

*93 66. 1-. C‘(P„, A /) C p‘d“Pot‘P 

*93 66. I-: a ! (P,*, A I) . 3 . a ! p‘d“Pot‘P 



*94 OX POWERS OF RELATIVE PRODUCTS 

Sit in out n/ of *94. 

In this number wo shall Ik> chit Hvconcerned with propositions connecting 

p..\v.Ts of R S with powers of X It. If p is a power of R S, S\P<R will be 

a power of X It If r is a power of R S, it is a product of the form 

lR X) (li S) ...Ml X). 

If we transfer the initial R to the end. we get a power of S It Thus the 

is a power of X R. say T. such that 

/' R = R T. 

•re 

If /{«!-» CIs .<!•(/? X) C I)‘R. we find 

R (X /OKX R) ... (X It) R = (R X,j(R S)...(R[S) 

by rearranging and observing that R| It m / f D*R. Thus 

R(' -*c,s• <i‘<it X)c wit.Pt pot• it\s.D.(aV).r* \ws r.p=r\t\ It 

Expressions of the form R T R are constantly needed. They will be 

specially dealt with in *150. and will occur constantly in the sequel. 

The above connections of Pot‘< R j S) and Pot‘(X| R) are embodied in the 

following projjosilions: 

*9414. b. /?“Pot‘(X X)-/f “Pot‘(X|/0 

*94 21. V . Pot*(X /0-(X||/?)“|Pot‘(7?|5)ui‘/| 

*94 31. b : R € I -> CIs. (V(R X) C D‘X.D. Pot‘(X X) - (R\\ R)“?ot‘(S\R) 

From *94 4 to *94-54. the propositions are all concerned with m‘CI“(/?|X) 

am I pH I“(Xj R). We prove 

*945. »-.//< I “Pot‘(X R) = r‘il“R “Pot‘(X|/e) 

*94 51. b : Ii€ I —►CIs. D . ;>‘(I“Pot,(5!/?) = X«p*a<‘Pot<(/J|X) 

Finally we prove (*94-5354) that if either R is one-one and Cl‘(R |X) C D‘R, 

or X is one-one and <I‘(X /OCD‘5, then 7>‘CI‘‘Pot‘(tf|X) is similar to 

y,‘U“Pot‘(XjX). 

The only proposition of this number which is ever subsequently referred 

to is the last, *94 64. which, owing to the fact that the Schroder-Bernstein 

theorem has been already proved (*73-88), is only used in *95-23. But *1)5-23 

itself is never referred to again. The reader may therefore omit the reading 

of the propositions of this number (as also of *1)5) without detriment to the 

understanding of what follows; he should, however, read the summaries. 
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The chief importance of the propositions in the present number is when 

R and 5 fulfil the hypothesis of the Schroder-Bernstein theorem, i.e. 

R, S e 1 -> 1 . d‘R C D‘S . a‘S C D*R. 

In this case, 72 J jS gives what we may call a “reflexion” of into part 

of itself; this part may be again reflected by R J 5 into a part of itself, and so 

on. The terms in D‘R which are eliminated sooner or later by this process of 

reflexion constitute stgent(R | S), since any one reflexion eliminates terms which 

constitute one generation of R S. The terms not eliminated by any number 

of reflexions constitute p'G^Pot^/S | S). These two sets of terms together 

constitute D'(/i | S), i.e. D‘R. In this number and *95 we shall prove that, 

with the Schroder-Bernstein hypothesis, 

9‘gen‘(A | S) sm «‘gen‘(&| R). p‘(J“Pot*(/21 S) 8tnptdiiPoti(S\ R). 

These two propositions together yield a proof of the Schroder-Bernstein 

theorem, in virtue of *93274-'275. This proof is essentially the same as 

Bernstein’s published originally by Borel*. 

The nature of the two proofs of the Schroder-Bernstein theorem, namely 

Zcrmelo’s (that given in *73) and Bernstein’s (that tjo be given in this number 

and *95) will be best apprehended by means of figures. 

In Zermclo’s proof, we first prove that if 72 is one-one, and 0 is a class 

contained in D‘R and containing Cl*R, then 0 is similar both to D‘R and to 

d*R. In the figure, the points of the outer rectangle form D‘R, those of the 

inner rectangle form CPJ2, and those of the outer oval form 0. Thus the shaded 

portion of the figure is 0 — d‘R. We now define a class of classes k by the 

following characteristics: a is a member of k if (1) a is contained in D‘R, 
V/ 

(2) a contains the whole of the shaded area, (3) R“a C a, t.e. if x is a member 

of a, so is any term to which x has the relation R. Our proposition is obtained 

by considering p**, i.e. the area common to all the members of k. We prove 

• Legont tur la tMorie ddet functions (Paris, 1898), Not* I (pp. 102—7). 

V 
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(*7381) that ptK€K. and (*73*811) that /?“/>** docs not contain any of the 

shaded area. In the figure, R“p*k is the smaller oval. We then prove (#73 83) 

that ptie consists entirely of the shaded portion and the smaller oval. Hence 

/i (the larger oval) consists of two mutually exclusive parts, namely p*K and 

<1 ,It — R“p*K, the latter being that part of the inner rectangle which lies 

outside the inner oval. Assuming now that R is one-one, p*/c is similar to 
v v/ 

R“p'«\ hence, adding (\*R - R'^/k, it follows that is similar to and 

therefore to I)‘/(. 

In order to obtain hence tin* Sellr.kler-Bernstein theorem, it is only 

necessary to replace R by R S and by CI‘5. and to assume further that 

S is a one-one whose domain contains (I1/?. Then D*R = S), and wc 

obtain (*73*87) U'.VmiiWR. and therefore D'tfsin D*/?, which was to be 

proved. 

In Bernstein's proof, we have the two relations R and .S' from the beginning. 

In the left-hand part of the figure, the outer rectangle is D*R, which- D*(/i|5), 

the oval is (1*5, and the second rectangle is Q‘(R j S). Thus the points of the 

outer but not the second rectangle form the first generation of RfS. Within 

(1*(/?|5) wc can form a third rectangle, which will be | S), 
i.e. (I*(/f | »S')\ The points belonging to the second rectangle but not to the 

third form the second generation of R\S. We can proceed in this way to 

continually smaller rectangles. The points which sooner or later are left outside 

some rectangle form s‘gen‘( R \ S); those which arc common to all the rectangles 

form />‘G“Pot*(7?| S). A similar analysis, exhibited in the right-hand part of 

the figure, may be applied to D‘S. which is thus divided into 6-‘gen‘(S,| R) 
and p,QitPott{S\R}. We prove in this number (*1)453) that, with a 

hypothesis which is part of the hypothesis of the Schroder-Bernstein 

theorem, />‘d“Pot‘(tf| S)sm;>‘d“Pot‘(S| R)\ in the next number (*9571) 

wc prove that with the hyjiothesis of the Schroder-Bernstein theorem, 

s‘Scn‘(R | <S)sm s‘gen‘(S| R). Hence by addition. D'Rsm D‘S. 



SECTION E] ON POWERS OF RELATIVE PRODUCTS 591 

*9412. h : P e Pot‘(P | S) . 3 . (aP) . Te Pot‘(S| P) . P | P = R | T 
Dem. 

h.*34-21. 3K(PjS)|P = P|(S|P) (1) 

t-. *91-36 . *34-27.3h:Te Pot‘(S I R) . P | R = R | T. 3 . 

r|S|«ePot‘(S|-R)-P|i£|S'|Ji=ii|r|s,ie. 
[*10-24] 3.(ar).7’',rPot‘(1S|P).P|P|,S|P = .R|Z'' (2) 

h • (2) • *1011-23 .31-: (aP) . Te Pot‘(S | R). P \ R = R\T.>. 

(^T-).T' ePot\S\R).P\R\S\R~R\T (3) 
H. (1). (3). *91-171.3 K Prop 

*9413. I- : Te Pot ‘(S | P>. 3 . (aP) . P e Pot ‘(R \S).P\R=RlT 

[Proof as in *94-12] 

*94 14. h . | P‘‘Pot‘(P | S) - R | “Pot‘(S | R) 

Dem. 

V . *9412 . *43111 1 . *37 1 . 3 I- : Pe Pof(P | S) . 3 . | R‘Pe R |“Pot‘(S| R) ■ 

[*37-61] 3 h . | P“Pot‘(P | S)C P|“Pot‘(S| P) (1) 

I-.*9413. *4311 101 .*371.3 

\--.Te Pot ‘(S | P) . 3 . R\‘Te\ P“Pot‘(P \ S) : 

[*37-61] 3h.P|“Pot‘(S| fi)CIP“Pot‘(«|S) (2) 

*" • (1). (2) .3K Prop 

*94-2. h : P e Pot‘(P | S) v t‘/. 3 . £>’| P | P e Pot‘(S | R) 

Dem. 

. *34-21 . 3 h . S | (P | g) | P = (S | Rf. 

[*91-352] 3KS|(P|S)|PePot‘<.S|P) 
h-*34-21 .*91-282.3 

l-:S|P|PePot‘(S|P).D.S|(P|P|S)|/j = (S|P|P)|5|P. 

(S|P|P)|S|PePot'(S|P) 

K(l). (2). *91-171 l-fiePot,(-S'|g) D 
<pb 

'-■■PePot‘(R\S).O.S\P\RePot‘{S\R) 
h • *504 . *91-351 . 3 I-. s 111 P e Pot‘(S | P) 
•-•(3). (4). DP. Prop 

(1) 

(2) 

(3) 
(4) 

*94-201. I-: Te Pot*(S| P) . 3 . (aP) .Pe Pof(P | S) w PI. T = S\P | P 

Dem. 

h • *50'4 - *51-16 . 3h.P|P = S|/|P. Ie Pot‘(P | S) w PI. 

[*1024] 3h .(aP).P«Pot‘(P|S)wt‘/ ,S\R = S\P\R (1) 

H.*91-282.*34-21.3(-:PePot‘(P|P).r = S|P|P.3. 

r P|P|S«Pot‘(P|S).r|S|P = P|(P| P|S)|«. 

L*10'24] 3-(aC)-0«Pot‘(P|S).r|p|p = s|(?|p (2) 
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K *304. *3421 . D 

b : P = 7 . I = S P | /.'. D . T | S! R = N | (It S) \ R . 

[*0I35I] :>• (a<?>• Q€ P-*‘<#15). 2*151 7?«.S'\Q\R (3) 

V . (2) .13). *10 11 23 . D h : <aP>. P < Pot *(R \ S) o PI . 7* = £» j P | /?. D . 

WJ). Q< Pol‘(R | .S'). T\S\R = S\Q\R. 

[*22-58] D . (aV). <?c Pot‘< P | .S') u ,‘7.7*1 .S | 7? = S\Q I R (4) 

h. (I). (4). *01171 ' *n ' 1 1 . D h. Prop 
l . <pi 

*9421. b. Pot‘(S| /0 = (.S'H rt>“;Pot‘</?|.S->ui‘/; 

l)em. 

H. *04 2. *43 112. *37 61 . D h . (N fl)";Pot‘(7e | tf) u i‘/| C Pot‘(S | R) (1) 

K *04 201 . *43*102 . *37 1 . D I-. Pot‘(.V| R)C{S 7f)“|Pot‘(77 | S) v <‘/| (*2) 

H . (I). (2). D H . Prop 

*94 22 h :. (I'/t C D*5. v . D‘S C (t‘R : D . 

Pot‘(5| ff)-{Si 70“P»tirl'<ft|£) 
Dan. 

H . *1)4-21 . *43" 112. *50 4. *5331 . D 

I-. Pot‘(»s*| R)m{S\ 70“P»t‘(R\8)v #<(,s'| /o (1) 

H . *37-321 . D b : l\‘R C l)‘£’. D . l)‘7f - l)-(/71S). 

[*33101] D.D'R CC‘{R\S). 

[*50-63] D. 7 |* C‘< R | 6') | 77 = 77. 

[*34-23] D . .S' | 7 r CU(R | 8)\R-S\R. 

[♦43112] D.<3|| 70‘/ r^(^|5)-5|7? (2) 

Similarly H : DSSC (W7 .0.(8 R)11 |* C\R\S) = S\R (3) 

K.(!).(2).(3).D 

b : Hp. D . Vol\S\ R) = <S j! 77>“Pot‘(77 | S)«P(S|| 7?)*/ |* C‘(77 18) 

[*01*23] =(S|| 77)“Potid‘(/218): 0 I-. Prop 

*94 3. b R e 1 -> CIs. (T‘(77 | 8) C D‘77. D : 

P € Pot‘(7? IS). = . (a 7'). 7'€ Pot‘(S1 70. P = RI 2' | 77 

Dcm. 

b .*04*12. Dh:7,£pot‘(72|S).D.(a7T).7,£Pot-(5|7?).P|7r|^=7?|7’|^ (D 

I-. *01-271 . D h Hp. D : P £ ?ot<(R |S). D. d‘7> C D‘77. 

[*72G] D.7j|7?|tJ = P (2) 

H.(l).(2). DH:. Hp. D: P £ Pot‘(721 S'). D. 

(g 7'). Te Pot*(S\R).P = R\T\R (3) 

h.*0413. DI-: T’fPot'O&l!*).:>. 

(3P). P £ Pot‘(P | S). P | R | R = 771 T| R (4) 
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I-. (2) . (4) . D h Hp. D : 3T<= Pot‘(<S| R) . D . 

(a^) • P « Pot‘(R |S).P=«| T\ii. 

[*13195] D.«|r|ieePot‘(«|5): 

[*13'12] D : Tt Pot‘(S\R). P-R\T\R . D . Pt Pot‘(if | S) (5) 
H.(5).*1011-21-23.D 

I- Hp . D : (^T) . Tt Pot ‘(S \ R) . P - «j T\ R .3 . P t Pot ‘(R \ S) <(j) 
K(3).(6).3K Prop 

*94-31. I- : R e 1 -* CIs . CI\R \ S) C D‘ft . 3 . Pot‘(/e | S) - (R || ,R)“Pot‘(S| R) 
[*94-3] 

The following series of propositions lead up to the proof that when 
« e 1 -+ 1 . a‘<« | S) C D‘R, or St 1 -» 1. d‘(S\R) C D‘S, we have 

p‘d“Pot‘(R | S)sm p‘d“Pot‘(S | fl). 

*94 4. I- .p‘d“Pof(R | S) -p‘(F“| S“| Jl“Pot‘(« | S) 

~p‘S‘“CI“| «“Pot‘(/f | S) 

= p,S‘“R“,d“Po\.\R | S) 
Dem. 

K *93-431. Dh.p'd* ‘Pot‘(/i 18) - P‘d“ |(fi| S)“Pot‘(R IS) 
[*43 201.*37-33] -p‘d“\S“\R“Pot\R\S) (1) 
[*43-411] -p‘*'“‘a“|/e“Pot‘(«iS) (2) 

[*43-411J - p‘S“‘R‘“(l“Pot‘(R | S) (3) 
H . (1) . (2) . (3) . D h . Prop 

*94*401. h ./>«a«Pot*(/e 16') = p‘ci“/f |«s|“pot«(/2 | sy 

Dem. 

K *93431 .*91*304.3 

\-.p‘<l“Pot‘(R I S) = I S)\“Pot‘(R I S) 

[*43*2.*37*33] = p‘(I“/e |“6'| “Pot‘(7i I .S’) . D h . Prop 

*94-402. h . p*(l“R | C 

Dem. 
I- . *4311 . *34 36 .DK (i>). (I‘/e | *P C d‘iJ 

h.(l). *40-451. D h . Prop 

*94-41. \-:Se 1 —> CIs . d‘(S| 72) C D‘S . D . 

S“p‘d“Pot‘(7* | = />‘d“| R“Pot‘(R | £) 
Dem. 

h .*4012 . *91-351 . D 1- .p‘d" \ R“Po\.‘(R | S) C d‘| | S) 
[*43-111] Ca<(*|S|^) 

[*34-36] C d‘(S | R) 
R«CW 1 38 

a) 
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K(l).DP:Hp.D. p1 <I“ | 7?“Pot‘< 77 | S) C IPS. 

[*72 502] 3 ./>‘< 1“| 77“Pot4<R\ S) - S“S‘y<l“[ 7744Pot4(77 | S) 

[*72-34] = S4yS“4(l“| 774‘P..t4(77IS) 

I*94'4! = S4y<T“Pot4(77 I S): 3 h . Prop 

*94 42 K : 77 * 1 —►CIs. 3 . 774yCl“P..t‘< R | .s') = ya“| 7744Pot4(77 j .S') 

I Jem. 

H . *72*34.31-: Hp. 3 . 774y<l“P«>t4</7 | R)-j)‘R‘“(l“Pot‘(R \ S) 

I*4'*'4' J J -//U“|77“Pot4(/7|S):3 h . Prop 

<94 43. b : 77. N* 1 ->Cls.<|‘(S| R) CD'S. 

S'yCP'Pot4!77 I ,S') = 774yU44Pot‘(77 |S) [*!)4-41 42] 

*94 441 K:S« I -*C|s.(I‘<S| 77)C1PS.3. 

.s,4y(|“Poi‘(/r^ = //(I“^|“Pot4(.s'| R) [*9414 41] 

*94442. b : Rt 1 ->Cls. 3 . 774y<l“Pot4<77 | S) = />‘< 14477 |‘4Pot4(S| R) 

[ *94 14-42] 

*94 5 K/>‘U“Pot4<S| 77) -/i4<I“77|“Pot4(S| 77) 

Dan. 

h.*94402.3h .;/(l“77|“Pot‘(6*|77)C/>4a“Pol4(S| 77) (1) 

1-. *94-402.31-. />*< I“S|“77144 Pot4(S | 77) C/>4([“7? |“Pot4(S| 77). 

[*94 401) 3 b ./>4(J“Pol*(S| 77) C;>*<!“77 |“Pot*(5| 77) (2) 
b .(1).(2). 3 1-. Prop 

*94 51 1-: 77e 1 ->Cb. 3./>4<I“Pot4(S| 77)= 774y(I“Pot4(7?1 S) 

[♦94.V442] 

*94 52. b:S*\-* CIs. U4(S | 77) C IPS. 3 . 

7>‘<I"Pot‘(S| 77) = S4ya“Pot4(7? | S) [*94-5-441] 

*94 53. H : 77 « 1 —* 1. <I4(77 | S) C IP77.3 . 

/>‘<I“Pot‘(77 | S) sm yj4U“Pot4(S | 77) 
Dent. 

h . *93 2G1.3 b . p4(ll4Pot*(7? | S) C U‘(77 | S) (1) 

b . (1). 3 b : Hp. 3 . y>4Cl44Pot4(771S) C IP 77 (2) 

b . (2). *94-51 . *73-21.3 b . Prop 

*94 64. b:Se 1 -»1 . CI4(S| 7?) C IPS. 3.//a44Pot4(77|S) smy>‘<J“Pot‘(S | 77) 

*94-53 
...S/71 

77. Si 

[Or. *94-52 . *93 2(>1 . *73 22] 
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r s.^i 
' R,S,M\ 

*946. I-R | S = S \ R . 3 M e Pot ‘R . V e Pot‘5 .^.M\N = N\M 
Dem. 

(-. *34-27-28 (1) 

H • (1) • *91171J,/| S = fM. 3 
<pj\I 

h Hp . M e Pot‘R .0 : AI\S = S \ AI: (2) 

D : N f Pot‘S. 3 . AI\N= N \Af:. 3 I-. Prop 

*94 61. t-:.iJ|S = S|7f.D:J»/(Pot‘^.3.Jl/|Spo = SI„M/: 

Dem XePot‘S.O.N\R„-ltpo\ir 

f-. *43 42 . 3 (-. At | S,„ = i‘M | “Pot‘S (i) 

K . (1) .*94-6.3 I-: Hp. Me Pot‘12.3 . M\ S|K, = i‘| M“Pot‘S 

t*43’421] ~SW\M (2) 

h‘(2>sri- ^ • Hp . Nc Pot‘S. 3 . Ar112,„ = Rllo | iV (3) 

h . <2). (3) . 3h. Prop 

*9462. l-:ie|S = S|ie.3.72po|SI>0 = Spo|^ 

Dem. 

I-. *43-42. *94-61.3 h : Hp. 3 . R„ | S„ -i‘| R^-PotfS 

[*43-421] — Spo | R,„: 3 I-. Prop 

*9463. h:ii|S = S|/e.3.(«|S)w)Gfi1K>|SI10 

Dem. 

f-.*91-502. 3K.ft|,SG.RMO|.Spo (i) 

K*94-61. 3 h : Hp . Af G R^ | Sp. .O.Af\R\SC | R | S,,0 | SJ 

t*91'6”] G R„IS,„ (2) 

h - (1) • (2) . *91171.3 h Hp. 3 : Afe Pot‘(R | S) . 3 . Af G R,„ | S,„ : 

[*41161] 3 : (R | S)„ G Jt„ | SM3 h . Prop 

*9464. K.3.(/J|S)»Gif»|S» 

Dem. 

*" • *34-36 . 3 I-. D\R \ S) C D‘R . d‘(S | R) C (l‘R. 
[*33-16] 3 h : Hp. 3 . C‘( R\S)C C‘R (1) 

Similarly I-: Hp . 3. C‘(R | S) C C‘S (2) 

h - (1) - (2). *50-6 . *35-31.3 h : Hp . 3.1 f- C\R \ S) G /f C‘R | /(• C‘S (3) 

4 ■ (3) • *94-63 . *91 -54. 3 1-. Prop 

38—2 



*95. ON THE EQUI-FACTOR RELATION 

Siininwry nj 

The purpose of this iiiiinhi-r may be explained as follows. Consider the 

scries of relation*. 

it, p\n\Q, in\n v. r\i<\Q\...\ 

it is required to find a means of defining this scries without the use of numbers. 

If we u*ed numbers, and had f lu* definition given later (*301 > of P*. where v is 

any finite integer, the general term of the series would be P¥ , I{ | (f. But we 

have not yet defined numbers, and we therefore desire some means, not 

involving numbers, ot expicssitig what is intended when we say that, in 

a given term of the series, the same power of P and of (} is to be involved. 

This we do as follows. I’sing the definition of /'||y in *43, we have 

/,;i R\Q*-ii"'-W*R.!»\K\Q--U’iQrR.... 

Tims the general term ol our series is got by taking any power 6’ ol 

(/')! V). and forming *N‘It. The whole of the terms of the series are therefore 

constituted by the terms which have to It the relation (/' (})+•, i.e. they are 

|sg‘( /'(|For eonvenience of notation we put* 

Thus the class of relations we wish to consider is (P+Qflt. 

To illustrate the nature of (/**V),/f, suppose If is the relation • first 

cousin," while P is the relation of child to parent and (J is the relation ol 

parent to child. Then P\li\(J is the relation “second cousin," P:\li\Q: 
is the relation “third cousin, and so on. Thus (P+Qyli is the class of all 

relations of consulship which do not involve a difference of generation; and 

".#• \v‘( P*Q)‘li\ y will mean "x is a cousin of y in the same generation." 

Most of the propositions in this number are inserted because they are 

required in the proof of *95*52, which states that, under suitable circum¬ 

stances. s\P*QYR « l —> 1. This proposition itself is proved mainly because 

it is required in the proof of *!).V63, which states that, if P, Q arc one-one s 

each of which has its converse domain contained in its domain, and if the 

first generation of P is similar to the first generation of Q. then the sum 

of the generations of P is similar to the sum of the generations of Q. This 

leads immediately to a proposition (*!)5'71) which is half of the Sehroder- 

Bcrnstein theorem (the other half being *94*53 or *1)4*54), namely: “II 

• Thin notation is used in the present number only. In •257, we tfhall introduce a different 

and wholly unconnected meaning for (/'• V)- A temporary definition is indicated by the letters 

••Dft'* followed by a reference in square brackets to tho number or numbers in which the 

definition is used. 
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R and S are one-one’s each of which has its converse domain contained in the 

domain of the other, then the sum of the generations of 72 | .S is similar to 

the sum of the generations of R.” 

*9501. (i-**(3) = sg‘((P|ie)*! Dft[*!)5] 

*951. h :: M e (P*Q)‘R . = :.«< M: Ar c p . Ok . P| zV| Q « /t: . M e ^ 

Dem. 

.*32 18 .(*95 01). D 

h :: Me(P*Q)‘R . = :. M {P\\ Q)*R :. 

L*9011] =:.^eC‘(P||Q):. N * ,x. T(P\\Q)N. 0„ T. Tcp: 

R e ft i • M e ft:. 

[*43-302102] a z.iVeft. T-P\N[Q. DrA.. Te ft: Re ft: DM . Me ft:. 

1*13191] ■ :. N e ft. D.v. -P| ^ : R e ft: . M e ft:: Dh. Prop 

*95 11. h:.cf>R: <f>N . D v • 0 (P|*V| Q): D : 31 e (P*Q)*R . D.v . </>,!/ 

Dem. 

K.951^>.D 

h :: il/€ (7>*Q)‘72 .0 :.<fiR: <fiiV. D v. <f> (P\N\(?) .O . <*>,1/ (I) 

1-. (1). Comm . *10*11*21 . D 1- . Prop 

*95 12. h :. #e(p*g)'/i . D3/. <*> (P|i»/| (?) : D : 2\r * (P*Q)‘R - P72 . D.v . </,Ar 

Devi. 

H. *43112. D 

h :. Hp . = : A/«(7J*(?)‘/2 . D.„ . <f> |(P\\QY3f) : 

[*37*03] s : Ar€(7'||(?)“(P*(?)‘/e . Ox.<f>N (1) 

h .*90311 7 3 
it 

h : N€(P*Q)*R-i‘R.D.Ne(P I! Q)“{P*QyR (2) 

h . (1) . (2) .DK Prop 

*9513. h . ft € (P*Q)*R [*951J 

*95131. b.P\R\Qe(P*Q)‘R 

Dem. 

H.*90151^P.DI-:S(P||0)ft.D.S(P|IQ)ll,ft (1) 
It 

h . (1) . *43*102 . (*95 01) . D h . Prop 

*95132. Me (P*Q)‘R .D.P\M\Qe (P+Q)*R 

[*90-172 ® . *431021 
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*95 14 H 077: .V, < P*Q)‘li. <*>.V. D v. 0< P\X\tj): D: .l/c<P*<?)‘/7. D,,. <f>M 

Dew. 

h.*0.V|3132.DI-:. Hp.D: 

0/7. /; f ( : .V < i P+<p*R . 0.V. D.v • 7»| iV| (JtilWH .<f>(P\N\Q): 
| *05 11) D : .1/ c (7'*<7>‘7?. D v. M t \ P*Q)*R. 0.1/ D h . Prop 

Tin* »>•• of *05*11 in the Iasi line «»f the above proof proceeds by sub¬ 

stituting .1/ € (P*(p*R • 0-17 for 0.1/. 

*95 21. h:.l/«</'*<?»•//.D-igS 7>.N« \\>t*Psj'*I. T* WtUJv i*f ,M=S\R\T 

Dem. 
K*50 4.Dh. 77 = /|77|7. 

|*5l*Ili] D H . (;.|N. T). Nt Pot*P » i*1 . Te Pot4V ^ f*/. 77 - N|72| T < 1) 

H . *n I 36*351 . *50 4. *34 27 2s. D 

H :.Sc Pot47* vi*/ . 7’c Pm4y * i4/. J/- S| 7?| 7\ D . 

7,|N€ Pot4/'*#4/. r|V# Pot4(fvi4/.7^.»/|y-(7,|5)|7J|(7,|Vi. 

|*ll■:wp.<a.S\7,‘,).N,tPoi47,ui47.rcPoi4Vui4/. /'|J/|V-S‘|7i|T (2) 

h.<2).*ll IP35.D 

h : (5|.S. 7’). S« Pot4 7' ui‘/.7’< Pot4V w‘/..l/ = N| 771 7’. D. 

(gS. '7’). .V c Pot4Pm Pi. Tt Pot4y v i4/ . P\ .1/1Q - N| 7717’ < 3 > 

l-.<l).(3).*05*ll . D h . Prop 

*95 211. h : < 1*77 C ("V • .V t <7'*V)477 . D . 

<gS. '7b. St Pot4P sj i*I m 7’* Poti.l4^. ,1/ - S| 77| 7’ 

Dem. 

H . *50 02 4 . D h lip . D : »S': R / [C*Q = S| 77| / : 

[*51*230.*01*23] D : u[S. T). Sc Pot47'w47. T’cPotkPQ. il/=S|77| 7\ =. 

(gS. 7'). .V c Pot4Pm PI. Te Pot*y v / * /. ;l/=S177, T: 

[*05*21] D : <gS. Tt. g«Pot4/>vf4/. 5T«Potid‘Q. A/ = S | 7717’ 

D h . Prop 

*95 212. h : I >4 77 C C*P. 5/ € (7,*<7>l77. D . 

<gS. y). S€ potid‘7*. Tc Pot4V. /*/ . M = S\R\T 
[Proof as in *05*211] 

*95 22. h : 1 >*/7 C C*P. <1*77 C Oy. M c (7^*Q)‘77. Z>. 

(gS. 7*).Sc Potid47>. TePotid4Q . M = S\R\T 
[Proof as in *05 211] 

*96 221. h-.Tt Pot*Q. D . (gS). S c Pot4P. S17712*e(P*Q)*R 

Dem. 
h . *05131 . *01*351 . D 1. <gS)-SePot'P. S| 77|Qe(P*Q)‘R (1) 

h . *05*132 . D 
h : S c Pot4 P. rc Pot4Q. S1771 Fc (P*(^)477 . D.P\S\R\T\Qe (P*Q)‘R • 

[*01*30] 3 • (3-$*) - S' ^ Pot4P. S' | R | T| Q e (P*Q)‘R (2) 

h . (1). (2). *01*373. D 1. Prop 
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*95*222. h :ScPot*P. D .(gP). TePot'Q .S\R \ Tc(P*Q)(R 
[Proof as in *95-221] 

*95 23. h : M € (P*Q)‘R . D . Af (Prt j Q,,) R 

Dem. 

f- . *3218 . (*95 01) . D h : Hp . D . M |(P|| Q)*} R . 

[*43-202] D.j»/{(P|)|(|C))*fi. 

[*43-202.*9464] D . ,1/ |(P j)* | (| Q)*] R . 

[(*910102)] D . J1/(P,t | <?„) U.Dh. Prop 

*95 24. H : J/ c (7>*Q)‘P . D . jl/ (Qts P.t) P [Proof as in *95-23] 

*95 3. K a ! R . d‘Q C D‘Q . G‘P C . D: P« Potid'Q . D . 3 ! P | 7 

Dem. 

K *50-62. D I- : Hp . D . 1 /(" = R . 

[*1312] D.alieK/rO-Q) (1) 

I-. *91-27 . *33 181.3h:.Hp.r( Potid'Q . O : Q‘TC D‘Q : 
[*34--35] D:a!r.D.a!(r|Q) (2) 

1- • (1) . (2) . *91-371 . D I-. Prop 

*95 301. I-:. a ! R . D‘P CO'P.D'fiC <J‘P .D:Se Potid'P . D . a ! 51R 

[Proof as in *95-3] 

*95 302. I- :. CI‘Q C D‘Q . (I‘R C D‘Q . D : 7’e Potid‘Q . D . d‘(/e | T) C I)‘Q 
Dem. 

H . *91-271 . *34-36 . D b : T c Potid€Q. D . G‘(P | T) C G‘Q (1) 

f-. (1). *22-44. Dh. Prop 

*96-303. f- D‘P C Cl ‘P . D‘P C CI‘P .D:3« Potid‘7J. 3 . D‘(S| P) C G‘P 

[Proof as in *95-302] 

*96 304. h G‘Q C D‘£ . CI‘P C D‘Q. D‘P C d‘P. D‘P C d‘P. D : 

Sc Potid‘P . Pe Potid‘Q . D . D‘(S| P| T) C G‘P . G‘(P| P| P) C D‘Q 

[*95-302-303 . *34 36] 

*96 305. I-Hp *95 304 . D : M c (P*Q)‘R . 3 - T)‘M C G‘P. (I*M C D'Q 

[*95-304-22] 

*96 31. h Hp *95-304 . g ! P . D : P € Potid'P . P c Potid'Q. D . g ! S\R | P 

Dem. 
y . *92142 143 . D h Hp .DzSe Potid *P . Tc Potid'Q . D . 

D‘P C a‘S. a*P C D*P. 

[*34-361] D.g!P|P|P:.DK Prop 

*95 32. h s. Hp *95*31 . D : Mc(P*Q)‘R . D . g ! 3/ [*95 31 22] 

*96 33. h : a*/e C . D . d‘(S |ii|r)C T“~B‘Q 
Dem. 

I-. *34-36.3 h : Hp. D . d‘(S | R) C 

[*37-32-2] D . d‘(S I R | r> c T“~B‘Q :DK Prop 
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*9534 H : (I'R . McUWjyR. D . i^T). T, YoluYQ Al*MCT“B‘Q 
[*95-33 2II) 

*95 35 H: <J( I -*r|s.<l‘/fC/i‘<j. D.(Ha).a*gcn‘(?.Cl‘iVCa 

[*95 3+. *93-32) 

*95 351. I ->CU. O-// C 7/‘y. 3 : 

y. r«YoiWQ .auvts\K\ n a < i‘(N' | /? | n. d . r = r 
I bin. 

h . *95*33. D hHp.D: 

7\ 7’ * Poli«Ptf. 3 ! /,' I AMI'IS* I /7 I D. D. 3 ! r"/?Qn . 

|*93-3) D.fl!milled*To minv*CI‘3T' • 

|*!»3 24.Tmns1>) D. 7’= T D I-. Prop 

*95 352 h :./*•('Is—* 1 . L>*/f C /**/'. D: 

.S', .S'1 PoticP/'. ! I >*(N| /?I /•) A 1 >‘(5' I /f I 7"). D . S■ *s" 

[ 'Proof :i> iii *95 351 ] 

-9536 I-:. V* I •"♦Cls.U‘/^c7?V.<|! /M>‘/fC<l‘/\ 
1)*/^ C < l‘/>. < C ]YQ : 

S. S' < INitiipy*. T. T* Poti«PQ. .S'l K\ T-S | K \ T. D . T - T' 

I bin. 

h .*‘13-31 . *93‘101 . D 1-Hp. D : 

n. .s'f i»»ti.i‘7'. r. r * Poti«i«v. s| /*I '/•- n#| /?| r. d . 
UlS\H\r.S\R\T-S'\K\r. 

1*22 24] D. g ! <I‘(S| /f | T>« U«<S'| /f | 7”). 

I] D.r-r :.DKl«rop 

*96-361. 4 1.l>‘/f C«i/\ >|! «. 1>‘/'CCI«/'. 

a*«CD‘Q.a‘QCD‘Q.3: 

.s-, .s-1 Potw/'. 7'. r (i>oi i.py. si«i r- .s-17f | r. d . s - 5' 
[Proof ns in *95*36] 

*95-37. }■:./*€ CIs —* 1. « l —> CIs. D‘7? C 7?7~. CI‘7? C/?‘Q. 3 ! R 
D'/'Ca'i’.d^CD^.^: 

,s. .s-«PotiH •/*. r, r (p..tid‘<?. s\r\ •/'= .s-1«i r .o.s-s’.t-t- 

(*!I5-36'361 ] 

*95-38. 4 :■ 3 «<1‘« • 3 : 71* Poftf. 3 . K | 7’+ H 

I-. *91-271.34: T( Pot ‘Q .O.a\RT)C (I ‘Q. 

[*93101] D.ai(«|7)nS:Q = A (1) 

4. *24 54. 34: Hp. D . ~ JCI‘71 n~B‘Q = Aj <2> 

4. (1). (2). *1314. D 4. Prop 
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*95*381. h a ! P‘P n D‘P . D:5e Pot‘P . D . 6* | P * P 

[Proof as in **>5*38] 

*95*382. h a !i?‘P ^ D‘P . v . a ! 2**Q n d‘P : D : 

5c Pot/P . Pc Pot‘Q . D . 5 \ R | P* R 
Dem. 

V . *91*271 . *93*101 . D h : Pc Pot‘Q. D . Cl‘<51 R | T) * ~B‘Q = A (1) 

H . *24*54 . D h : a !~B*Q * d‘P . D . ~ |d‘P cT5‘Q = A) (2) 

I- . (1) . (2) . *13*14 . D h a ! P*Q " d‘P . D : 7’c Pot‘Q. D.5| R\ T+R (3) 

K . *01-271 . *9312 . D h : 5c Pot‘P . D . D‘(5| P | P) n P‘P- A (4) 

h . *24*54 . Dhrg! P‘P r. D‘P . D . ~ {D‘P P‘P - A j (5) 

H . (4). (5) . *13*14. D h :. a D‘R . D : 5c Pot‘P. p .5| P| P* P (6) 

K(3).(0).Dh. Prop 

*95 383. h a 8 R : D‘P C ~B‘P. v . d‘ R CB*Q : D : 

5 c Pot‘P . Pc Pot ‘Q . I> . 51 P | P+ P [*95*382 . *33*24 . *22*621] 

*95 4. h : 3/ c (P+Q)‘R . 5c Pot‘P. 7’c Pot‘£ . 51 R \ Te(P*Q)‘R . D . 

5|3/| Tc(P*Q)‘R 
Dem. 

h.Simp. Dh: Hp.D.5| P| Pe(/'*Q)‘P (1) 

I- .*91*34.*95*132. D 

h : Hp . 5| 71/1 7’c <7'*g>‘P . D . 5| P| A/\Q\T-P\S\M \T\Q. 

P\S\3f\T\Qe(P*Q)*R. 

[*13*13] D.S\(P\M\Q)\Pc(P*Q)‘P (2) 

K (1). (2). *95*14. DH. Prop 

*95*41. h.Pf Cls —* 1 . (£ c 1 —* CIs . D‘P C d‘P. C VQ CD'Q.D: 

5,5" c Potid'P . T, T c Potid'Q . D . 51515' | Ar | T'\T\T *= S' \ N \T 

[*92*15*151] 

*95*411. Hp *95*41 . D‘P C C‘P . d‘P CC'Q.D: 

5e Potid'P . Pc Potid'Q . 3f c (P*Q)‘R. D . 71/ -5| 5| M \ T\T 

[*95*41*22] 

*96*42. h :. Hp *95*411 . D : 3/ c (P*Q)‘R - i‘R . O . P\M\Q e (P*Q)‘P 

Dem. 

h . *95*411 . *91*351*281 . D 

h s. Hp. D s M c(P*Q)‘P-D-P |(P I M\Q) | Qe(P*Q)‘R 

h. (1). *95*12.3 h. Prop 

(1) 
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*95 43 I- Hp*93411 . Hp*9.V3s2 . D : .Se Potid4A . Te Potid4// . 

A S\n T;Qc{P*Q)tK.O.S\R\T€(P»Q)tR 

Den*. 
K . *!I.V4*> :m-2 . *91*2*3. D b lip. D : St Potid4 A. Tt Potid4/?. 

ASIA T\f?c(AU?)'A.D.A|A|S,Jt T\U\Q€KP^R (D 

h . *93-41 . D h Up. D Potid4 A. 7'e Potid4/? . D . 

A | A| £ | A| 7’| <?I ^ = A | A | 7* (2) 

I- Dh . Prop 

♦95 431. H : Hp *95-43..S\ Potid4 A. T< Potid4 (J. M c(P*(J)‘Ii. 

P\S\M\T\Qc( A*/?)4 A . D . S |-1/| 7'e/ A*<?)‘ A’ 

Dew. 

V . *95*22 . D K : Hp. D . t;.|£\ D. N < Pot id4 A. T't Potid4/?. .1/ = S' | A | T. 

/*181.1/1 T\Qt(P*<}yli. 

| ♦91*341 ] D . (y.V. D. 6% Potid4 A. r# Potid4/? - J/ - 5' | A | T . 

.s’ | S' t Potid4 A. 7M 7'e Pot id* V. A l A | S' | A | T | T\Qt{P*QYR. 

|*93 43) D . C4.S-. 7*'). .S"« Potid4A. 7’’« Potid4/?. M - .S’ | A | 7” . 

.s’ | N A | 7” | 7*c( A*/?)‘A. 

|*13I93) D.S| J/| 7,t(A*V)4A:DK Prop 

*95 44. 1- lip♦95*43. *s’« Potid4/*. Tt Potid4/?. D: 

.1/ € (A*<?)4 A. N| .1/1 Tt (A*/?)• A. D. .s’ | A | 7’«( A*/?)4A 

Item. 

h . Id . D H :: 4>M. s.w :.s'| .1/ |A<t A*/?)4 A. D. S| A| 7,< (A*/?)4 A:. D. 0 A (1) 

H .*95*431 .*91*3.3 

I-Hp. D ::S| P\M\Q\ Tt(P*Q)‘ll. D .s’| M \ 7’e/A*/?)4 A 

|*2 27) D .s’| 4/1 7’«<A*/?)4 A. D. 6'| A| T’e/A*/?)4/* : D . 

6’| A 7\(A*/?)4A (2) 

h . (2). Comm . D 

h :: Hp . D A | M I 7’e (A*/?)4 A. D . S\ A 17'c(A*/?)4 A : => : 

Si (A J/ Q)|7,€(A*/?)4A.D.£ A | 7’e (A*/?)4A (3) 

H .(3). D I- s. Hp. Hp(l). D s 4>M. D. <f> (A |.l/1 /?) (4) 

h . (1). (4). *9514 . D b : Hp . Hp( 1). M €(A*/?)4A . D . 0-1/ : D H . Prop 

*95 45. h Hp *95 43. S. S’ e Potid4 A. T. Tt Potid4/?. 

S | S' | A | T | T c (A*/?)4 A. D: S | A | 7’e (A*/?)4 A. = . S' | A | Tt (A*/?)4 A 

Dem. 

h . *95 44.D h: Hp.tf| A| T't(P*<2yR. D . S; A j Act A*/?)4 A (1) 

K . ♦91*34. D h Hp. D: S' |S| A; T\ T t (A*/?)4 A: 

[*95 44] 3 : S| A | Te(P*QyR. 3 . S' \ A) (A*Q)4A (2) 

I- .(1).(2). 3 t- ■ 
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*9546. 

Devi. 

I-Hp *95-41 . g ! R . D ‘R C B‘P . Q‘R CB‘Q . 3 : 

Te Pot‘Q . 3 . R | T~ e (P*Q)‘R 

I-. *95 38.31:. Hp . Te PofQ . 3 : R | T * R : 

t*95'42] 3 : RI T e (P*Q)‘ R. 3 . P | iJ| T\ Qe(P*Q)‘R . 

[*95-32] D.a!^|iJ|r|0. 

t*34'31] 

[*34'3] D.gJD'PoD'ie (1) 
1 . *9312 .31: Hp . 3 . D'P n D'R = A (2) 

■ (2). (1). Transp . 3 h : Hp . Te Pot‘Q . 3 . R \ T~ e (P*Q)‘R : 3 1 . Prop 

*95 47. (- : Hp *9546 . S * Potid'P .T.T'e Potid'Q. 

S\R | T, S |/e | T'e(P»Q)‘R .O.T= T' 
Devi. 

V . *91-46.31:. Hp. 3 : (gif) : Ue Potid'Q : T ■= U\T‘ .v . T = U\T (1) 

1. *50-62 . *91-35.3 1: Hp . 3 . S = S | / f C‘P. /fC-P e Potid‘P (2) 
1 . *95-45 . *33-24 . *22 621 .(2). 3 

h:HP- tfrPotid'Q.T- U\T' .O.I[C‘P\R\ Ue(P*Q)<R. UePotid‘Q. 
[*50 63] 3 . R Ue(P*Q)‘R . Ue Potid‘Q . 

[*95-46.Transp] . 3 . U ~ « Pot‘Q. U e Potid. 

[*91-23] 3.17=/[ <?'<?. 
[*91-27.*50-63] 3 . U\ 7” = T'. 

[*1312] O.T-T' (3) 

Similarly 1: Hp . Ue Potid'Q . T = U\ T. 3 . T = T' (4) 
h • (1) • (3) . (4) . 3 1. Prop 

*96 471. I: Hp *95 46 . S, S' e Potid‘P . Te Potid‘Q . 

S | R | T, S' | R | T e (P»QY R . 3 . S = S' 

[Proof as in *95 47] 

*95-61. f- ; Hp *95-46 . M, M'e (P*Q)‘R . g ! a*At r> CPAt'. Z> . At = At' 

Dem. 
h • *95-22 . D I-: Hp . D . (gtf, S', T, T') . S, S' c Potid'P . T, T' e Potid'Q . 

AI = S\R\T.At' = S'\R\T'. 

S\R\T,S'\R\T' c(P*Q)*R. 

g ! d‘(S\ ft\T)n a ‘(S’ | R | T') . 

[*96-351] 3 . (aS,S', T) . S, S'* PotidTe VoUd‘Q. M=S\R\T.M‘ = S'\R\T. 

S\R | T, S' | S| Te (PmQ)‘R. 

[*96-471] 3 . (as, T) . Se Potid'P. Te Potid'Q. M = S\R\T. M'= S\R\T. 

[*13172] 3 . M = M': 3 1. Prop 
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*95 511. K : H|> *93 40. M. M' < < !>*(})• K . 3 ! I>M/* PM/' ,D.M= M' 
| Proof as in *115*3 I ] 

*95 52. h : /'. V K «■ I ->1 . Ii‘/'C<l‘/\(I‘QCI)‘Q.D‘/ec"?7».(I<//C/i‘Q.D. 

x‘(/V^)‘//c 1 -► 1 
Item. 

h . *95*21 . *3432. 3 l-: // = A . 3 .(/,*/^)<// C /‘A . 

I*33*n4| 3.*4< I'+fJ)* /f = A . 
1*72-11 3 . a‘i /**())*]{t 1 —> I (1) 

H . *1)210- . #95*21 . *71*252 . 3 H : H,». ,l/e( /'*(,)rt - 3 . A/ c l -► 1 (2) 

I-. *41 11 . 3 h is A IWjHi y.x\#\ n+ifVK: z . 3 . 

<a .1/. .1/). .1/. .1/' < (/'*v )f /* • .v*. x.i/ 'r. 
|*33*14] D .(M.1/ .1/ ). .1/. A/V</'*V)‘//.^%.^m.a!DM/n DM/' (3) 

I-.|3>. *95*511 . 3 

h : 111>. a ! //. II|> t3). 3. <a A/). M «(/V^)‘ //. .M/y. .#0/.*. 

| (2) ] 3.//-: (4) 

Similarly 

h : 11 |I. a ! //. .#• \i't /'*V »• H :. .y ;*< /V^)4 /e* *. 3..» « // (5) 

I- .(4). (•’»). *7II72. DH : lip. a ! H .0 .AlWJVR < 1 -* I (0) 

h.(l).(0).3H. Prop 

>956 H: D4//C<l4/M»4/*CU4/,.C|‘//-/?Q.^€l ->Cls.3. 

(I44( l**QYR™gen*Q 
Item. 

h .*02*143.31*: Hp..S'< Poii«l4/'. 3.(I«$-U47\ 

(II,,| 3 . I)4// C (I*.S. 

[*.‘{7*322] 3 . <1*(6’ 

[#37*32] 3 . (14(.S| // D = '?“<I4// (1) 

h . (I). 3 K : H|». .s« P«»li«l4/* . 7*c P<»ti«l'Q. 3 . < l‘(S j 7f, T) = T“lilQ. (2) 

[*93*32] 3.a4(S|//;7,)€Kcn4Q (3) 

H .(3). *95 22 . 3 h : Up . 3 . (l44(/>*^)4// Cgen4g (4) 

I-. (2). *95-221 .*93-32.31-: Hp. 3. geiPQCCI^i^Q)4// (f>) 

I- .(4) .(5) .31-. Prop 

*96-601. h:ci‘/ecm).a4vcd*q.D4// = .p£cis-> 1.3. 

D44( P+QYR = gen4/' 
[Proof as in *95*0) 

*95*61. AYPCWP.ll'QCD^.D^i^B'P AVR- B‘Q-3 • 

AP*QYRt 1 -* 1 • \YAP*Q)‘R -s4gen4/\(I4*4</>*Q)4J* = s‘gen‘<2 

[#95*52*6*601 .*4143*44] 
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*9562. 

*9563. 

Dem. 

h : Hp *95 61 . D . s'gen'P sm s*gcn*Q [*95 61 .*73 2] 

H : P, Q € 1 1 . d‘P C D‘P .d*QC D‘Q . ~B*P sm ~B‘Q . D . 

s*gen‘P sm s*gen*Q 
v 

I-. *95*02 — . D f- : P, (J, /£ € 1 —> 1 . d‘P C D*P. d*Q C D‘<2 - 

*9565. 

D*R = B*P.tt*R = B*Q.D. s<gent]i sms* gen* Q (1) 

b . (1) . *10 11-23-35 . *731 .DK Prop 

*95 64. h : P,Q e 1 -> 1 . d‘P C D'P. (S‘Q C D‘<J . R*Psm B*Q . 

//d“Pot‘P = A .p*Q**Yot*Q = A . D . P‘7Jsm D‘<2 

[*95-63 . *93-274 . *33181] 

*95 65. b : Pt Q e 1 ->1 . d‘P C I VP . d‘<? C I>*<? . 2?P sm ~B*Q . 

C‘P = P+“!pP . <7‘Q = $*“/?<? . ^ . G'Psm 

[*95*63 . *93-36] 

The following example may illustrate the scope of *95-65. Let R, S be 

the generating relations of two well-ordered series, neither of which has a last 

term. Put P = R — R*. Q -* S — S1. Then P is the relation of immediately 

preceding in the 72-series, and Q is the relation of immediately preceding in 

the iS-series. We shall have 

P, Q e 1 -> 1 . d‘P C D*P . a*Q C \VQ. 

Also, except in certain exceptional cases, B*P, B*Q are the first derivatives 

of the two series (including the first terms of the two series). 

"C‘P-/V‘2PP” 

states that, starting from any term of the series and going backwards, a finite 

number of steps will bring us to a member of the first derivative, which is 

true. Hence, by *95*65, neglecting certain exceptional cases, we arrive at the 

result that if the first derivatives of two well-ordered series have the same 

cardinal number of terms, then the series themselves have the same cardinal 

number of terms. This proposition can of course be proved otherwise; the 

above is merely mentioned as an illustration of the results of *95 65. 

*96 7. h : R, S e 1 -> 1 . d‘72 C I VS. (I‘S CD *R.D. ~B*(R | S) sm ~B*(S | R) 

Dem. 
b . *93101 . *24-412 . *37 16 321 . D 

h : Hp. D . /?(«| S) - (D‘.R - d‘S) « (d‘S-S“d‘R) . 

R) = (D‘S- <3‘.R) « (d‘R - R‘‘d‘S) (1) 

I-. *71-38 . *37 32 . D 1-: Hp. D . R“(.D‘R —J1‘8) = d‘R — W'd'S (2) 

I-. *71-381. *37 32.31-: Hp . D . S‘\d‘S - S“d‘R) = D‘S - S“S“d‘R 
[*72-602] =D ‘S-d‘R (3) 
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K.(2>.(3>.*7*21-22.Dh: H(». D . \)*1{ - fp.S'sm (|‘7? - jf“<T‘S. 

WX-iVIi (4) 

b . *24*21 . DH : Hp. D . (IVR — (l*,S') r> (<I‘.S' — N“(I*/?) = A . 

<<!*/{ — 5mCI‘jS) n( DSS* - < I ‘/O = A (5) 

K . (1).(4).(">). *7*71 . D b . Prop 

*9571. b:R.S€l-*\M'RC\)tS.(l‘SC\VR.'}.s*f'ent(R\S)sni$*gonl(S\R) 

Di-in. 

K . *34-3t». *37321 . D b: 11p. D. < |‘< R \ S)C1 >‘< R \ S). (1‘(.S'| R)CI )‘(51R) (1) 

b . *71 252 . D h : Hp. D . /f | N.£| J? e 1 -»1 (2) 

>- . < 11. (2). *!i->*7 93. D b . Prop 

Phis proposition anil *!)+'.”>3 or *!»4-.">4 together reconstitute the Schrtidcr- 

Bemslcin theorem (*73*88). For. in virtue of *f»3-274*275 and *7371, they 

logrther give 

/f. c 1 -»1 . < I'/f C I >‘.s* .iVSCWH.O. («(R | S) sin C‘(S | R), 

and with this hyj>othi*si.s 

C‘( R | S) = WR. C‘(.S*| R) = 1 >‘.S\ 



*96. ON THE POSTERITY OF A TERM 

Summary of *96. 

By the “posterity" of a term with respect to a relation R we mean the 

class R^x. In the present number, we shall be chiefly concerned with the 

relation (R*‘x)'| R, i.e. the relation R confined to the posterity of x. We shall 

also be concerned with (R^x)] R+ and (R+‘a:)'j Rlto, which, as is proved in 

*9613, are respectively 

{(**'*) 1*i* and ((**'*) 

The most interesting case is when /£eCls—»1. In this case, R#‘x is in 

general shaped like a Q, with x at the tip of the tail; that is, R^fx may be 

divided into two parts, the first an open series, the second a closed series. If 

y is the junction of the two. we shall have 

xR^ . zR^y {zRlHfz), 

yR#z . D . zRlMiz; 

in fact, (gP) : P * Pot‘R : yR+z . 3,. zPz. 

• We have also, when jReCls—»1, 

y.ze Rm‘x. D : yR+z • v . zR*y. 

It thus appears that R*x is divided into two parts, the first consisting of 

those terms z for which ^(zR^z), the second of those for which zRvoz. The 

first wholly precedes the second; the first exists if ~(x/ipoa:), the second if 

a! I^po A/). Every term in R^x has one and only one immediate 

predecessor, except the term (if it exists) at the junction of the tail and circle 

of the Q; this term has just two immediate predecessors, one in the tail and 

one in the circle. But if either the tail or the circle is null, then every term 

ln Pvo*x has only one immediate predecessor, and therefore 

Put • Dft 

JR‘x = R**x f\ 2 (~ (zR^)} Dft 

(these definitions being only to apply within *96). Then JRx is the open 

Part of the series and IR‘x is the circular part. The open part wholly 

precedes the circular part, provided PeCls—*1; i.e. 

R e Cls—»1 - 3 - J*‘* C TfR^IJx. 
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If •/,..*.*• and 1,'j' both exist. •/,.*.»• has a hist term, say y. The successor of 

this term. R*y, is th«* only term in R#*x which has two immediate predecessors 

in R#*x, namely // and l*{/lt€xr\ R*R*y). 

Tin- most important applications of the propositions of the present number 

are in the theory of tinitc and infinite, both cardinal and ordinal. When R 
is many-one, then if ] ,Sx exists, or, more generally, if Jt*x has a last term. 

R*-*’ is a finite class, i.t. what we shall call a "CIs induct" (cf. *120). That is. 

we have 

I" S R «(’Is—► I . K! max,..*./,.*x. D . //**.#• c CIs induct. 

If exists, but has no last term, R+x is a progression (cf. *122) when 

its terms are arranged in the order generated by R. That is, giving to N*. 

and o> the meanings given by Cantor (cf. *123 and *203). and using “ Prog" 

for t he class of one-one relations which generate progressions, we have 

h : R « (’Is—* I . ~ K ! max#;*J ,*x. $| ! ,/wV. D . 

R+'x «• bt„., Rj.r) 1 R € pr„g. Of^x) 1 Rt„ f *>. 

Another very important proposition in tin* proof of which the present 

number is useful is *12147. which proves that if R is either one-many or 

many-one. and a and ; are any two terms whatever, then R+*u n R^z (which 

we call the "interval from a to z) is always a finite class. The proof that 

progressions are well-ordered series depends ti|>on the propositions of this 

number, since it uses *122 *23. which depends upon *!K»*52. 

'I'he present number begins with a series of propositions (ending with 

*!M> I(>) on o'] Rln, an<l o'] /»'*. both in general and when a= R#fx. We then 

proceed 1 to a few propositions-(*!»G 2—25) on ( R+'s) *] R when /f«?l-*Cls; 

with the exception of *!MJ *24. these propositions are all used in the cardinal 

theory of finite and infinite. They are, however, less important than the 

subsequent pro|K)sitions, which arc* concerned with R#‘x when ReCIs-* I. 

If R is a many-one relation, and .#• is a member of 1)'R, the relation R in 

general arranges R*x (i.e. the posterity of x) in a 

figure such as is here given. The relation R holds 

between each dot and the next, starting from x, and 

travelling round the circle jn the sense indicated by 

the arrow. The dots from / toy constitute J^x, and 

the dots in the circle constitute /„‘x. y is the last 

term of Jk*, t.e. maxj,‘/K‘j; w is R'y, and z is 

i‘(R‘iu n Iu‘x), or, what comes to the same thing, 

|(/K*x)1 R\‘w. w is the only term which has more 

than one immediate predecessor in R*x\ w always 

f v 
R 

R\. 

TV 

y 



SECTION E] ON THE POSTERITY OF A TERM 009 

exists if neither JR‘x nor IRx is null, and conversely, if iu exists, neither 

JRx nor IRx is null. The proof of these propositions is long; the following 

are useful stages in the proof. 

If xlix, the whole posterity of x is x itself (#96*33); if xRy and yRx, 

x and y constitute the whole posterity of x (#96 331), and so on. The 

successors of members of IR*x belong to IR‘x (#96*341), and the predecessors 

of members of JR*x, if they belong to R+'x, belong to JR‘x (#96*351). (It 

should be observed that, since R is only assumed to be many-one, not one- 

one, every member of R*‘x may have any number of predecessors which do 

not belong to R**x.) We have a series of propositions, beginning with 

#96*4, which deal with the hypothesis yRw.zRw. We prove (#96*42) that 

if yRw. zRw and yRlt0z, then zRlKtz, i.e. z belongs to IRx. We prove 

(#96*431) that JR(x wholly precedes IM‘x; that (JR*x) ] R and (In*x)'\R are 

both one-one (#96*45), so that if yRw. zRw . y z, one of y and z must belong 

to JRlx and the other to IRlx(#96*441). Hence it follows (#96 453) that if 

either xRpox (in which case JH*m- A) or (R+*x) 1 R^ G J (in which case 

IRx= A), then (/£**#)*] R is a one-one relation. (This proposition is used 

twice in the cardinal theory of finite and infinite, namely in #121*43 and 

#122*17.) Hence we arrive at the proposition (#96*47) that if two different 

members y and z of R+lx both immediately precede a term w, then one of 

y and z (say y) is the last term of JRx, w is its immediate successor and z is 

the immediate predecessor of w in IRx, i.e. we have 

y = m&.xRtJRtx. iv - . z = ((IR‘x) 1 R\‘R‘maxR‘JR‘x. 

Thus y, z, w are unique if they exist. We prove next (#96*475) that y, z, w 
exist when, and only when, neither IR*x nor JR*x is null. 

It follows from the above propositions that if R is one-one, either In*x or 

JRx must be null (#96*491), i.e. the posterity of a term is either an open 

series or a cycle, and cannot have the f^-shape. 

#96 01. /= %<m r. 2 (zRlHtz) Dlt [#96] 

#96 02. JRx =*R*‘x - IR‘x Dft [#96] 

#96*1. hzzeljx.s. xR+z . zR^ [#20*3 . #32*181 . (#96*01)] 

#96*101. h s zeJR*x. = . xR** —(zR^) [#96*1 . #22*93 . (#96*02)] 

#96*102. h • R+x = ./ R*x \j IR*x. JR*x r\ IH*x = A [#24 41*21 .(#96 01*02)] 

#96*103. .(JR‘x)'\Rpo<iJ 

Dem. 
V . *96101 . D V y 1 z . = : xR+y . ~(yR„y) • yR„* : 

[•1314] 3:y + «r.Dh.Prop 
R&W I 39 
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*96104. b : I,:'x = A . = . ( 1 Rl<tCJ. = . Jn*x = if*'* 

Dem. 

h • *!»61 • 3 H /».*..•■- A . = : xft,./. D„ .~(yR„y) : 

(*13196] = : -rft*i/. i/ft,.,* . 3„,. /, * . : 

s:(ft»‘r)1ftw>G./ 
K(l).*9G102.3l-. Prop 

*9611. (-.(a-|ft),.,Ga-|ft,., 

Dem. 

b . *01-502 . *35-46 . D b . a 1 R G a 1 R(H1 
h . *351 . D 

H :. /* G a *| R^,. D : . y (* 1 /f)s. D . x«a. xRx<ty. yRz . 

[*01-511.*351) D.*<«1 ‘ 

[*341] D:P|(«17?)Gflt1/?lw 

h .(1). (2). *01-171 . D h : /*€ Pot‘(a *]/?). D . /J G a *] /?,„: 

1*41151) D b . (a 1 /?V, G a 1 /f|(0. D K . Prop 

*96 111. b : R“a C a . D . (a 1 R)x„ = a 1 R„ 

Dem. 

h . *01-502 .Dh.a‘]/£G(a'| /{),„ 

b . *00*22 . *01-54 .Db:. Hp. D : Pe Pot ‘R ,xt a. xPy .0 .yea: 

[*:)-.-1 .Fact] 3 : ft« Pot‘ft. .* (a 1 ft) <j . //ft.-. 3 . y (a 1 ft) z: 

[*91511 ] 0: Pe Pot ‘ft . a 1 ft C (a 1 ft),... 3 . (a ] ft) | ft G (a ] ft),„ 
1-.<1). (2). *91-378.3 I-:. Hp . 3 : ft * Pofft. 3 . a] ft C(a1 ft)^ : 

r*+l 52] ^: 01 C (o 1 ft)w: 

[*»C I1] 3 : a"| ft|« = («1 ft)p„ :. 3 I-. Prop 

*96 112. (• : a C D‘ft . ft“a C a . 3 . (a 1 ft), = a 1 ft. 

Dem. 

(1) 

(») 

(2) 

(D 

(2) 

*96121. 

*96122. 

*9613. 

h . *35 02 . *37 4 . D I-: Hp. D . C*(a 1 ft) - a w ft“a 
[*22 02] 

f*-.0-5] 3 . / f C‘‘(a 1 ft) = a 17 

K *50-53. 3 H . a"] / f- C‘ft = (a n C'R) ] / 

h. (2). *22021 . 3h:Hp.D.a1/fC‘ft = a-]7 

(-.*91-54. 3l-:(a1ft)* = (a‘1ft)poia/(‘ C‘(a ] ft) 

h . *91-54. *35-42.3 I-: a 1 ft* = a 1 ftM c; a 1 /1-C‘ft 

l-.(l). (3). (4). (5). *96111.31-. Prop 

(1) 
(2) 
(3) 

(4) 

(5) 

(- :ft“aCa.3.(ft[-a)po=ftMCa [Proof as in *96111] 

(-: a C ([‘ft . ft“a C a . 3 . (ftf- 8)*= ft„f a [Proof ns in *96"112] 

(-. (ft»‘x) 1 = |(/e„‘.I)1.ft|po [*96111 . *90 163] 
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*96*131. I- : * e D‘R . D ,{R**x) 1 R* = \(R*‘x) ] /*]* [*96112 . *90163] 

*96-14. :x€ C‘R . D . R*‘x = l*x u*Rih>*.x [*91 *54 . *32 33] 

*96141. I- . C\a 1 1%) = R*“a 

Dem. 

I-. *35-61 . *37-4 . *9014.31. C‘(a 1 ft*) = (a n C‘R) u ft*“a 

[*90-331] = ft*“a .31. Prop 

*96142. I-. C‘(a'|ii|10) = (a r. D‘ft) v R,„“a [*3561 . *37 4 . *91-504] 

*96 143. I-. C‘(a -] R1H>) = ft*“(a n D‘ft) 

Rem. 

h . *37-261 . *91-504.31. ft11(,“a = ftllo“(a r> D‘R) (1) 

1.(1). *91-546 . *96 142.31. Prop 

*96 144. 1 : a « CI‘ ft C ft*“(« n D‘ft) . D . C‘(a 1 ft,.,) - ft*‘‘a 
Dem. 

1. *22 62 . Z> 1: Hp . D . ft*‘«(a « D‘ft) = (a n (3‘ft) u ft*“(a « D‘ft) 

[*91-546] = (a « Cl'ft) u (a « D‘R) u ft1K)“(a n D‘R) 

[*37-261 .*91 -504] = (a n C‘ft) u R„“<x 

[*91-544] - R„“o 

1.(1). *96143.31. Prop 

*96 16. I-. D‘((ft*‘x) 1 ft) . ft*‘x « D‘ft . d‘((ft*‘x) ] R) =%„‘x 

Dem. 

1. *35-61.31. D'^ft-*'*) 1 ft) = R+'x n D‘R 

1. *37-4 .31. CI*((ft*‘x) 1ft) - 

[*91-74] -*R^‘x 

1. (1). (2) . D 1-. Prop 

*96 161. 1: x e D‘R . D . C‘((ft*‘x) ] .ft) = ft*‘x 
Dem. 

I-. *9614 . D h : Hp . D .%*<* « D‘/* = i*x w « D‘R) • 

[*22*63] D . fefm n D‘tf) u^o** = 

[*9614] ~*R*€x 

H. (1). *9615. DK Prop 

*96-152. . R^^R^x = [*9017] 

*96153. h . = Rv**R9‘b = [*91574] 

*96154. H . i2#) [*96141 152] 

(1) 

(1) 

(2) 

(1) 

39—2 
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*96155. 

Pew 
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H . D‘|<^*‘*>1 7? J =*Ti*‘* « I>‘ It • U «|cX^)1 Rvo\ 

*96 156. 

Pern. 

h . *35-61 . *!>1 104 . D I-. 1>‘!<K»‘*> 1 R,„l = l>‘/f 

h . *37 4 . 3 h . 1 

(*!IG'153) 

h . (I). (2). D H . Prop 

t-. 1{,-.\ = <i'cr' U*/?) ««!•** 

(1) 

(2) 

K •!>(>• 155. D 

h . c* :<i- (/?»‘x n d* «>« 

[*!ll 54J .HVnfKn I >*/<)« (#,„'*" D‘A)u R,„‘x 

[*22 02.*331(U] = <|V a 1>‘«) « H,J* ■ 3 I" • I’rop 

*96167. h:/(I)‘/iO.C|l«,V)1'U=V l*!)615014] 

h : ,r~« ])‘/f . D . (/f*‘x) 1 = A *96158. 

Pan, 
h . *9 1 504 .DHsHp.D.u^cD*/?^. 

[*33-4] 

h.(l).*9(»155.DK Prop 
D . 7* 4* - A (1) 

*96 169. h : 51! </f*‘x)1 D. C«|(«*‘-r)1 /f,„| = li+'x [*!»G 157 158] 

H . (rt*4*) 1 ^ ^ C T?*4** *9616. 

Pern. 

*962. 

Dew. 

*9621. 

Deni. 

h . *351 . D H : y |(7f*‘.r) 1 7?) * . a . y « 7f*4* • • 

[*90 16.*4 71 ] a . y « 7f*4.r. yRz . * € 7?*4x. 

[*36-13] s . y (R [ R*x) z : 3 H . Prop 

h : /? € 1 —» Cls . D . (7?*4.r)1/? = 

V . *72-55 . D Y : Hp. D . <rt*‘.r) 1 7< « R \ R^R+'x 

[*91-74] = R r A*/*:Dh-Pr°P 

h . ^ e i _> Cls . xBR . D . (7?*4*) 1* = R r**‘1 

h . *9614 . D h : H p. D . 7* f/F*‘* = i? T ® ^ f* TV* (1) 
1-. *35 64 . *93 1.3 h : Hp . D . (l‘(7* [ l4*) = A . 
[*33241] D.Rt£x=A •- (2> 

H . (1). (2). Dh:Hp.D.7*r^*‘* = ^*Po‘* 

[*96-2] 
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C\s.~(xRx).D.{R *)1 RGJ *96-22. H : R e 1 

Dem. 

H . *31*11 . D I- : a:Qy . yity . D . o;Qy . yity . yQx . 

[*1024.*34*1] D.a:Q|iJ|Qa; (1) 

I- . (1) . *92132 .DH:i*el-»Cls.D:<3e Potid *R . xQy . ytfy . D . ar/fc: : 

[*10*11'21'23*35.*91*55] 

[Transp] 

[*13196] 

[*32-181 .*35-1] 

D 

D 

D 

xR^y . y/iy ■ D . : 

(xllx) . xRmy . D . ~ (yRy) : 

~ (ar/ta;) . xR#y . yRz , D . y ^ 2 : 

~ (xRx) . D . (R#‘x) *] RG JD h . Prop 

*96 23. H : 7i e 1 —* Cls . x&K . D . 7„‘x = A . («»‘x) 1G J 

Dem. 

I- . *3111 . D I- : xQy . yTy . D . xQy . yTy . yQx . 

[*.341] D . xQ | T | Qx (1) 

l-.(l). *92132.3 

I- R < 1 -» Cls . D : Q, T( Potid ‘ft . xQy . yTy . D . xTx : 

[*91-271] D : Q « Potid'ft . Te Pot ‘R.xQy . yTy .3.xeCPft 

[*1111-3-35 r,4.*91-55.(*9105)] D : y (ft*‘.r . yft^y . D . x « d‘R : 

[Transp.*93-1] D : xftft . D . ~ (y « ft*‘.r . y/f.^y) : 

[*961. *1011-21] D : xftft . D . 7„‘x -A (2) 

K (2). *90104.3 1-. Prop 

Cls. C*‘ft = ft,“ft‘ft . O . ft,*, G J *96-24. I- :K. 1 

h . *37105 . D I-:. Hp . D :y«C‘ft . 3 . (gx) .xcli-R . xft*y : 

[*91 -504] D : yft^ . D . (gx) . x.7?ft . xRmy : 

[*4'7 .*3218-181] D : yRt„z . 0 . (gx) . xBR . y « *R*‘x. yR,„t. 

[*96-23] D . yjz:. D 1-. Prop 

*96 25. I-:. R e 1 —♦ Cls . xBR . xR+y : yR%z . v . zR+y : D . xR„z 

Dem. 

H. *90-17. D I-: xRmy . yR+z . D . xR+z 

K *92-31 .*91-76. D 

h Hp . D : xR+y. zR+y .3: xR+z . v . zR^x 

h . *91-604 . *931 . Z> H : . D . ~ (*i?|(0.r) 

H . (2) . (3). D I- s. Hp . D : xR%y . zR+y . D . xR+z 

h . (1) . (4). D 1-. Prop 

(1) 

(2) 
(3) 

(4) 
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The following propositions lead up to *00*32, i.e. 

f-: ft € 1 —¥ 1 . .rft*y. 3 . ft*4.r v R+‘x = ft*4y v ft*4y. 

which is a proposition used in the following number (#07). 

*96*3*301*302*303 are also frequently used elsewhere. 

*96 3 h : xR#y. D .V*4y C R+*x f*9017] 

*96301. H :.#ft*y . 3. 7?#‘.rC7?*‘y [*90*17] 

*96302 h:.ft«Cls-> 1 . xR^y . xR«z . 3 : yft*r . v . zRmy 1*92*311] 

*96 303. H R e CIs —► I . xR+y. xR*~ . y + z . 3 : yRx*z. v . zRl<ty 

(*96*302 . *91*542] 

*96 31 h : ft e CIs -► 1 . xR#y . 3 . ft*4.r C ft*4y v ft*4y [*96*302] 

*96 311. H : ft e I -+ CIs. xR+y . 3 ."ft*4// Cft*V v, ft*4./* [*92*31 ] 

*96 32. I*: ft a 1 —► 1 . .rft*y . 3 . ft#*/ ft*4.r = ft*'// v ft*4y 

Dew. 

h . *96*301 *31 .Dhftf CIs -» 1 . xR+y. 3 . ft,4.** sj*Rm*x C ft*4y w ft*4// (1) 

I- . *96*3*311 . 3 h : ft e I —♦ CIs . xR+y . 3 . ft,4// u *R+‘y C ft,4.** u ft*4.* (2) 

K(l).(2). 3 K Prop 

*96 33. h : ft c CIs -* 1 . xRr. 3 . ft*4x = i*x 

De.w. 
K*71*171.31*Hp.3sr-x.«ftw.3x.^.w-a; (1) 

I- .(1).*13*15. *90 112 3h:*ft*y.3.ye.r (2) 

h . *9012. 3hHp.3.xV (3) 

h . (2). (3). 3 h Hp. 3 : xft*y .a .year:. 3 I*. Prop. 
<— 

*96 331. h : ft eCIs -* 1 . xRy . y/fr*. 3 . ft*4* = i4j* v t4// 

Dew. 
4— 

1- .*90151*162. 3h:Hp.3.f4xui4yCft*4a* a) 

h.*71*171 . 3 I-:. Hp. 3 : z — x. zRw. 3r,tf. w * y. 

[*51*232] 3,,IP . we l‘x v t*y (2) 

h.*71*171 . 3 h :. Hp . 3 :z = y.zRw. 3rir. w = x. 

[*51*232] 3''".luc^xv l‘y (3) 

h.(2).(3). 3 1-:. Hp. 3 :zei‘xu i*y . zRiv. 3,(IC. wei‘x w i4y (4) 

h . *5116 . 3 H . .r e i‘x v l4y <5) 

h . (4) . (5) . *90 112.3 h :. Hp . 3 : xRmz .3 . z e l‘x v i*y (6) 

h.(l).(6).3h. Prop 

This process of proof can obviously be extended to any finite cycle of 

terms. 



SECTION E] ON THE POSTERITY OF A TERM 615 

*96 34. h : R e Cls —» 1 . 3 . RI>0"S {zR,„z) C t (zR^z) 

Dent. 

I-. *31'11 . *341 . 3 h : zRpoz . zRw . 3 . wR \ /2IJO| Riv (1) 

I- • (1) . *92113 . Dh:. Hp . 3 : zR„z . zRw . 3 . ,vR,„w : 

O20'3] 3 : zj z (zR„z). zRw .D.wei (zR,„z): 

[*37171] 3 : R“S (zR„e) C J (zR,„z) : 

[*91-71-53] 3 : R„“2 (zR^ z) C J (z RIHt z):. 3 I-. Prop 

*96 341. h : R e Cls -> 1. 3 . R„“I„‘x CIH‘x 

Dem. 

I- . *37-21 . (*96 01) .31-. R,„“Ik‘x C R^".Rm‘x r> R^'i (zR„z) 

[*90163.*91-002] C*R„‘xn R,n“2 (zR^z) (1) 

. (1) . *96 34 . 3l-:Hp.D. «„“/*•* C «.<* « 2 (zR^z) 

[(*96 01)] C IK‘x : 3 1-. Prop 

*96 342. h : iZ e Cls —>1.3. R„“In‘x C /„‘x [*96 341 . *91-71] 

*96-36. I- :. R e Cls —► 1.3: ~{wR,^,w). zR,„w . 3 . ^(zR^z) 

[*96-34. Transp] 

*96 351. h : R e Cl« -» 1.3 . R,„“Jl:‘x « *Rm‘x C J„‘x 

Dem. 

h . *96*35 . Fact. *96*101 . D 

h Hp . D : w e JH*x. zRXKtw . z c Rm‘x .D.z c JK*x :. D h . Prop 

*96-352. H : R e Cls -* 1 . D . Rm**JR*x r> 5v* C JR‘x [*91*543 . *96 351] 

The following propositions are lemmas for *96 45*47. 

*96 4. 1- : R c Cls -* 1 . S, Tc PotlR . ySy . yTz . D . zSz 

Dem. 

h .*31-11 . D H : Hp . D . zT\S\Tz . 

[*92*133] D.sSssDh. Prop 

*96*401. h : R e Cls —► 1 . S, T e Pot * R . ySy . yTz . y Rw . zRw . D . wSw. wTw 

Dem. 

h . *31*11 . D h : Hp . D . wRz . zTy . ySy . yTz . zRw . 

[*34*1*2] D . {Cnv‘<7*| R) | 51(7*1 R)} w (1) 

H. *91*282. D hs Hp . D . T\R c Pot‘R (2) 

h . (1) . (2). *92*133 . D h s Hp . D . u;5u/ (3) 

h • *31*11 . D H : Hp . D. wRy • yTz. zRw . 

[*341] D.w/.RIT’l.ftttf. 

[*91*351.*92*133] D. k/7W (4) 

I-. (3) . (4). 3 h . Prop 
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*96 402. h : ft e CIs —► 1 . T e Pot* ft . y fty . yTz . yRw . zRw .O.y — w.y = z 

Dent. 

h. *71171. D I-: Hp. 3 .y = (1) 

h . *96*4 . *91-351 .DhiHp.D. zRz . 

[*71171] 0.z = w (2) 

H.(l).(2).3h.Prop 

*96 403. bsRe CIs —♦ 1 . S. Te Pot* ft. yS\fty . yTz . yRw. zRw . 3 . 

wSy . . y = z 

Dent. 

3I-: Hp. D . wit | <S | fty. 

O.wSy (1) 

3h: Hp . z8\Rz . 

0.wR\S\Rz. 

3. 

h. *31*11 . 

[*92133) 

h. *96 4. *91 3+3. 

[•3M1] 

[*92 133] C2) 

<•*<> P .(1>.(2). *92 101 .*71171 .Dh: Hp.D.»/ = : 

h . (1). (2). (3). 3 H . Prop 

*9641. b : ft c Pis —♦ 1 . S, Tc Pot*ft . ySy .yTz . yRw. zRw . 3 . y — r 

Deni. 

b . *91-264 304 . 3 h . Pot*ft - f‘ft u| ft**Pot*ft . 

|*51 -236) D h :. £« Pot* ft. = : S « ft. v. ($|S'). S' e Pot ‘ft. S - S' | ft (1) 

b . *96-402 . 3 

I- S = ft . 3 : ft « CIs —» I . 7’« Pot ‘ft. //«S// . yTV . yftit*. *ftw (2) 

I- . *96-403 . 3 

I- <a«'). S' € Pot*ft . S - S' | ft. 3 s 

ft e CIs —► 1.7’« Pot*ft . //fty. yTz . yftw . sftw ,D.y = z (3) 

h . (1). (2). (3). 3 I-Se Pot ‘ft. 3 : 

ft e CIs—» 1 . Tc Pot*ft .ySy.yTz,yRw. zRtu.D .y = z :. 31- .Prop 

*96*42. V i Re CIs —» I . yRw. zRw. yRx*>z • 3 - zRx^z 

Deni. 

. H . *31 11 . 3 b : Hp . 3 . wRy. yRx^z . 

[*92111] 3 .wR+z. 

[Hp.*34 l ] 3 . zR | ft<*2 . 

[*91-52] 3 . zRXHiz : 3 H . Prop 

*96 421. h :. ft t CIs 1 . y. r c ft*‘x. yftw. zRxo. y + z. 3 : yftlloy. v . rft,^ 

Dem. 
I-. *96-303 .Dh. Hp . 3 : yftpo* • v . zRx*y (1) 

b . *96-42 . 3 I-: Hp . yRx«,z . 3 . ^ft,^ (2) 

I-. *96*42 . 3 H : Hp. zRx<ty . 3 . yftp©y (3) 

1*. (1). (2) • (3) .31*. Prop 
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*96 431. h : R <r Cis -» 1 . y e J,,‘x. 2 e I„‘x. 3 . yR^z 

Dem. 

h . *96102 . D h Hp . D : y * * : 

096 303] D : yRXH)z . v . zRlh0y (1) 

V . *96-341 .Dhr.Hp.D: *7*^ . D . y e : 

[Transp.*96 l02] D : y € . D . ~(zRlloy) (2) 

H.(2). Dh:Hp.D—(*/*,*?) (3) 

^ • (1) - (3) . DK Prop 

*96*432. h : R e Cis —> 1 . y.z e I Rx. yRtv. zRw ,D.y=z 

Dem. 

h . *961 . D : Hp . 3 . (3S, T) . S,T e Pot‘« . ySy. zTz (1) 

K *96 303.3 1-:. Hp. D:y = z: v:(3tf): Ue Vot‘R tyUt. v . zUy (2) 

I" • (1) • (2) . 3 1-:. Hp. 3 : 

V “ * : * : (aS. T, U)iS.T,Ut Pot ‘R . ySy. zTz -.yUz.v.zUy (3) 

h.*96-41. 3 1-:. Hp . 3 : (aS, U) . S, UePot'R.ySy. yUz. 3 .y-z (4) 

h. *96-41. 3h:.Hp.D:(ar,ir).r.H«Pot*^.2r*.2t^.3.y-2 (5) 

h . (4) . (5) .3 1-:: Hp . 3 :. 

(3-Sf, Z\ U) t S,T, U t Pot ‘R .ySy.zTz:yUz.v.zU,,:0.y = z (6) 

1-. (3) . (6) . 3 1-. Prop 

*96'44. h It e Cis —* 1 . y, 2 r R*‘x . yRw.zRw.yk z .3: i/ e I ,,‘x. v . z e I"‘x 
[*96 421 1] 

*96-441. I- :. ft « Cis -♦ 1 . y, z ,*Rm‘x. yRw .zRw.y + z. 3 : 

Dem. W * 7"‘X'V * •/"‘X • * f 7*‘* • v ’ ^ £ /*‘a: • * f •/"‘r 

h . *96-432 . Transp . (*96*02) . D 

I- Hp . D : ze IH*x .D.ye JR*x ly € I R*x . D . * €*/*'*: (1) 

I- . (1) . *96*44 . Dh. Hp . D : y e JRx . z c . v . y c I Rx . z e JRx (2) 

V . *91*502. *96*341.3 

h Hp . D : z « 1 ,*x .3 .tv c I H*x : y « IR*x .!>.«/* In‘x : 

[*96*44] Dzwel^x (3) 

h . (2) . (3). 3 h . Prop 

*96 442. h : 7d e Cis —* 1 • y, z c JRx . yRw . . 3 . y = z 

[*96*44. Transp] 

The following proposition (*96*45) is important. 

*96 46. h : R e Cis -> 1 . 3 . (JR*x) ] R, (IR*x) ] R e 1 -> 1 

[*96*442-432] 

*96-461. V R € CU-* 1 : Ju‘x = A . v - IR'x = A : 3 . (/£*'*) 1 R e 1 -♦ 1 

[*96-45-102] 
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*96 452. H A t Cls —» 1 . 3 : g ! JK*x . = . x c Jl:*x 

Dem. 

h . * 1024 . Dhjf J hx • 3 • 3 ! J nx (* > 

h . *90342 . 3 h : Hp . x c 7/;‘x. 3 . A#‘x C /i;‘x. 

[*96102] D.Jl:‘x= A (2) 

h . *96101 . 3 h : a ! J/;‘x. 3 . a ! /T*‘x. 

[*9013] 3.x/f*x (3) 

h . (3). (2). Transp. 3 1*: Hp. 3 !«//,‘x. 3 . x e Rm*x — Il:*x. 

[(*!>6 02)] 3 . x e .7/;‘.r (4) 

I-. (1). (4). 3 H . Prop 

*96 453. H A e Cls —> 1 : x A.^r. v . (A*‘x) ] A,*, G .7 : 3 . <A*‘x) 1A e 1 -» 1 

Deni. 

H . *96 452 . Transp . 3 H : R < Cls 1 . xA1K,x. 3 . JH*x «= A 0 ) 

h . *96 104 . 3 I-: R * Cls-> 1 . (R+'x)] A|IOG J. 3 . 7,.‘x- A (2) 

H.(l). (2). *96451.31*. Prop 

*9646. h:/if Cls —► 1 .y, 'Jc JRx. A1//. Ay c 7,/x . 3 . y = y' 

Dem. 

H . #92111.3 

I- : A € Cls —► 1 . i/ € J,{‘x. Ii1!/ « 7,,‘x. y A|H,y'. 3 . A‘y c 7,/x . 7f‘yA*y'. 

[*90-342] 3 .y'du'x (l) 

h . (1). Transp . 3 h : 7i e Cls -* 1 . y,y' c «7«‘x. A‘y c 7/.*x . 3 .~(yA|K>y') (2) 

I- .(2) y * 3 h : cCIs-* 1 .y,y' tJ/i'x. lt'yel^x. 3 .~(y'A1(„y) (3) 

h . (2). (3). 3 h : Hp . 3 —(yRl^y) (y'A|H>y). 

[*96*303.Transp] 3 . y = y : 3 h . Prop 

*96 461. h : 7f c Cls -► 1 . y c «7/{‘x. 7*‘y € 7/;‘x .3 . y = max/J/.T 

Dem. 

h. *14-21.3h Hp.3:E!A‘y: 

[*3013] 3 : A‘y~c J*‘x. = .~{R‘y cJr'x) . 

[*71-371.Transp] = .y~e R“JH‘x (1) 

h . (1). *93115 . *96102.3 I-: Hp . 3 . y maxi:(J*‘x) (2) 

I- . *96-431.3 h Hp . y e . 3 : yR^lVy : 

[*91-504] 3:y/€D‘A: 

[*71164] 3:E!A‘y': 

[*3013] 3 : R*tf*»€jR‘x. = .~(R‘y e Jn‘x). 

[*71-371.Transp] =.y'~cR“JR‘x (3) 
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H . (3) . *93115 . Dh. Hp -Dry max* (J,<‘x) . D . y e JR‘x. R'y'^eJ^x . 

[*96‘102] D.y'e •/*** . £‘y' e IR‘.v. 

[*9646] D.y = y' (4) 

H - (2) . (4) . *30-31 .DK Prop 

*96-462. h : « e Cis -* 1 . y c Jn‘x . 2 e IR‘x . y/i?<;. 2^*4, . D . 

V = maX|,V"<a? • w = • z « [(/„'*) 1 Ryii'nmK,.'./,.** 

h .*96-441102.*71-361. D 

h Hp.D.wt . w» = R*y . 

[*96-461] I> . y =, maxjjV***. w; = .ft'max*',/,/* (1) 
h . *96-45 OhrHp.D.^ {(/*'*) 1 /*)'«; (2) 
h.(l).(2).DI-.Prop 

The above proposition, since it exhibits y, *, «/ as functions of « and /e, 

shows that there is at most one w in Rm<x having more than one immediate 

predecessor, and that this one has exactly one immediate predecessor in JRx 

and one in IR*x. (These results require *96 441, in addition to *96 462.) 

Thus we arrive at the following proposition: 

*96 47. (-R « CIs -» 1 . y, t , R„‘x. yRw . xRw . y* z . D : w = lfme.xu‘J„‘x : 

V = >nax„‘J„‘x . * - \{I„‘x) 1 R\‘R,ina.xB,Jn‘x. v . 

a - max„‘J„‘x . y = {(/„•*) 1 R]‘R‘mnx„‘J„‘x 
[*96-441-462] 

We still have to prove 

R e Cis -* 1 . a ! J,t*x. a ! IR*x. D . (ay, z,w).y,ze lim‘x . yRw . zRw . y * z, 

or, what comes to the same thing because of *96 441. 

Re Cis -* 1 . a ! JR‘x . a ! I R*x . D . (ay, z,w). ye JR*x . z e IR*x . yRw . zRio. 

This is effected in the following propositions. 

*96 472. hzRe Cis -> 1 . a /t«*.a! IR‘x. D . (ay) . y «• . R‘y e IR‘x 

Dem. 

V . *901 .Dht.xe JR*x. R“Jr*x C . D : «/**y .D.ye J„‘x : 

[*96104] D :/*'*= A (1) 

h . (1) . Transp . *96452 .Dh:Hp.D.a! R“Jn‘x - JR*x . 

[*71-401] D . (ay, z).ye JR*x . * = 72‘y . z~eJR*x . 

[*13195] D . (ay). y € JB‘x. R*y~eJB‘x . 

[*96102] D . (3y). y e ,/^‘a;. R‘y e IR*x s D h . Prop 
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*96 473. b : RcCls-» 1 .g ! 7,/x.g ! J,/x.3. El max^J^x.ElRUxuix^J^x 

[*06 40147 2] 

*96 474. h : /^ € CIs -*1.*= rt‘max//./l/x . 3 . 

E ! !(///x)'| /f|‘w. E ! max,/J,/x . R\*w = max,,4./,/# 

/Jr 

(1) 

(2) 

(3) 

W 

H . *71 361 . Dh: Hp.D.( max,/./,/x) Riu . 

[*14 21] 3 . E! niaxp*./ ‘x. 

[*03’11] 3 . max,//,// e ./,/x. 

[(1 ).*!Mj*45] 3 . !(./,/x) *| /f j‘w = max,/-/,/x 

K(2). *0311 .D H:Hp.3. max ,/./,/./-<>-* R“Jn*x . 

(*7 I 371.*30” 13] 3 . /^inax,/./,/.r'vf .//,‘x • 

[H|).*00*102] 3 . ••• € /,/.»•. 

[*061 .*01 •32] 3 . fr/t^w. w/f* 17tw . 

[*341] 3 . (g*). irRlm,w . wR+z . zR>u . 

[*06-342] 3 . (g*). i c /,/x. s/fw . 

[*06 43] 3 . E! |(/,/x) *1 R\*w 

b . (2). (3) .(4).3 h . Prop 

*96 475 I- :. Rc Cls-» I . 3 : E ! //‘max,/ J ,S.r . s . g ! ./„*/. g S IM‘x 

|*06 473-474] 

This proposition ami *06 43'47 embody the main results of this number. 

*96 48. I-R t CIs-* 1 . S- (/^‘x) ] R . w € R^J.r. D : 
W —> « -I 

/#• = /f4 max,/./,/.#•). = . SSau>« 1 : m =» //‘iniix,//,/.r . = . S*i<; f 2 

Deni. 

h . *06 13 . *33 41 . 3 H : Hp. 3. g ! S‘w (1) 
v 

h . *06-47 . 3 H Hp. 3 : (gy, z). . // + z . 3 . = //‘max,//,// : 
—► v 

I (I ).*52'41J 3 : 8*w ~~ t 1.3 . u; = //‘max,/,/,/x (2) 
w —► 

h . *96-474-102 . 3Hs. Hp.3:w = R*iim xR€JRax. 3 . S‘w~c 1 (3) 
v —► 

b . (2) . (3). Transp . 3 I-Hp . 3 i~(w = //‘max,/./,//).^.^€ 1 (4) 

h . (2). *52 4 . *34101.3 b :. Hp. 3 : S‘we 2.3 . w— //‘max,,4./,,4# (o) 

h . *06-474102 . 3 b :. Hp. 3 : u> = //‘max,,4,/,,4#. 3 . 

E ! {(■/,/*) 1 R\‘w . E ! !</,/x) 1 . i€{iJK‘x) R\‘w » ll\{I n*x) *\ R}‘w = S‘w • 

[*96102.*54 101] 3 . SHoe 2 (6) 

h . (5). (6). 3 b :. Hp. 3 : w = R‘nvixR€Jn*x. = . S'w € 2 (7) 

h. (4). (7). 3 h. Prop 

In the above proposition we write u~(w = Rim*xR‘Jnix)’' rather than 
v 

“ w ^ Rlm&xulJRx’' because the latter implies the existence of fi'maxRgJRx. 
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*96 49. h :: R e Cls — 1 . D (/?»«,) 1 R e 1 -» 1. = s I,‘x _ A . v . J„‘x = A 
Dem. 

h - *9648 . Transp .Dh:. Hp . S = (R**x) *] R . D : 

w c R^x. w = R‘m&xR‘JR‘x. = . w e Rlto‘x. S‘w ^el : 

[*9615.*9152] D : w -» R€mn.xR€JR€x . = : 

[*14-204] D : E ! R‘maxR‘JR‘x. = . (gu») . weG‘£r.~S‘t0~« 1 : 

[*96-475.*71-1] D : g ! . g ! /*«* .s.S~c 1 ->Cls . 

[*71-261103] (1) 

I- . (1) . Transp .Dh. Prop 

*96 491. h R c 1 —* 1 . D : /,,‘x = A . v . Jn*x = A 

Dem. 

H. *96-49. Dh.Hp.xt D*R . D : I n‘x = A . v . .///a: = A (1) 

h . *91-54-504 . D h : Hp .x^e T)‘R . D . R+‘x = i‘x rs C‘R . — (xRpox) . 

[*96-1] D . IR*x — A (2) 

H • (1) • (2) . D h . Prop 

*96 492. h c 1 —> 1 .xe I)‘R . D : 

~ (xR 0x) . = . /n‘x *= A : xRltox . s . J*** = A 
Dem. 

H .*961101 . D 

h : IR*x - A . D . ~(xRpox) : a: * D‘ii . ~(ari*|(0a:) . D . g ! 

h . (1) . *96-491 .Dh. Hp . D : ~(xRiioX) . = . A 

Similarly h Hp. D : x/2|ica:. = . = A 

h . (2) . (3) . D 1- . Prop 

The above proposition is used in *122 52. 

The following propositions, not being needed in the sequel, are merely 
stated : 

(1) 
(2) 
(3) 

h : R e Cls-* 1 . g ! JR‘x. g ! I R‘x. D . IR*x rs R“Jr*x e 1 . JR<x * R“Ir<x * 1 

h : R € Cls-* 1 . JR*x = A . D . (R*‘x) 1 / € Pot'I^A*'*) 1 /2) 

*96 6. \-:Rel->l.xe D‘R . D . ~R„‘R‘x «= 7?*'* -~R99‘x ^ t‘* 

Dem. 

h . *717 . D I-Hp. D : y « ’Rvo,R‘x . = . yR„ j . 

[*92'11] = . yR*x. x tD'R . 

[Hp.*4-71] = . t/R+x : 

[*3218.*96-14 D : R„‘R‘x = ~Rm‘x=~Rvo‘x u t'*:. D . Prop 

*96-601. I-: A e 1 -»1 . <r « d‘.R. D ,*Rvo‘R‘x =.%*x=*Rpo‘x « i‘ar 
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*96 502. b z R € l —»Cls. xRy. 3 . R*y = R+x v t*y 

Dem. 
h . *9031 . 31-:: Hp. 3 zR+y • = : zR+(R*y) .v.2 = y:s Dr . Prop 

*96 51. I-: R e 1 -¥ 1 . a C R+“H‘R . a C R,J‘a . 3 . a = A 

Dem. 

h . *37 105. 3 V :. Hp. 3 : y € a. 3y. (gx). a* « a . . 

[*3218] Dy. g ! a a RxJy 

[*1418-21] D : 5‘a c a. 3 . g ! a R‘x. 

(*90-5] D . g ! a a /V* : 

| Transp] D : a a /V r = A . x/f»/ . 3 . ~ e a . 

[*5121 1] ^ • a u «‘jf) = A • 

[ *90*502] D.aA/Vif-A (l) 

H . *9l\50+ .Dh:.aC /?,*“« .D:aC <I*/f: 

[#93104] D : . 3 . a aA (2) 

h . (1).(2). *90112. 3 H :. Hp . 3 : .r * H‘R . . 3 . a a /?*«'/ - A . 

[*9013] ^ 3.y~«a: 

[*37*105] 3!V^/«Afl-A (3) 

h. *22-621. 3h : Hp.3.a= 7{+tlR*Rr\a (4) 

h. (3). (4). 3 K Prop 

*96 52. : Re\-+ \ . a C RJ'B'R . g *•«• 3. g * min 

Dem. 
s/ 

I-. *96 51. Transp. 3 h : Hp . 3 . g ! a - R 0“a (1) 

K(l). *93111 . Ob. Prop 

This proposition is used in *122*23. 



*97. ANALYSIS OF THE FIELD OF A RELATION INTO FAMILIES 

Summary of* 97. 

In this number, we consider not only the posterity of a term, but the 

ancestry and posterity together. i.e. ~R*‘x v R#*x. We put 

Rlx = R*x u (i‘x n C‘R) kj*R*x Df. 

^Thus the whole family of a term. i.e. its ancestry and posterity together, 

is R*'x. The most important case here is when Re 1 1; in this case families 
are mutually exclusive, i.e. we have 

I- s R € 1 i . D * Cls ex9excl. 

In case^c 1-^ and y belongs to a family which has a beginning, i.e. 

in case g ! R+*y B‘R, the whole family of y consists of the posterity of the 
beginning, i.e. we have 

whence I": 12 e 1 —»1 . xBR. x%. D . *R.‘y ~ 

^^ 

*97-21. h : R el-» 1 . D . R#“s*gcn‘R = R+“B*R 

When Rel->1, the relation of gen-R to *R+“~B‘R may be pictured as 

the relation of rows to columns. E.g. let the field of R consist of the dots 

• . /T\. . B1" . 

A I- 
>1 
1 

t 
i" 

in the accompanying rectangle, and let each dot have the relation R to the 

dot below iL Then the top row is &R, the second row is (I‘R-<1‘R*, the 

third is Q Rt-(1‘R*, and so on; thus the rows are the generations of R. 

Again, if x is any dot in the top row, the column beginning with a: is *R#*x, 

and if y is any member of this column, the column is *R*‘y. Thus the columns 

are the families of R. It will be seen that in the case represented by the 

above figure, every family consists of a selection from the generations, and 

every generation consists of a selection from the families, i.e. 

R**R*R C D“eA'gen‘R . gen‘R C D“es*R^g‘B‘R. 
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The circumstances under which this occurs will be considered in the 

present number (*973—*47). Tin* results are summed up in *97*47. 

The remaining propositions (*97 5—58) are concerned with circular 

families of one-one relations. If Re 1 —► 1, /f*‘.r is a circular family if 

In that case, we have xRx^/. D.///?,«*»•; moreover there-is a definite 

power of R. say P. such that every member of the family of a-has the relation 

/' lo itself (*97*54). (The same will hold, of course, of all powers of P.) The 

families of a 1 —> 1 are all either circular or open, t.e. we have (#97*55) either 
<—i . , 

// € R+x • • ///e|0y. or y € R+*x. Dy .~(yRt„y). The ^-shaped families con¬ 

sidered in *9G are not. possible for a 1 —* 1, since in such families the term at 

iIn- junction of the tail and the circle has two predecessors. The family of 

anv member of .v‘gcn4/? must be open (*97*57). The family of a member of 

/>*<!“Pot‘/f nerd not be closed, but cannot have a beginning; if open, it 

forms a series of type *<o or + t*>, according as it has or has not an 
V/ 

• nil*. Finite open families are contained in *‘gen‘i? a «‘gen‘ii; families 

of type to are contained in s'gerfR n/ZCI^Pot'/i; those of type *to, in 

#*gt?n‘/f r\ y>‘( 111 Pot*; those of ty|»e*a> + c«> and circular families arc contained 

in />‘<I“Pot‘/f ny/tF'Pot'ii. Those of t\*|»e *to + to are distinguished from 

circular families by the fact that in the former we do not have xRtHlx, while 

in the latter we do have this. 

In addition to the propositions already mentioned, the most useful pro¬ 

positions of the present number are the following: 

*9713. h .tv* - V* w ^*‘*r 

*97 17. h . /V-r = R** u ^ " ^ik,^ w R^x 

*97 5. b : R e CIs -* 1 . xR^x. xRl>0y. D . yR,^ 

*97 501. b : « 1 —> CIs . xRllox . yR%tox . D . xRv^y 

*97 01. R*x = R*x v(i*xn C‘R) yj R*x Df 

Observe that “i*x r\ C‘R” means that x is to be included if it is a member 

of C‘R, but not otherwise; for i‘xr\C‘R = i‘x if xeC‘R, and otherwise 

t‘x r\ C*R — A. 

• Horc the typo is the type of converses of relations of typo u, i.e. tho typo of the 

negative integers in order of magnitude, ending with -1, u being the type of the positive 

integers in order of magnitude, and therefore *« + w being the type of negative and positive 

integers in order of magnitude. 
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SECTION E] ANALYSIS OF THE FIELD OF 

*971. 1- :.yeR‘x.= :yRx. v .,J = X ,xtC‘R. v. xRy 

Dem. 

V . *3218181 . *51*15 . (*97 01) . D 

I" :• y eR‘x • = • yft* . v . y = X . y C C‘R . v . xRy : 

[*13193] =iyRx. v .y = x.xeC‘R. v .xRy:. D f-. Prop 

*97101. I- z y eR‘x . = . x e*R‘y 

Dem. 

t-. *3218181 . *51-15 . (*97 01). D 

I-a e R‘y. e : xRy. v . * = y . a: e C‘R . v . yRx : 

[*971] =:ye*R‘x D h . Prop 

*9711. h . s‘R“C‘R = C‘R 

Dem. 

h . *07*1 .*4011 . D 

[*33 13 131.*13195] = : y * V‘R . v . y , C‘R . v . y e Q‘R : * * 

[*3316] aiytC‘Ri. 3 1-. Prop 

*97 111. = .xe*R‘x.= ,31*R‘X 

Dem. 

h . *971 .Dh.xe . = : ar/te. v . x e C*R : 

[*3317] ^ s: xeC'R ^ 

«! '*' ■’ I ij&r** - 
h . (1) . (2) . Dh. Prop (2) 

*97 12. H . A~e R+“C‘R 

Dem. 

y . *97 111 .*37-63 . 3 t- :ae*R+"C‘R . 3. . 3 > a (1) 

H.(l). *24-63.3 1-. Prop ‘ ' ’ 

*9713. 1-. R„‘x = R%‘x u R+'x 

Note Rm is to mean («*). not (fl)*. The latter is unmeaning, since is 

never a homogeneous relation, and therefore its square and higher powers 
are unmeaning. a 1 

Dem. 

h • *9012 .DHs y = x.yc C‘R . D . yR^x: 

[*5115] C*R^x. 

[*9014] D h . i‘x r\ C‘R+ C i£^c (1) 

^ • (1)‘* (*9701) .Dh. Prop 
a«c w i 

40 
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^ y ^^ 

#9714 I-: R e 1 -► 1 . x/?*y . D . /V* = R*'J [*«6*32 . #9713] 

*9715. I-: ft € 1 -> l . r c ftyy . D . 7?*'* = /Vy 

Dew. 
I-. *9713 . D K Hp . D :xft*y . v . yft*x (1) 

H . (1). *9714 .DK Prop 

*9716. hsftcl -»1 .D.^'C'/eeCIsex’excl 

Dem. 

. *9715 .Dh. Hp.D:xe ft*‘y .xr RJs. D, . Rm*x — ft*‘y • R** = R*: 

(*13 171] Or.R^ymR^z: 

[* 10-23] Z> s a ! ft*‘y A H+'z. D. ft*‘y - ft*‘* (1) 

H . (1). #1111*3 .*37*53.0 

h:. Hp.Dsa.tfeTv'C^ft.a! a -/9 (2) 

h . (2). *9712 . *34 132 . D I-. Prop 

*97*17. I-. /V* - /V* - ft*‘x v7?l>0‘x - ft1>0‘x u 7F*‘* 

Zfe»i. 

h . *97*13 . *91*54. D h .7?*‘x- u <i‘x a C‘ft) u ft,*'* (1) 

[*91 *504.(*97 01)] - /f|K/* (2) 

h . (1). *91 *54 . D H . TV* “ /?,-/* u Vx - ft*‘x w ft^x (3) 

h . (2). (3) .DK Prop 
^ ^^ 

*97 18 KC‘(ft[^‘*)=^‘** 

Dem. 

V . *37*41. D K C‘(ft £ T?x) C/£* (1) 

h.*971.*3613. D 

h :.x€C‘R . y e ft‘x u ft‘x. D :x(ft £ ft‘*)y. v . y (ft £ ft'*)* : 

[*33* 17] 3 : J*. y c C ^‘*) ^ (2) 

K (2). *971 . Dhxc C*R . 3 .^C C‘(ft [*£) (3) 

I- .*97111 .Trausp. D H: *~€ OR. D . 7*‘x C C‘(ft £ ft‘x) (4) 

h. (1). (3). (4). D H. Prop 

*97 2. h : xftft . 3 ./V* = ft*** 

Dem 

h . *93104. *9713 . D h : Hp. D . ft*‘* = i‘x u ft*‘x (1) 

I-. *93101 . *9012 . D h : Hp. D . * € R*lx (2) 

h . (1) . (2) . D h . Prop 
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*97 21. t-:Re 1 

Dem, 
1 . D . R+“s‘gen‘R = R*“B‘R 

*9722. 

*97 23. 

Dem. 

h . *9714-2 . D h Hp . D : xBR . xRmy . D . *R*‘X = . 

[*37'62] I.JISyt'RS'B'R: 

[*93 .36] => : y e s‘gen‘R . D . %‘y €^‘WR : 

[*37-61] D : 7?*“s‘gen‘7* C ^“WR 

H . *97-2 . *93-22 . D H . R C*R*“s‘gen‘R 
I" . (1). (2) . D h . Prop 

F- : Re 1 —> l . D . R^'B'R v /£*“/>'(! “Pot‘7£ = ^R^'C'R 
[*97-21 . *93 37] 

I- :: R“C‘R e 0 w 1 . a x,y c C‘7i . D,.y sx -y. v . xifcy . v . yRx 

(1) 
(2) 

h. *52-4. (*5401). D 

f-:s.i?«C^e0ul.a ••••a,/3e4R“C‘R.Dmtll.a-/3.. 

[*37-63] 
[*97-1] 

[*4*71] 

[*101] 

[*1315] 

= ::x,ye C*R . Dx<y. 7*‘x -= 7i‘y :: 

= ::x,ye C*R . Dx.y gRx. v . xe C‘R . * -x.y. xRt., 

• v . y e C‘72 . * - y. v . y7^ 
- ::x»y< . 3x.8» - v.^ai.v. x7£s : =, : 

_ • *7?y. v.z-y.v.yRz (1) 
D :: x, y € Gu7i. Dx y x72x. v . x — x. v . x7*x : = s 

x7fy . v . X = y . V . y7?x 

, , - ^z.v'-xRy. V ,x = y .v .yRx (2) 
F-. *101 . D (- ili.yiOfiij, x. ye C.R . _r : xRy.v ,x=y.v .yRx:. ~> 

X^2 • v -X — * . v . zRx : y7?z . v .y = z . v . zRy :. 
3:.xl?* . v.x = *. v.xRx: = ivRz . v.y — *. v.zRu (3) 

h .*33132 .Transp. *1314. D J K ' 

rJj 911 * CR ! Z~tC‘H '■ ° - V • zltx) .x±z-.~(yRz. v . zRy) . y^z-.. 

yRz .v.yi.v. ztfy (4) 
h . (3) .(4).Dh ::. x.ye Cl R . Dx y : x7*y . v . x = y . v . yTdx :. D :: 

<5> 

*97 231. F-:. <■ 0 u 1 . = : x e C‘fi . Z>, . C‘R -7?‘x « i‘x yj*R‘x 
Dem. 

H . *97*23 . *3218 181 . *51 15 . D 

hs.WlJeOwl.5:a?e^.D.^cJxwt‘xu^ (1> 

. *33152 . *51 2 . D h : x e C‘72 . D . 7£‘x w i*x \j *R‘x C C‘R (2) 
K(l).(2).DKProp 

: • 

40—2 
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*97-24. b :. /?***C‘/? « Oul.sut OR . 3X. OR - 7?**x w /F*‘* 

Deni. 

b. *07*231 .*0014.3 

h :. fiV'C* /? € 0 u 1 . = : a- 6 OR. 3,. C*/? = TV* u i *.r v /?*** (1) 

b . *00 12 . 3 b : x* OR . 3 . i«r C 7?*‘x (2) 

b . (1). (2). *22-62 . DK Prop 
^^ 

*97 241. b :: /?*“(."/? «0 ul.= :. x.yeOR. 3XiV: x/?*y. v . yR+x 

/)em. 

b. *07-24. *3218 181 . 3 
^^ 

b /?#“C*/? fOul . == nxeOR . 3, yeOR . =„ : x/?*y . v . yR*x (1) 

b . *00' 13.3b:. x/?*y . v . yR+x: 3 . y e C*/? (2) 

b . (1) . (2) • *4*73.3b. Prop 

*97 242. b :: V^OR e0u 1 . =:. x. ytC‘R. 3x.y : x = y. v . */?|loy . v . yR„0x:. 

= :.V('‘/^0u 1 

[*01-542 . *07 23 . *01*504] 

The remaining propositions of this number (except *07*5 ft*.) are concerned 

with proving that, under certain hypotheses, 

C D*‘cA*gen*/?, i.e. /?*M*fgen‘/? C DM«A*gen*/?, 

and gen*/? - # *A C 1 3“«A*/?*“^*- 

These propositions have the merit of proving the existence of selections 

in the eases to which they apply. 

*97 3. K7?*|*/?•/?« 1 -> * 

Deni. 
b. *0012.3 

b :. x, y € OR . R+x - R+y • 3 : y c R^x: 

[*91-54] 3: y = x. v ,xRl<ty (1) 

b . *01504 . 3b: xRx^y. 3 . y c Cl*/? : 

[Transp.*93*101 ] 3 b : y < ~B‘R . 3 . ~(x/?lloy) (2) 

b . (1). (2) • 3b:x,ye^*i?.^*‘x = J?#*y.3.x = y (3) 

b . (3). *71-55 . *72 12.3b. Prop 

*97-301. b . / r «(R*h‘~B‘R 

Dem. 

b . *7217 . 3 b . / [* OR € 1 -» Cls 

b . *0015 . 3 b . I [* ~B‘R G R* 

b . *50-5-52.3 b . a*/ I* 2?i? = ZPi? 

h . (1). (2) . (3). *8014.3b. Prop 

(1) 

(2) 

(3) 
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*97-31. h . (B‘R) 1 Cnv‘R# e e*‘R***B‘R . D‘|(B‘R) 1 Cnv'jR*) =~B‘R 
Dem. 

K *97 3. *85-13 ^*.3 

•---S* (R*)JB‘R . 3 . S | Cnv'B* e *Jr+‘&R 

I-. (1) . *97-301 . Dh./ C ~B‘RI Cn v?Rm e t*?R0“1}‘R . 

[*50-61 ] 3 I- . (B'R) 1 Cnv'-tf* r ts‘*R0‘‘B‘R 

I-. *35-62 . *33-431.3 h . D‘[(B‘R) -| Cnv'^.l = ~R‘R 
h . (2) . (3) . 3 h . Prop 

*97 32. I-.B‘Re D ••eA‘*R0‘rB‘R [*9731] 

*9733. h:.Rel ->1 . a C s‘*Rm“0 . 0 C s‘*Rm“a . 3 . *R0“a - *Rm“0 
Dem. 

h . *9715 . Fact. 3 h Hp . 3 : y ,0 . x t*Rm‘y . 3 .*R0‘y - *R0‘x. y e 0 . 

[*3762] 3.5v*«**‘7S 

h • (1) • *10 11-21-23 . *40 4. 3 f-Hp . 3 :xe«‘rt»“/9.3. .*Rm‘xe*Rm<‘0 : 

[Hp.Syll] 3 : x« a . 3..*R0‘x e*R0“0 : 

[*37-61] 3:fl,“.C«,‘‘/3 

h . *404.3 I-Hp . 3 : y e 0.3 . (gx) .xea.ye R0‘x. 

[*97-15] 3 • (3*) • x e a . *Rm‘x — *R0‘y. 

[*37-62] 3 .*R0‘y e*Rm“a 

y . (3) . *37-61.3 y : Hp. 3 .*R0"0 CR0“a 
I-. (2) . (4) .31-. Prop 

*97 34. H : R e 1 -» 1 .3eDVfi,“« • 3 -*R»“a = *Rm“0 
Dem. 

h . *83 6-62 . 3 h Hp . 3: x « a. 3. . g ! jS n*R0‘x: 0 C s‘*R0‘H 

(1) 

(2) 

(3> 

O) 

(2) 

(3) 

(4) 

(1) 

(2) I-. *40 4 . *97101 . 3 y x e a . 3, . g ! R n R0‘x. = . a C s‘R0"0 
t-. (1). (2) . *97-33.31-. Prop 

*97 341. y-.Rtl-tl.0e D “eeCR0,7B,R . 3 ,*R0“0 =*R0"’b‘R 

[*97-34 B‘aR. *97-2] 

*97 36. l-:ie«CU-»1.7’e Potid'Ji . ~B‘R C D'T. 3 . 

Cnv'ft.ft, [- B‘R) | T\ e eS*R0“~B‘R. d‘((«* f- ~B‘R) | T\ = T“l3‘R 
Dem. 

I-. *97-3 . *92 101.3 y -. Hp. 3 . Cnv*{(fl. f~B‘R) | T\ e 1 —* Cls <1) 
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f- . *35101 .*30-4.3 

T)'/. = .{&x).xi?itR.a=*R1f!tx.xTij (2) 

h .*91 • 58 . 3 b s. Hp. 3 : .# 7// . 3 .»/ e 7f*'.r: 

*1312] 3 : a = . xTy. 3 . y € a (3) 

H.(2).(3). 3 h Hp . 3 :a [(T^fTf'T?) 7*) y. 3«.„. y e a : 

[*23 1.*31131] 3:Cnv‘j(7f*rT?7?) 7’j G c (4) 

h . *37 321 . *35-65.31-: Hp. 3. D*[<7?*f 7**7?) 7*1 = 7?*“7?*7? (5) 

I- . (1). (4>. (.-»). *80 14. 3 V : Hp. 3 . Cnv‘((tf* [* Tf'T?) | 7*J * <At4R»“~B‘R (0) 

H . *35-65 . 3 h - 1?‘<R • 

[*37-32] 3 A\‘\(XrH‘R)\r] = r**7?7? (7) 

K((i).(7).DK Prop 

*97 36. h : /?€CIh-»1.7< Potid‘7?.7?7? C D‘7\ 3 . f“J?R e 

[*97-35] 

*97 37. 1-: 7? « 1 -> 1 . CI‘7? C 1>*7?. 3. gcn‘7? C D“'ARS'D1 R 

Dem. 

h . *9214. 3 I-Hp. 3: Tt Potid‘R. 3 .7?* 7? C I>‘7’ (1) 

h . *93 32 . 3 H :. Hp. 3 : a * gen *7?. s . (gD. 7*< Potid* A . a = fi'li'R (2) 

K (1). (2). *97-36. 3h. Prop 

*97 38. »-:/?«! —* 1 • <1*7? C D*7? . 3 . JV‘7?7? C l>*‘cA‘gcii*7? 

Dem. 

h . *93-36. *40-52 .3 h:Hp.3. s*7?*“77*7? = *‘gcn‘7? (1) 

h . (1). *84-43 . *97-37 . *93 25 . *97 16-21 . 3 h . Prop 

*974. h:.S'« Pot*7? . 3 .S“Z?£ = A 

Dem. 
h . *91-31. 3 H : Hp. 3 . <37*). Tc Potid‘7?. 5= 7?| 7*. 

[*37-341] 3 • (37*) • 7*€ Potid‘7?, 5**/?*/? — T**./?**/?/? 

[*37 2G1-29.*93 101] = A . 

[*10-35] D.S“B‘R = A : 3 f-. Prop 

*97 401. h :.*€ D‘7? : 5 c Pot* 72 .xSy. 3$. „. ye D‘R: 3: Se Pot* 72. 3s.;reD‘& 

Dem. 
h . *3313 . 3 H Hp. 3 : £« Pot* 7? . xSy . 3*,y . (gr). i/Rz . arSy. 

[*341.*3313] Ds>v .x € D*(S| R): 

[*10-28.*33-13] 3 : *$ c Pot*R . or e D‘S. 3S. .r € D‘(6’ | R) 

1-. (1). *91*373 .DP. Prop 
(1) 
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*97*402. h :. R € Cls —» 1 . * e T>‘R : (aS) . S e Pot *R . x ~ e D‘S: D . 

(a S). s e Pot‘/e. s‘x €~b(Sr 
Dem. 

H . *97-401 . Transp . D h : Hp. D . (a«S. y) . Se Pot‘i£ . xSy . y ~ e J)‘R . 

[*91-271.*3314.*93101] D . (3S.y). Sc Pot‘7* . xSy . y e ~B‘R . 

[*71-321] D . (gS). Se Pot‘72 . S‘x€~B‘R .Oh. Prop 

*97 403. h : R € Cls—► 1 . x e B‘R . Te Pot‘R . ~B(R«= T“li‘R . D . 

(3^) . 5 € Pot'ft . x ~ e D‘S 
Dem. h . *92131 .Dh.Hp.D: xTy . xTz . zRw . D . yflw, . 

[*3314] D.y~€~B‘R (1) 
h . (1). *11*11,3,35 . D 

h :: Hp O :. xTy : (g*. w) . xT* . zftw O . y ~ c~B‘R :. 

[*341 .*33 13] D :. xTy. x e D‘(T\ R) O . y ~ € 

[Transp] D s. xTy . y « B‘R O . x~eD‘(T\R) (2) 

h . *10-24 . D h : Hp.x~«D*T. D . (gS). 6 Pot'/Z .x~cD‘S (3) 

h . *37 105 O h : Hp . xTy O . y c 7?i* . 

[<2>] :>.x~el>‘0r|/e) (4) 

h . (4). *10 11-23-35 . *33 13 . D 

h : Hp.x«D‘7’0.x~«D<(7,|/2). 

[*91-282] D . (gS). Sc Pot‘7* .x-fD‘S (5) 
h . (3) . (5) O h . Prop 

*97 41. b : R e Cls—► 1 . x e~B‘R . T e Pot‘R . IvR = T“lvR . D . 

*97 42. 

Dem. 

*97 43. 

[*97-402-403] 
(gS) . 5 e Pot‘7e . S‘x e IVR 

b:Rel-+l.x€B*R.S,TePot‘R.-B*R = r“'B‘R.S*xe'B‘R.D.S-T 

h . *37 6 . D h : Hp . D . (gy) . y e~BlR . S‘x = Tly (1) 

h . *37-62 .(l).Dh:Hp.Di‘xf S‘*B‘R n T**B*R . 

O93 3] D . S‘x c tmn/t‘<l‘S * tmnJ{‘<1‘T. 
[*93 24.Transp] D . 5 = T O h . Prop 

h:i£*l-*l . r€PotVft.2?ie=2^‘^/eO.Z?‘72CD‘T 
jDem. h . *97-42 . D 

h Hp .xeB‘R O : Sc Pot *R . S*xc~B‘R . D . T‘xe~B‘R : 

[*1011-21-23] D : (gS) . .Sc Pot'i* . S‘x€~B‘R . D . T‘xell‘R : 

[*97-41] D : 2*x e "~B‘R s 

[*14-21] D : E ! T*x : 

[*33-44] Ds*6 D‘T sO h . Prop 
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*97 44. P : 7? e 1 —* 1 . «S\ 7’ c Pot*/? . B'R = T“BlR . 3 ! S“/P/?.D. B‘R C D*S 

Dem. 

P. *91-45. D I-:. Hp.D:(atf): Ue Potid*/? :S = 04 T.v.T = U\S (1) 

P . *97 4 . DP:. Hp. D : 0 € Pot‘7? . S = 0|7*. D. 5**3*/? = A : 

|*91*23] D : 0cPotid*/?.S«0 7’.3!.?“/?7? . D . U = I[C‘R. 

[*50 03.*91-271] D . .S = 7*. 

[*97-43] D.MCD'S (2) 

P . *91-34. D P Hp. D : 0e Potid*/? ,T=U S. D . 7* =* £ 1 0. 

[*34 30] D . D‘7CD‘S. 

[*97-43] D./P/<C1>‘S (3) 

P . (1). (2) . (3). Df- . Prop 

*97 45. P: R < 1 -> 1 ./P7? < gen*72 . D . gen*/? - PA C 1>‘*<A*/?*“7P7? 

Dem. 
P . *97-44 . *1011-23-35 . *93 32 . D 

P : R c 1 -> 1 TP/?1 gen*/? . .S’ € Pol*/? . 3 ! S“&R. D . B‘R C1 >*5. 

[*97-30] D. 5**/P/? € D**€A‘/5y*U*/? (1) 
P .(1).*13-12 . D 

P : /?c 1 ->1 ."3*7? egen*/?. St Pot*/? . a = S“BfR . 3 ! a . 

D.atD **cA*/?***/**/? (2) 
P . (2). *1011-23-35 . *93-32 . D 

P: 7?e l-> 1 .If1 lit gen*/?. a € gen‘7? . 3! a. D. a € D*‘«A */?***/?*/? (3) 

P. (3). *53-52. DP. Prop 

*9746. P : 7? € 1 -»1 .TP 7? € gen*/?. D . /?*“/?/? C D‘*fA‘(gen‘7? - PA) 

Z>em. 

P . *93-30 . *40-52 .DP: Hp . D . «*/?*“ JP 7? = s‘gen‘7? 

[*53 18] = P(gen*7?-f‘A) (1) 

P . (1) . *84-43 . *97-4516-21 . *93 25 .DP. Prop 

*97 47. P : 7? e 1 -> 1 .3*7? * gen*7? upA . D . 

gen*7? -t‘AC I)‘*eA‘7?**‘/P/? .7?*“/?*/? C D“eA‘(gen‘7? - PA) 

Dem. 

P . *93-32 .DP: TP7? = A . D . gen‘7? = PA (1) 

P . (1) . *37-29 . D P i~B‘R = A . D . gen‘7? - PA = A . 7?*“7P7? = A . 

[*2412] 3 • gen*/? — i*A C D* *€**/?**‘TP/? . 

%r&R C D“eA*(gen*7? - PA) (2) 
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I-. *24*3 . Fact. D 

I- : R e 1 -> 1 . a IB‘R .~B‘R = A.D..Rel—►l.g! ~B‘R. a‘R C D ‘R . (3) 

[*9341] D.A~egen ‘R. 

[*51-222] O . gea'R — t‘A = gen‘R . 

[(3).*97-37-38] D . gen‘R - t‘A C . 

*Rm,rB‘R C D“ei‘(gen‘R - t‘A) (4) 

(•. (2). (4) . D I- : R e 1 -»1 ,~B‘R = A . D . gen'R — i‘A C D“eS*R+“li‘R . 

K *97-45-450 C D^(gen A) (5) 
—> « ^ ^ 

h : R e 1 -* 1 . B*R € gen*R . D . gen47* -1*A C D44^4#*"#'^ . 

h . (5) . (6) . D K Prop «*“** C " ‘‘A> (6> 

*975. t- : Re Cls—> 1 . xRIK>x . x R^y . D . y721>0a: 
Dem. 

I- . *92-111 . D P Re Cls—► 1 . xR^x . xRy . D : yR^x : 

O91'54] Ozy-x.v .yR^xz 

fHP] 3 : yRlto* 
I- . *101 .*341 .Dh:.72eCls-*l .xRxtox.PeVot*Rz 

xPy . Dy . yRlHtx : xP i Rz : D : (gy) . yi^a;. y7*s : 
[*92-111] DzzR+xz 

09154] 2 : z = x. v . zRllox: 

tHP] 3 •* (2) 
I-. (1) . (2) . *91171 *Df*:/2e Cls—> 1 . xRlHJx. P e Pot *R . xPy . D . yRltox : 

[091 05)] 3 P : R * Cls—► 1 . xRltox. xR^y . D . y721(0a:: D h . Prop 

*97 601. h : R e 1 -*Cls . ar/?1KJx. y7*I>0a:. D . xRltoy [Proof as in *97o] 

d) 

*97 61. h/2el-»l. . D . 7i*4* = R+*x - 7**4a: = ft*4a: ^ R**x 
O97-5-501-17] 

*9762. h : Re 1->1 .xR^x .xRlH)y .D .*Rm‘x ='*Rm*xf\llm*y [*97-5-501-51 14] 

*9763. biRel-+l.P€ Pot *R . xPx. y e 7?*4a:. D . yPy [*92132133] 

*97 64. P : A < 1 -»1. xR^x . D . (gP) . /> € Pot4R . 7^ f = 7 P TO‘* 
[*97-53] 

*97 66. 

Dem. 

D h s. Hp . arA^a; - D : y e A*4ar. Dv . yR^y h . *97-53. 

P • jjT^ • Transp .Dh Hp . ~ (xR^x). x e R*y . 3 . ~ (yR^y) 

(1) 
(2) 

h . (2) . *97101. D h Hp . ~ (xR^x) .D:ye R+*x. Dv. ~ (yTipoy) (3) 
h . (1). (3). D h . Prop 
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*97 56. 1-:. /?€ 1—>1 ,j-e B*J{. 0 z yc 7?*‘.r . D,. ~ < y/?1(0<y) 

[*!M>*23*I . *5)7-55] 

*97 57. y /?< 1 —> 1 .-res‘gen‘7? . D : »/ e /?**.»• . Dv . ~ (y/?l>0y) 

[*5)7*21-56] 

*97 58. h :. 7? c 1 —►CIs . D : .r € s‘gen‘7? . D . 7?*‘.r C s‘gen‘7? : 
<-» 

.*• €y/G“Pot‘7? . D . /?**.# C ;/<[“ Pot‘7? 
hem. 

y . *5)3*412 . DK /?“//< I “l\»t‘/? C j>‘CI“Pot‘7? (1) 

[*OO l01.*93-273.*37 265] D y . /t'Vgvn'ACj'gi'n'/? (2) 

h . *5)3*33. #4013-38-43 . D f*: // « 1 —>Cls. D . }?“«<gcn‘J? C s‘gen‘7?. (3) 

[#5)0*101.*03*271.*37-265] D . /?“/>•< I “Pot‘7? C />‘<l“Pot‘/? (4) 

h.(1).(2).(3).(4). *00 22 . *40-5-52 . D 

h :/?« 1 —►< ’!*. D . .v*/?#‘Vgen‘7? C s‘gen‘7? . 

s‘/?*“;>'<!“Pot‘7? C />‘(T“Pot‘/? : D h . Prop 

It. follows from this proposition that every family is either wholly contained 

in the generations of It or wholly contained in />‘G“Pot‘7?, which may be 

called the residue of t he field of /?. 
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*8. THE THEORY OF DEDUCTION FOR PROPOSITIONS 

CONTAINING APPARENT VARIABLES* 

All propositions, of whatever order, are derived from a matrix composed of 

elementary propositions combined by means of the stroke. Given such a 

matrix, any constituent may be left constant or turned into an apparent 

variable; the latter may be done in two ways, by taking “all values” or 

“ some values.” Thus, if p and q are elementary propositions, giving rise to 

p\qt we may replace p by <f>x or q by >/ry or both, where <f>x, yfry are pro- 

positional functions whose values are elementary propositions. We thus 

arrive, to begin with, at four new propositions: 

(*).(<t>x\q), (g*).(^|?), <yM/>|*y>. (ay)-(pl^.v). 

By means of definitions, we can separate out the constant and the variable 

part in these expressions; we put 

*8 01. }(#). <f>x\\q . ■= .(a*). ($* 19) Df 

*8 011. \(^x).<t>x\\q.~.(x).(<f>x\q) Df 

*8 012. p\ ((y) . yfry\ . - . (ay) . (p\yfry) Df 

*8 013. p|((ay)-*y|---(y).(p|*y) Df 

These definitions define the meaning of the stroke when it occurs between 

two propositions of. which one is elementary while the other is of the first 
order. 

When the stroke occurs between two propositions which are both of the 

first order, we shall adopt the rule that the above definitions are to be applied 

first to the one on the left, treating the one on the right as if it were ele¬ 

mentary, and are then to be applied to the oue on the right. Thus 

[(x) . 4>x) | {(y) . yfry) . = : (g*) : <£x| {(y) . yj,y] : 

- 2 <a*) s (ay) • (<M ^y)- 

The same rule can be applied to n propositions; they are to be eliminated 

from left to right. If a proposition occurs more than once, its occurrences 

must be eliminated successively as if they were different propositions. These 

rules are only required for the sake of definiteness, as different orders of 

elimination give equivalent results. This is only true because we are dealing 

with various functions each containing one variable, and no variable occurs on 

both sides of the stroke; it would not be true if we were dealing with func¬ 

tions of several variables. We have e.g. 

(a*) 2 (y) • = = = (y) = (a*) • (4>x\^y)- 

• This chapter is to replace »9 of the text. 
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Hut we dn not have in general 

(a*) :(//)• x(x> //>: 5 : (y): <3X> • x (*• y) • 
here the right-hand side is more likely to be true than the left-hand side. 

For the present, however, we are not concerned with variable functions of two 

variables. 

It should be observed that this possibility of changing the order of the 

variables is a merit of the stroke. We have 

(gx): <y> • <t>‘ I: = : (y): (gx). ‘MV'7/ : = : (H*r) $x. v . (y) . ~ yfry. 

That is, these equivalent proj>ositions are true when, and only when, either <f> 

is sometimes false or is always false. But if we take e.ff. 

4>r v >\ry . ^ <f>j v ^ yfry 

wo shall not get the same result. For 

(gx) : (!/) • 4>r v 't'H . ~ 4>r v ^ yfry : D : (y) . yfry . v . (y) . ^ ^ry, 

w herons (//>: (gx) . </>.# v yfry . — <f>.r v ~ >\ry does not imply this. 

Written in stroke notation, after some reduction, the above matrix is 

14>' I (1^)111 I (‘ I > I • 

Here both ./• and // occur on both sides of the principal matrix. Thus in order 

to be able to change the order of " (gx)" and "(•/).’ it is sufficient (though 

not always necessary) that the matrix should contain some part of the form 

<f>r | \fty. and that x and y should not occur in any other part of the matrix. 

(This part may of course be the whole matrix.) We assume the legitimacy ot 

this interchange by a primitive proposition, and in practice arrange to have 

all the g-prefixes ns far to the right as possible, because this facilitates proofs. 

Our primitive propositions are the following: 

*81. h. (a r» y> • <*»« I ( 14>y) Pp 

On applying the definitions, this is seen to be 

h : <f>a . D . (gx). 4>x. 

*811. h .<f).r\(<t>a\<f,b) Pp 

On applying the definitions, this becomes 

h : (x). <f>x. D . <pa . <f>b. 

We have <fxt\(<f>a\4>b). v. <t>b j (tf>a j </>&) 

and by *81 h : 4>« (4>(l 4>*>) • 3 • (3*) • 4**! (<*>“ I 4>b) • 

<f>b i (<f>a | 4>b). D . (gx) . <f>x | (4>a | <f>b), 

but we cannot deduce (gx). <f>x\(<f>a {(f>b) without *811 or an equivalent. 

*812. From “ (x) . <f>x ” and “ (x). tf>x D y\rx " we can infer “ (x) . 4rx," even 

when <f> and yfr are not elementary. Pp 

*813. If all occurrences of x are separated from all occurrences of y by a 

certain stroke, we can change the order of x and y in the prefix, i.e. we can 

replace “ (y) : (gx) . <f>x I yfry " by “ (gx) : (y) . <f>x | yfry ” and vice versa. Pp 
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The above primitive propositions are to be assumed, not only for one or 

two variables, but for any number. Thus e.g. *8*1 allows us to assert 

b : <f> (a,, at, ... an) . D . (g.r,, x3, ... xn) . <f>(xlt xt, ... xn). 

*8*2. I-: (x) . <f>x. D . <f>a ^*8ll^J 

In what follows, the method of proof is invariably the same. YYTe first 

apply the definitions until the whole asserted proposition is brought into the 

form of a matrix with a prefix. If necessary, we apply *813 to change the 

order of the variables in the prefix. When the proposition to be proved has 

been brought into this form, we deduce it by means of *8111, using *812 in 

the deduction if necessary. It will be observed that *8T is l~z<f>a. I>.(gar).<£./•. 

Hence, by *812, whenever we know <f>a, we can assert *81 is often 

used in this way. 

*8 21. I- (ar) . <f>x D \Jrx . D : (gx) . <f>.c . D . (r>\x) . yfr.c 

Dem. 

Applying the definitions, and using *813, the proposition to be proved 

becomes 

(i/» y) : (a*. *> \4>* O'* | yfrx)\ | [\<py\('l'2 \ ^w)} I [<f>y'| (^' I 
Putting z = w = z = xu = x, the above becomes 

(y.y) • (a*)• \4>*Ii +*)} W*I+*)] i i4>y', | ^r))]. 
By *81, the proposition to be proved is true if this is true. But this is true 

by *811, putting y, y' for a, b and <f>y | (yfrx 1 \frx) for <f>a. Hence the proposition 

is true. 

*8*22. h : <f>a v <f>b • D • (a#) . <f>x 

b . *811.3 b . (a*) • <f>z) | (~ <f>a , ~ 4>b) (1) 

Transp . D h : <f>z) I <f>a ~ tf>b) . D . (<f>a v <f>b) | (<f>z <f>z) (2) 

b - (1) • (2). *8-21 . D h . <a*) . (<f>a v <fib) | (<fiz \ <f>z) (3) 

b . (3) . *8T'21 . DK (g*, «/) . (<f>u v <f>b) i (tpz j <f>tv) . 

[(*8 012 013)] D h : <f>a v <fib . D . (g*) . <f>x :D\-. Prop 

These propositions, as well as all the others in *8, apply to any number of 

variables, since the primitive propositions do so. 

*8 23. h : (a*1) • <f>x v <f>c. D . (a®) • <t>x 

Dem. 

Applying the definitions, this proposition is 

(*) s (3 y. 2).(fcv <f>c) | (<f>y | 4>z), 

i.e. • (x) : <f>x v <f>c . D . (a^) • 

which follows from *8*22. 
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I'he following propositions are concerned with forms of the syllogism. 

*8 24. I-yO 7. D 7 . D . (gx). <£x: D :p . D . (gx). 

Dem. 

Applying the definitions, we obtain a matrix 

(/°7> l (7 «</»'• 0//)) (/> (fa <t»») p (<*>// (fir))] 

. , „ !the same with accented letters! 1 
with a prefix 

(•r. //. **■'. $0 s (a*» w>11 ■ **. «»'. «\ *»')• 

Mv *8*1, this will be true if it is true for chosen values of z% w, u, v, z\ w, u\ v. 

Put : = a =j. w —v= I/, z' = u = x . w' = v = >j. Then what has to be proved 
becomes 

p Dr/O v . D . <*>/.«/>// : D :p . D . <*>r . $,j s.r/. D . $x'. : D : y>. D . 0/. 

w hich is true by Syll. Hence the proposition follows. 

*8 241. H :: (x). 0, . D . y> : D yO 7 . D : (x). <£.r . D . 7 

/<**>•-• I/' <7 7>! l\4>!/ (7 7)i !+* (7 7)1]. 
the matrix of the proposition to be proved is 

and the prefix is <x): (g//. /, r'). Putting y - s - y' - t' = 

reduces to </>./Oy>. D : yO7 . D . <£.10 7. which is true by Syll. 

proposition is true by *8’I. 

the matrix 

Hence the 

*8 25. 3. <3*). <f>'s D <gx> . <*» . 3 . (gx). O : ;>. 3 . (gx). 
Deni. 

Put /(.c, y. X. a).-. |£, <>fry ^*‘)||[|p (+>• >fre) j jy, 

Then the projiosition to be proved, on applying the definitions, is found to 

have a matrix 

\P (4>a \/{T,i/,ztu, v,m. n) u'.v\ m\n)\ 

with the prefix 

(<i, 0,1/, s, •/', z) : (gx, u. r, m. a. x\ v, m, n). 

Put x — u . x = b . u = v = i/ . m = n = z . u = v = y . m = n = z. 

Then the matrix reduces to 

j>. D . <f>n . <t>0 : D <fja . D . yjri/ . yfrz : 0 : p . D . yjrp . yfrz 

yfnj. yfrzD :p. D . yfri/'. yfrz, 

which is true by Syll. Hence our proposition results by repeated applications 

of *8*1*18. 

Analogous proofs apply to other forms of the syllogism. 

*8 26. h : <f)ii v <f>b v <f>c . D . (gx) .<f>xv<pc 

Deni. 

H : tf>a v <£& v <f>c . D . (<£</ v <£c) v (</>£» v <£c) 

f- . *82*2 .Dh:(^v^c)v (</>& v <f>c). D . (gx) ,<f>xv<f>c 

h .(!).(2) - *8*24. D H . Prop 

(1) 
(2) 
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*8-261. h : <f>a V <f>b v <f>c . D . (gar) . <£.*• 

[*8-25-26-23] 

It is obvious that we can prove in like manner 

and so on. <t>a v <pb v <f>c v <f>d . D . (ga?) . <fxc 
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*8-27. K :: y . D . (gar) . *x : D /O y . D . D . (gx) . «£ar 

Dem. 

Put /(*. y, «. v).=. Ipi (iftx, <t>i/)) I \p I (<(,„ I </>U)}. 

Then the matrix is 

[q | (<t>a | <f>b)j | [j(/> D q) | /(x, y, u, t/» | {(p D y) \f{x\ y\ u, v')j] 

and the prefix is (a. b) : (gar, y, u, v, x', y\ u\ v'). 

Putting x= u = x'=u=a.y=v = y’ = v'=b, the matrix becomes 

q . D . <f>a . <f>b : D p D q . D : p . 2 

which is true. Hence the proposition. 

*8 271. V :: y . D . (gar, y) . <f> (x, y) : D p D q . D : p . D . (gar, y) . ^ (iC> y) 

[Proof as in *8 27] 

It is obvious that we can prove similarly the analogous proposition with 

</> (a;,, ara, ... ar„) in place of <f> (ar, y). 

*8 272. h ::.p . D : y . D . (gar) . <f>xD :: r D /> . D r . D : y . D . (g*> . 0* 

Dem. 

7 . D . (gar) . <£ar is (gar, y). q | (<f>x j <f>y). Hence the proposition results from 

*8 271 by the substitution of p for q, r for p, and q\(<f>x | <f>y) for <f> (x, y). 

*8 28. I~ z:p.D . (gar) . <f>x z D q . D . (gar) . <f*x z D z pv q . D . (gar) . <j>x 

Dem. 

Put /(ar, y,z,w). = . {(/> v y) | (£ar j <*>y)) | {(/> v y) | (<f>z | 

Then the matrix is 

IP I (0a I <f>b)\ I [(('/ I (<t>c I <t>d)) |/(ar, y, *, «0) | |(y | («£c' | ')) |/(x', y', «,'))] 

and the prefix is 

. (a, 6, c, rf, c', d') : (gx, y, *, «/, x', y, z\ w'). 
Ihe matrix is 

p . D . <£a . : D y . D . <t>c . : D -/(x, y, z, u/) 

y . D . <f>c'. <f>d'. D ./(x', y', s', w/), 

while ' f(*,y,z, w) ,=zpvq.D. <f>x . <f>y . ^>2 . <j>w. 

Call the matrix /*(ar, y, z, w, x\ y, z\ w). 

Then hsp.D. F(a, b, a, b, a, b, a, b), 

: ~p . D . F(c, d, c, d, c, d', c, d'). 

h : F(a, b, a. b, a, b, a, b) . v . F (c, d, c, d, d, d> c, d'). Hence 
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Hence, by the extension of *8-261 to eight variables, 

*" • n\ x, y, z, w) . F(x, y, z, w, x, y, z , w ), 

which was to be proved. 

*8 29. V <f>xO yfrx . D : (x) . tfrx . D . (a:) . \jrx . 

Item. 

Applying the definitions, our proposition is found to have a matrix 

(tfixDfx) [l<fiyl(y/r/t i>Jrp)l !<t>y'l(yjsu' |>K>1] 

with a prefix (after using *818) 

<". ">'):<g.n y. y). 

The matrix is equivalent to 

<t>.r D y\tx . D : 4>y . D . yfni . yfrv : <f>y'. D . yfru' . \Jrv\ 

Calling this M {x.y.y), we have to prove 

<:**• y. y') • M (•«% y. y>. 

If yjru .yf/v. yffu . yfrt?, M (x. y, y) is always true. (1) 

If put ur = // = y = a. Then if <f>u is true. <f>u D \fni is false and 

M <". ", ") is true. Hut if <f>u is false. (f»i. Z> . and <f>u . D . \jru\frv are 

true, so that M (u, ", u) is true. Hence 

^ M ('0 (gr. y, y) . J/ (a;, y, y). (2) 

Similarly if '^ylrvv'^yfni'v^yjrv. (3) 

(1), (2), and (’I) exhaust possible cases. Hence the result by *8 28. 

We are now in a position to prove that all the propositions of *1—*5 

remain true when one or more of the propositions p. 7. arc first-order 

propositions instead of being elementary propositions. For this purpose, we 

take, not the one primitive proposition which Nicod has shown to be sufficient, 

but the two which he has shown to be equivalent to it. namely: 

/O p and p D 7 . D . 7 D p | g. 

We show that these are true when one, or two. or three, of the propositions 

p. 7, a* are first-order propositions. From this, the rest follows. The first 

of these primitive propositions, /O p, gives rise to two cases, according ns we 

substitute (x). <£.c or (%\x). <f>x tor p \ the second primitive proposition gives 

rise to 26 cases. These have to be considered one by one. 

*8 3. h z(x) ,<f>x.D. (x) . <f>x 

Applying the definitions, this is (gar) : (y, z). <f>x | (<f>y | $z), which follows 

from *8T1 by *8*13. 

*831. H : (gar) ,<f>x.D. (gx) . <f>x 

Applying the definitions, this is (x) : (gy, z). tf>x | (<f>y 1 </>*). This is *81. 

This completes the proof of p D p. 
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(1) 
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*8 32. 1-:. («). <^r. D . 7 : D : 51 g . D . {(*) . 

Putting />. = .(*). <f>x, the proposition to be proved is 

By the definitions, (Pi~?)!~l<S I ?> I~0> I *»• 

P l~9 • = • (3“) • 4>a I (919), 

p|*- = - (a*) -<t>x |«, 

~<P I *)• = •(*. y) . (£* 1 s) j (<£y | s), 

(* I 9) l~(P I *) ■ = • (a*. y) ■ (S | 9) | |(<#>x j s) | (<f>y | s)j. 

,, • = • (s I 9) I ((4>* I s) | (*y | s)J. 

Then ~ [(»| 9) I ~(P | S)1 . - . (x, y, x'. ,f) ./(*, y) |/<x', y'). 

By (1) and (2), the proposition to be proved is 

<“) : (ax.y.x.y-) . |^,a|(9|9)| | |/(x,y)|/(x',y')]. 

I Utting x-y-x -y'-a, the matrix of this proposition reduces to 

<f>a D . D . s | D <£a J s, 

which is our primitive proposition with substituted for p, and is therefore 

true. Hence the proposition follows by *8 1. 

In what follows, the reduction of the proposition to be proved to a matrix 

and prefix by means of the definitions, proceeds always by the same method, 
and the steps will usually be omitted. 

*8 321. I-(a*) .«x.D.9:D:,|9.d. (<ax) . ^ j s 

prefu'is0bt'lin thC S“me matriX “ in *8:J2, b,,t th° °PP°sit« prefix, ».*. the 

rn. ... . , (x> y> at, y): (ga). 
1 he matrix is equivalent to 

<f>aDq.5zq . D . <f>x D~s . <f>,j . <f>x' . <f>y' D~s. 

Calling this/a, we have to prove (3<i)./a, for any x,y,x',y'. We have 

<f>a .D ,fa. 

Also 4>a . 9 . D -..fa . = : . D . <£x D . <f>y 0~s . <f>x D~«. ^.y' D~s:. 

D :./a. 

Hence <f>a . D ./a. 

Hence by *8-1-24 *x . D . (ga) ./o, 

and similarly for <f.y, fx’, <f>y. Hence by *8 261 

^v^yv <£x'v 4>t/ .O. (get) .fa. 

AIbo • ~4>y —*x' —4>y". D .fa . 

Hence by *8-28 [*M‘*4] 3 • (3<*) •/«• 

T — 4>y — <^r' — <£y': 3 - (a a) -/a. 

Hence, by *812, (ga) .fa, which was to be proved. 

HtW I 
41 
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*8 322. I- p . D . (x). >/fx : D : s I(x) . \pxJ . D . /> s 

l)em. 

Pllt /y.=.(« >/ry) |(/> S) (/> S». 

Then the proposition to be proved is 

(.'/■ y) ■ (a*. 0 • \p' W tc)l l (/y /y')- 

The matrix here is equivalent to 

p. D . >/r A . >/rc : D : s >^y . D . /> *: s >Jr#/ . D . p s. 

Putting b = y . c = //, this follows at once from the primitive proposition, which 

gives 
p D y/ry . D : .v ifry . D . y> «, 

/> D '/ry' . D : .v >/ry'. D . p S. 
Hence the proposition. 

*8 323. h D . (gx). D : .v j(g.r). . D . /> « 

We have the same matrix ns in *8-322, but the opposite prefix, i.e. 

(^.c)s(ay.y). 

Putting y = b . y' = c. the matrix is satisfied, jus in *8 .322. 

*8 324. h./O'/.D: |(x). xxl 7 • ^ K-0. x-'*) 

J)eni. 

Put f(x,ytz). — .{xx V)ll(Plxy) (P X*)l- T,lcn the matrix is 

I /> I (71 7)! 11/<*. //• -) /(*'. /. *')| 

and the prefix is (.r, x') : (gy, s,y, s'). Putting 

y=-z=*x.y’ = z'~x, 
the matrix is equivalent to 

/; I) 7 . D : *.r17 . D .p Xar: x*‘\q. 3 ./>| X-r'. 

which follows from our primitive proposition by Comp. 

*8 326. I-;0 7 . D : l(gx) • X*I 17 • ^ I (<3*) • X-1’! 

I) cm. 

The matrix is the same ns in *8.32+, but the prefix is the opposite, i.e. 

(y> z, y, 
('ailing the matrix M(x,x), we have, if 0w. e^.^xw'. 

M(xtx). = :: p D 7 . 3 7 0 6* • 3 : p . D . 0y .0z:.qO 0x .D :p ,0y'. 0z. 

H ence 0.7 . 0* • . 0z'. D . Jl/ (x, x) . D . (ga:, x'). <1/ (ar, x) (1) 

But ~Ox .~0x'. D . A( (x,af)- Hence 

~ Ox. D . M (x, x). D . (gar, x'). J/ (x, x') (2) 

Similarly with By, 6x, Oy. Hence the result follows as in *8 321. 

This ends the cases in which only one of p, q, r in 

pDq.3i9\q.0.p\s 

is of the first order instead of being elementary. We have now to deal with 

the cjises in which two, but not three, are of the first order. 
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*8 33. h :.(x). <f>x. D . (x) . yfrX: 3 . ,| ((*) .**).;>. ((x). ^.j )s 

Putting /(*, y, *). = .(«( *x) I ((<*.y\s)\(4>z\,)] , the matrix is 

(•#>« I (*& 1 yfrc)} I [f(x, y, z)\f(x\ y, *')J 

and the prefix is (a, x, x') : (g&, c, y, *, y', The matrix is satisfied by 

6 = *.c = x'.y = 2 = y' = 2' = «, 
in which case it is equivalent to 

Hence Prop. ^ 

We have the same matrix in the three following propositions, only with 
different prefixes. J 

*8 331. I- (x) . 4>x . D . (gx) . yfrx : D : * | ((gx). \frx] . D . ((x) . «£x) | s 

Here the prefix to the matrix is (a. b, c): (gx, y, z, x\ y’, z'). The matrix 

is satisfied by x = b . x — c. y •= z = y' = z' = a. Hence Prop. 

*8 332. I-(gx) . <#>x . D . (x) . yfrx : D : * | {(x) . *x| . D . |(g.r) .^x\\s 

becomes Pr0fiX " (*' V' *' y‘‘ *">1 <S°* b‘ c>- Writing r for ~s, matrix 

<t>a . D . yfrb . yfrc : 0 :. yfrx D r . D . <f,y y o r: yfrx D r. D . <*y' v <£*' D r. 

(Here only a, 6. c can be chosen arbitrarily.) This is true if £y, 02, Ay', d,z' 

are all false. Suppose 4>y is true. Put a - y. Then if yfrb or is Mae, 

f “ ■ J • r* • yc is false, and the matrix is true. Therefore if ^x is false, put 

- c =*x; if ^ 18 false, put b — c - x\ If yfrx and yfrx' are both true, putting 

a — y.O*"C=x, the matrix becomes equivalent to 

r.D.^v^Dr:r.D.«/,/v^'Dr, 

which is true. Hence if <f>y is true, the matrix can be made true. Similarly 

,or y, * - Ihis exhausts possible cases. Hence Prop, by *8 28. 

*8-333. I-(gx) . tpx. O . (gx) . yfrx : D : s | |(gx) . yfrx) . D . ((gx) . 0x) | s 

Dem. 

The matrix is as before, and the prefix (after using *813) is 

(6, c, y, z, y\ z ) : (ga, xt x). 

Call the matrix if (a, x, x'). Then 

b : >\rb . D . M (a, b, b) . D . (ga, x, x') . (a, a:, x') (1) 

b : yfre . D . Af (a, c, c) . D . (ga, a:, af). if (a, x, x) (2) 

b : ~ yjrb . ~ yjrc . <f>y . D . if (y, b, c) . D . (ga, x, af) . if (a, a:, o') (3) 

(1).(2).(3).D b :<£y. D. (ga, x, x).Af (a, x, x) [using *828] (4) 

Similarly for <j>y', <f>z, <f>zHence by *8 28 

b s <f>y v tf>y' v <pz v <{>z'. D . (ga, a:, a-'), if (a, a:, x) (5) 

But b ~ <f>y. ^ ^>2! .D z 4>y v tpz D r. (fry'v 4>zf D r: 

D : if (a, ar, V) 

C*8’1] 3: (3°. x,af).Af (a, x, x') (6) 
b . (5). (6) . *8 28 - D b . (ga, a:, a:'). Af (a, x, x') . D h . Prop 

41—2 
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This ends the cases in which p and 7 but not s contain apparent variables. 

We take next the lour cases in which p ami s, but not 7, contain apparent 

variables. 

*8 34. h :.(./ ).<£./ . D . 7 : D : I(j-) . x-t-; 7 . D . -(a:) . 0.r| |(x) . x**'! 

Putting/(.r, //. 2. u. v). = .(x-r 7>j !<$.'/ Xr> X1’)!- the matrix is 

<4>" ^//) |/(x, y. 2, m. c) /(x\ y\ z, u, i» )]. 

(This is also the matrix of the three following propositions.) 

The prefix is (a, x, x') : (g.y, z. u, v, #/. s'. u\ v). 

The matrix is e«|iiivalent to 

<t>« 0//.D ./(x. y, z, ii. e) ./(*, //'. c'. /»', v) 

and /(.**. //, '•). = : x-r 7 • ^ • 4>!/ X- • 4>" Xv : 

= : 7 D ~ x*r • ^ • 0// ^ X* • 4>l1 ^ ~ Xr* 

Put ting »/ = // = //' = »#'=»/ . - = r = x. *' = v = x', the matrix is satisfied. Hence 

Prop. 

*8 341. I-(x) . 0x . D . 7 : D : |(gx). x» ’ 17 • 3 • • 0' I |<3*) • Xr! 

Matrix as in *8 34. Prefix (a, z. v, z. v ):('.{x. y, u. x\ y, n ). 

Matrix is equivalent to 

<f>n D 7. D 7 D ~ x,c • ^ ^ ^ X* • 0" ^ ^ x»’: 

7 D ^ x*'/ • ^ • $!/’ ~ X’* • 0'* ^ ~ X,’,‘ 

U <t»i is false, this becomes true by putting //= " *»'/=* u' — u. If <f>a is true, 

the matrix is true if 7 is false. Suppose 7 true. Then the matrix is 

equivalent to 

~ X»* • 3 • 0.y ^ ~ X2 • 0" ^ ^ Xw : ^ Xr • ^ • 0y ^ ~ X-* • 0'1’ ^ ^ Xv • 

This is true if x-. X1'* X- • X" nre false. If one of them, say \z. is true, put 

./• = x «= z, and the matrix is true. This exhausts possible cases. Hence Prop, 

by *8*28. 

*8 342. y (gj). 0x . D . 7 : D : |(x) . xr| 17 . D. \(&x) • 0' I1 !(-r) • X* l 

Matrix as before. Prefix (after using *8*13) (x. y. 11, x\ y. u) : (go, 2, v. z'. v). 

Call the matrix M (a. z. v. z'. v ). Then 

h : ~ X‘r • ^ • M (a. a*, •»*. x) (1) 

t*: ^ x*'*’ • D . M (a.x'.x'.x.x) (2) 

h 2 7 • Xx • X*' • ^ -M7 -^(7 • 
D . 3/(«, 2,0, «»') (3) 

0 ,~{(f>yD q). 

D . i)/ (y, r, e, 2', e) (4) 

Similarly if ^7 . <J>u or ~7 . ^»y' or ^7 . </>«'. Hence by *8*1*28 

H :~q. </>y v </»» v <f>y v <#>«'. D . (ga, 2, i», 2', i»'). Jl/ (a, 2, u, 2',»') (5) 

\-:~<py.~<pu.~<py'-^<t>"'' ^ - «/»y ^~x2 • <t>u ^~xv‘ W ^~XZ' • fu' 1~XV t 
O.M(a,z,v,z',v) (6) 

(5). (6). D y : ~7 • 3 • (3a*z'» O • M (a> z> v> z>v') <7) 

h . (1) . (2) . (3) . (7) . D h . Prop 
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*8 343. b (ga;) . 4>x . D . q : D : |(gx) . x*\ I q • => • «3*) • <M I ((3*) - xx\ 

Prefix to matrix is (y, z, u, v, y', y, te\ v') : (go.or,a;'). 

Call the matrix /(a, ar, x). 

It is true if 
~XZ-~XV-^X2' -~xv' (U 

Also xz . q • ^ •/(«, z, z) . D . (ga, ar, x') .f(a,x,x) (2) 
Similarly if we have X» • q or x2 -qorxv'.q (3) 
From (1) . (2). (3), by *8 28, q . D . (3a.ar.aO .f(a,x,x') 

"No\v <f>a .^q.O. f (a, x, x'). Hence 
(4> 

<*>y —<? . D ./(y, ar,#'). D. (ga, a:, x') . f (a. a:, x) 

Similarly for <f>z .~q, <f>y' .~q, <f>z' .^q. Hence 

0y v^v^y'v^' ,~q . 5 .(•aa.x.x) .f(a,x,x) (5) 

liut ~<t>y .~<f>y'.~~<f>z'. D .f(a,x,x') (6) 

By (5) and (6), ~<7 . D . (ga, x, x') .f(a, x, x') (7) 

1- . (4) . (7). *828 .Dh. Prop 

In the next four propositions, q and r are replaced by propositions con¬ 

taining apparent variables, while p remains elementary. 

*8*36. b i.p . D . (a?) . yfrx: D : ((a:) . *a:) | ((ar) . yfrx\ . D . p | {(a:) . xx\ 

Putting 7 . =* . (x) . yfrx, s . =*. (a:) . yfrx, the proposition is 

(p ^7)|~|(s|7)|^(p|s)|. 

We have by the definitions 

• (3&. c).^|^c, 

PI c) • VI I ^c), 

5l?- = •(a*.y)-xylVr*. 

7>l*- = .<3*)-/>lx*. 
~<Pl*). = .(*,w).(p|X*)|(p|Xu;), 

(«I *7> I ~(P I«) - = : (x, y) : (gz, w) . (xy | | j(p | *r) I (p I Xw)i- 
f(x, y, z, w). = . (Xy | yfrx) H(plx2)l(pl Xw)l 

~ W*1 ?) I ~(P I s>l • = : (3 : (*. w.z', w').f(x,y,z,w)\f(x',y,z',w), 

(p I ~ <l) I ~ {(* \q) | ~ (p |«)). = : (x, y, X, y ) : (gb, c, z, w, w') . 

\p!(yfrb\ yfrc)j | [f{x, y, z, w) \f(x\ y , z, w')\. 

Writing 0£ for '—^a?, the matrix is equivalent to 

Put 

Then 

p. D . yfrb . yfrc : D yfrx D 0y . D z p . “D . 0z . 0w :. yfrx D 0y . D : p . D . 0z'. 0m/. 

This is satisfied by putting b = x.c=x.z = w = y.z=w=y. Hence Prop. 

The same matrix appears in the next three propositions; only the prefix 

changes. 

*8*361. b :.p.D.(x).yfrx:D: {(ga:) . XA I {(*) - ^1 - ^-p\K3*) • Xxi 

Same matrix as in *835, but prefix (x, z, w, x',z\ w) : (g6, c,y, yf). 

Matrix is true if 0s. 0w . 0z' - 0w\ 

Assume ~0z, and put y = y' = z.b*~x.c = af. 
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We now have yjrx D By . = ,~y}rx and /> . D . 02 . : = ,^p. Hence matrix 

is equivalent, to 

p .D . yfrx . yfrx : D :.^>/rx. D ,^y> . D : p . D . Bz . £he', 

which is true. Similarly if <vfl«'v^fe'v'v^w'. Hence Prop, by *8*1‘2-S. 

^8 352. h :•/>. D . (gx). >/r.c : D : |(x). *x; | {(g*). | . D . /> | {(*) . \x\ 

Same matrix, hut prefix (btc,y,y') : (g.c,*, w,x'tz, to'). 

Satisfied by x = b . x = c . z = tv — y . *' = a*' = y'. Hence Prop. 

*8353. h :./). D . (gar), yfrx : D : |(g.r). *rj | |(3-r). yfrxj . D .p| ((g.r) . *.r) 

Same matrix, with prefix (b,c,z, w, z\ tv): (yx, y, x\ y). 

If ^b is true and Bz false, matrix is satisfied by x = x = b . y — tj = z, be¬ 

cause these values make yjrx D By and yfrx D By' false. Smilarly if yjrb is true 

and Btu or Bz or Bw is false, and if yfre is true and Bz, Bio, Bz' or Bio is false. 

It remains to consider ~\frb . ^ yfre : v z Bz . Bio . Bz'. Bw. 

The second alternative makes the matrix true, because it gives 

p. D . Bz . Bw: p. D . Bz'. Bw'. 

The first alternative gives 

p . D . yfrb .yfrez D : ^p Z 

D: p • D . $z • Bw z p. D . Bz'. 0m/, 

so that again the matrix is true. Hence Prop. 

This finishes the cases in which one or two of the three constituents of 

/O 7 . D . s 1y D /> | .v remain elementary. It remains to consider the eight cases 

in which none remains elementary. These all have the same matrix. 

*8 36. h (x) . <f>x . D . (.c) . yfrx z D : [(x). xx\ I ((•»)• ^ | ((•*•). **i 

Putting p .=> .(x). 4>x, 7 . = . (x). yjrx, s . = . (x) . *.r, we have 

~7-"-<3&. c). yfrb\yf/c, 

P\~<J • * : (3") : (b. c). ^a|(^r6|^c), 

«l7 

/>!*• = • (3*. 

—<y^l«) • = •(*. w. *>). 

(«l*y)l — (y>l«) - == :<^y>:(3*- «*.»>-(xyl^)ll(^lx,<,)|(<#*Mlx*’)l- 

Put/(.r,y, = .(xy|^)||(^lxM,)l(^Mlxl,)I- Then 

— K^l v>l —(/^l ^>1 - =: (3*» y. y'): (*. w, »«'.*0. 

f(x, v> z, W, II, o)\f(x,y, z\ w, u, o), 

(p I ~ 7 ) I ~ ((* 17) I ~ ( PIs)) • = z («. •»-. y. y) • (3^. c, Z, W, u, V. z', u/, u\ v). 

|^»« I I ^c)111/(^. y. z, w, u, v) I f(x, y\ z', to, n\ v')J- 

Writing Bx for t^ie niatr*x *s equivalent to 

<f)a .0 . yfrb . yfre z D yfrx D By . D . <f>z D Bw . <^>w D Bo z 

yfrx DBy'.D. <f>z' D Bw'. <f>u' D Bo. 

This is satisfied by b = x . c = x . z = u = z = u' = a . w = v = y . xo = v = y . 

Hence Prop. 
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*8 361. h :.(«). 0* . D . («).yjrxzDz {(gar).Xx\ | {(ar).yfrx\. D. \(x). <f>x) | fax). *arj 

Same matrix, hut “all ” and “some ” are interchanged in arguments to x, 

i.e. in y, w, v, y', w', v. The g-variables are therefore b, c, y, y, z, z', u, u'. 

If put z = u = z' = u = a, and matrix is satisfied. 

If <f>a is true, matrix is true if ~>/r& v ~yfrc, i.e. if ^yfrx v ~yfrx', since b, c 

are arbitrary. Assume yfrx. yfrx'. Then matrix reduces to^ 

0y.D.<f>zD0w.<f>uD 0v : 0y . D . <f>z' D dw . <f>u D 0u. 

If 0w, 0v, 0w\ 0v' are all true, this is true. 

If ~0w, put y — y' = w, and matrix is satisfied. 

Similarly if ~0v, ~0w' or ~0v'. Hence Prop. 

*8-362. b :.(x).<f>x.D. (gar). yfrx: D :{<*). Xx\ | fax). yfrx}. D. {(#). 0ar) | {(ar). Xx\ 

Matrix as in *836. Prefix results from *836 by interchanging "all ” and 

“some” among ^-arguments, i.e. b, c, x, ar'. Hence Prop results from same 

substitutions as in *8 36. 

*8 363. b (ar) . <f>x . D . (gar) . yjrx : D : ((gar) . Xx] | {(gar) . yfrxJ . 

D . {(x) . <f>x] | {(gar) . Xx\ 

Results from interchanging "air' and "some,” in *8361, in the yfr- 

arguments, viz. b, c, x, ar'. The g-variables are therefore ar, ar', y, y\ z, z't u, u\ 

and the proof proceeds exactly as in *8 361, interchanging ar, ar' and b, c. 

*8*364. b (gar) . <f>x . O . (ar). yfrx: D: {(ar).^arj | {(ar).>/rar). D. {(gar).<£ar| | [(x).Xx\ 

The proposition is what results from *8 36 by interchanging " all ” and 

" some ” in the </>-arguments, viz. a, z, u, z, u'. Hence the g-arguments arc 

a, b, c, w, v, w, v. If 0y is true, put w = v = w = v' *= y, and the matrix is 

satisfied. If 0y is true, put w «= v >= w' = v = y', and the matrix is satisfied. 

Assume ~0y. ~0y'. The matrix is true if yfrxD0y and yf/x' D 0y‘ are false, 

i.e., since 0y, 0y' are false, if yfrx and yfrx' are true. If yfrx is false, put b = c = x 

and a = y \ then <f>a. D . yfrb. yfrc is false, and the matrix is true. If yfrx is 

false, similarly. Hence Prop. 

*8 366. b (gar) . tf>x. D . (ar) . yfrx : D : {(gar) . *ar) | {(ar) . yfrx) . 

D . {(gar) . <f>x] | {(gar) . Xx) 

Prop is what results from *8*364 by interchanging "all ” and “some” in 

the ^-arguments, viz. y, w, v, y\ w', v'. Hence the g-arguments are a, b, c, y, y. 

Matrix is true if 0w . 0v . 0w . 0v. Assume ~0w, and put y = y = w. Matrix 

is true if yfrxO0y and yfrx'D 0y' are false, i.e., in the present case, if yfrx and 

yfra/ are true. Suppose one of them false, and put b = ar. c = ar'. Then yfrb . yfrc 

is false. Therefore <f*a . D . yfrb . yfrc is false if <f>a is true ; therefore the matrix 

is true if <f>a is true. Therefore if <f>e is true, the matrix is true for a = z. 

Similarly if <fm, <f>z' or <f>u' is true. But if all are false, matrix is also true. 

Hence matrix is true when we have ~0w and ~ yfrx v ~ yfrx'. Similarly for 

~0v, 0v/ or r-^Ov with ^yfrxv ~yfra?. We saw that matrix can be satisfied 
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for '■'w0n\ ~6v, ~*0,V or ^*$o with yfrx.-tyx. Hence it can be satisfied for 

*>*$w v ^0o. And we saw that it is true for 6w. dv . $w‘. Ov. 

This completes the cases. Hence Prop. 

*8 366. V (gx). <f>x . D . (gx). : D : j(.r). x.c] | |(g.r) . yjr.v\ . 

D. |(ax).^j||(x).x.c| 

Prop is what results from *8 804 by interchanging “all” and “some” 

among ^-arguments. viz. b. c, a. x. Hence ^-arguments are a. x, x, w, v, w, v. 

I h*- proof proceeds as in *8*364, interchanging b, c and x, .v. 

■•8 367. h (HOT) . <*>x . D . (gx). yfr.r : D : '(gx). x.r\ | |(gx) . yjrxj . 

D. Kg-*-) • <M 11<3*> • X*\ 
1 r«»p is what results from *8*365 by interchanging “all” and “some" 

among ^-arguments, viz. b, c. x. x. Hence the g-arguments are a, x, x\ y, y. 

The proof proceeds as in *8*365, interchanging b, c and x, x. 

'I his completes the 20 cases of /Or/.D. .s*]y D/j|a\ Hence in all the pro¬ 

positions ol *1—*.) we can substitute pro|>ositions containing one variable. 

The proofs for propositions containing 2 or 3 or 4 or ... variables are step-by-step 

l he same. Hence the propositions ol *1—*.» hold of all first-order propositions. 

The extension to second-order propositions, ami thence to third-order 

propositions, and so on. is made by exactly analogous steps. Hence all stroke- 

functions which can be demonstrated for elementary propositions can be 

demonstrated for propositions of any order. 

It remains to prove ~ |<x) . <f>.r\ . = . (gx) . ~£.»- and similar propositions. 

*8*4. ~ |(x). <f>x\ . = . (gar) . ~~<f>.r 

Dent. 

h .*8-1 . :>h: 4*14>r • ^ • <ay) • <f>>-1 <t>!/ (i> 
y.(i).*8-2i. D y : (gx) . <f>x|tft.r . D . (gar, y) . <f>x\<f>y • 

[(*801 012)] D y : (g.r).'v^, D .~J(x). <£.r| (2) 
We have y s p\*i •5 • pIp (3) 
M3). D 1-: tf>x\<f>y. = . tf>.r\<f>.r v <f>y\4>y (■*) 
K (4). *8*22*24. . D h : <f*x\4>y. D . (gx). <£.r|£x (5) 
[(*8*011)] y (3*-!/)-A#*!/) • 3 -p : a : (a\.y). /(*.*>:>/» (0) 
h.(5).(6). 3 I- : (a*, y) • . 3 - (gx) . «£a*|</>.r • 

• 

[(*801*012)] D h : ^|(x). 0x|. D . (ga).^fr 0) 
h.(2).(7). D h . Prop 

h : ~ ((gar) . £x| . = . (x). ~<£x 

[Similar proof] 

*8 42. f- z.p. D . (g.r) . <f>x : = : (gar) . p D <f>.r 

Dein. 

\-z.p.D. (gar) . <f>x: = : p\(~(gx) . 0x j : 

[*8 41 ] S : P | f(x) . <f>xj : 

[(*8*011)] = : (gx) . : 

[*8*21] = : (gar). p D <f>x D I-. Prop 
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*8 43. I- p. D . (x) . <f>x : = : (a:) . p 3 4>x 

[Similar proof] 

Other propositions of this type may be taken for granted. 

*8 44. h (a:) . <f>x . D : (a;) . yfrx . D . (a:) . <f>x . \Jrx 

Bern. 

h <f>z . D : yfrz . D . <f>z . yjrz (1) 

l-.(l).*81 .DI-::.(ax):s.(ay)::W:.^. Z> : . D . <f>z . yjrz (2) 

V . (2) . *8-42-43 . D h . Prop 

*8 5. If -F(y>, q, r, ...) is a stroke-function of elementary propositions, and 

P. <?. r> ••• are replaced by first-order propositions px, qlt rXt .... we shall have 

p = px.q = qx.r=rlt... D : F (p, q, r, ...) . » . F{pXt qlt r„ ...). 

This.,follows from 

*>i . = . (a) . <f>x : D i p s p, . D . />, = y>|</ . tflp, = </|p, 

Pi • = • (3*) - s D :p upt. D .y>, . ?|p, 3 qjp, 

both of which are very easily proved. 
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*89. MATHEMATICAL INDUCTION 

The difficulties which arise in connection with mathematical induction when 

the axiom of reducibility is rejected have- been explained in the Introduction 

to the present edition. Retaining the definition of R# (*90 01), we have 

H xR+y . = :xeC‘R : Run C/i. jcm- 

The " /x’’ which occurs here jus apparent variable must be of some definite 

order. If k is a class of classes, and the members of k are of the order con¬ 

templated in the definition of R+. we cannot infer 

j7V/ • ^ : R^p't C p‘k .xcp'tc .0 . ye plK 

nor yet */?*'/. D : Rus*k C s*k . x e s*k . D . y e s*k. 

It is necessary, primd facie, to have 

a € k . . R**a C a 

in order to be able to argue from xe p‘* to ye p*K or from xes*K to yes*K. 

In the following pages, we shall show how to avoid the resulting complications. 

Let us denote by “ n„, " a variable class of the with order, and put 

*89 01. rR*,„U .«: ./• e < HR : R'•pm C p,H . j- t p,„ . . y € Df 

Since every class of a lower order is equal to some class of any given higher 

order, R+m G R+„ if m > n. We shall show that 

m > 5 . D . /f*,„ « R^. 

Hence we take Rjis R+, and the complications disappear. 

« In *90, substituting R+m for /?* and p„, for p and <f>,„z for <f>c, the first 

proposition involving an invalid induction is *9017. where we use the fact 

that R+*x is hereditary. It is obvious that is a class of order w + 1, 

and therefore, although 

we cannot infer 

y € R#„,‘x. l/R+m*. D . 2 6 R*,,,1:r. 

In this case, however, as in many others, there is no difficulty in substituting 

a valid induction. Put 

* = %n | R“p,n Cp,n.X€ /*,„]. 
d ■ V/ 

Then R#,,,'* = 2)f*- ^ow we have not “©rely R^pU C p*K but also 
w 

Pn 6 K . D . R“ft,n C pm. 

Hence the induction is valid. 
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The proofs of R£ G and analogous propositions are easily re-written 

so as to be valid. 

The next difficulty—and this one is more serious—arises in connection 

with *90 31. The present proof uses the fact that 

x(If C‘Rs* R#\R)z 

is a hereditary property of z. But it is a property of a higher order than those 

by which R* is defined; i.e. if Rm is R+,„, then x(I [ C‘R vy R#,n | R) z is of 

order m + 1. Let us prove first 

R0svR*\R<lR^ 
where 

*89 02. R0= If C*R Df 

The proof is as follows: 

*891. b .R0v R+\RGR# 

Dem. 
V/ 

H :: xe ft • R“ft uRz : D • z« ft (1) 

H .(l).Comm .Db:.:r = a.v.u€/A. uRz : D : xe ft • Rlift C ft • O . se ft 

Z) \- zz x = z z. v z. x e ft. R“ft Q ft. D . u e ft z uRz D : 

xt ft. C ft. D. z e ft zz 

= R**ft C ft. . u e ft z uRz 

D : xe ft. R“ftC ft. D^.zeftzz 

D h a:/f0* . v . . u/?* : D . D b . Prop 

*89101. . R0v R\R#(iRm [Proof as in *90 311 ] 

*89 102. H : R e Cls 1 . D . R+ = R0 c/ R | R+ 

Dem. 

h Hp . R<x e0.Rlf0C0.Z)zxe i‘x \j 0. R“(i‘x v 0) C0z 

D : xR+y . D . y e i‘x v 0 (1> 

b • (1) - Com m.Dh:.Hp.y + x. x/**y . D : ^‘a: c 0 . R“0 C 0 . D . y e 0 (2) 

b • (2) • D b : Hp . xR+y . a: 4= y • ^ • a: {R | R#) y (3) 

b . (3) . *89101 . D b . Prop 

*89 103. h : ifc « 1 —» Cls .D . R+ = R0\j R#\R ^*89 102 ~ j 

*89104. b * = a(area . C a) . D : a: (i2 |/?*) z . ^ . zcP‘R‘“k 

Dem. 

b : Hp . xRy . D . y c p*RtttK 

b : Hp .aex.ye R“a . yR+z .D.ie /2“a 

b . (2) . Comm . D b : Hp . y e p,RtitK . yR*z ."5 . z eptR“*K 

b • (1) • (3) . Db. Prop 

(1) 

(2) 

(3) 
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*89*105. b Hp *89104 . R e Cls —► 1 . D : .r (ft | ft*) z . = . sxp'Rfi"* 

Dem. 

K = ft“M. 

D : // € R“0 v - }VR . E! ft\y . D . R<y € R“Q v - D‘ft: 

D : ft“<ft“£ v - D‘ft) C R“(3 ^ - D‘ft 

b : H|>( 1). D ..r € R**{3 

K (1). (2). D b :. Hp (I>. - « yi«ft“‘* .D.:( ft‘‘(ft“tf u - D‘ft) 

D.rt/3 
b: Hp(1).D.£C/t 

K(»).(4).Dh. Hp. z(p'R'“K . D : ft4** M . ft‘> C /x . D . j € M : 

D:.r<ft|ft*)* 

b .(’»). *89’104 . D b . Prop 

(1) 

(2) 

(3) 

(4) 

(5) 

*89106. b : ft«Cls-*l . D . ft+| ft <• ft| ft* 

Dem. 

: .r (R+\ li):. = . x € R“/>*k (1) 

b . (I >. *89'105 . *40*37 .DK Prop 

It is now necessary to take up the subject of intervals (cf. *121). Our 

further progress depends upon the fact that in suitable circumstances the ft- 

intcrval between x and y, i.c. R+*x c\ Rm*y, is an inductive class. 

*89*11. b : R € (, Is —> 1 . xRz . - R+y • 3 • R (j'ny) = i‘.r \j R (z >—* y) 

Dem. 
I-. *89*102 . D b :: Hp. D :.xR+u .= :.#• = u . v . zR*u (1) 

I-: Hp. j1 ■ « . D . n * R (x*-*y) (2) 

h Hp. sR+u . D : »R*y. D.uc ft (.*•*-< y) (3) 

K(2).(3).Dh: Hp.D.(*rv R(z n-iy) C R (x*-<y) (4) 

l-.(l). D b : Hp. D . R(x>-*y)C i*x\j ft (*>-«,/) (5) 

I-. (4). (5) .OK Prop 

*89*111. b . I> . ft(s ►—<//) = A 

*89*112. I :R* Cls -> 1 . xRz . .rft*y —(zR+y) . D . .r = y. ft (.d-h y) = R (xt-*x\ 
[*89102] 

*89*113. I-: R e Cls—* 1 .if C‘R . ~(*ft \ ft*r) . D . ft (* -, <T) =, «.r 

Dem. 
b :. Hp . D : yft*o*. 3 .~(.rft | ft#y) 

D : xft*.y . yft*a-. D . a-R^y . ~(.rft 1ft*y). 

[*89 102] ^ 0.x = y:.Dh. Prop 

*89*114. b : ft e Cls —* 1 . R“a Ca.xea- ft“a . D —(xft | ft**) [*89*105] 

*89*115. b :. R c Cls —» 1 . Rtla Ca.xea- R“a . D . ft (.rnnar) = i‘x 
[*89*113*114] 
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We now take as the definition of an inductive class the property proved in 

★121-24, i.e. we put 

Cls induct = p [rj e p . D,>y . 7) SJ i*y € p: A e p : DM . p e p) Df. 

That is to say, if il/» $£((gy) • £- v ” i*!/}. 

put Cls induct = Df. 

There will be different orders of inductive classes according to the order of p. 

p must be at least of the second order, since i*y is of the second order; at 

least, not much could be proved if we took p to be of the first order. We put 

Cls induct,* = A/+in‘A Df. 

We have (3/*,) . A - p3 z (^p3). v = p,. D . (g^) . v v i 

Now (a/^).77 — Pi is a third-order property. Hence 
‘y = ms- 

*89 12. h : p e Cls induct,. D . . p = p3 

This proposition is fundamental. 

*8913. 

Put 

h e Cls —► 1 z rj e p. D,,>y 

[★8911111-112-113] 

. rj v i‘y e p z A € p z ~(xR 17?* x) . xRz: D : 

li (z^y) e p . D . It (xt-iy) e p 

*89 131. Rm (x>-iy) - R+m‘x rs R^y Df 

Then 

* = arn (R“a,n C am.xeam).\ = J3m (R“/3m C (3m . y e 0m) . D . 

Rm («»-«y) - p‘x * p‘*~ 

Thus Rm(x>-*y) is a class of order in + 1. Moreover we have 

*89 132. h R e Cls-* 1 . xRy . D (yR | R*y) . D —(xR \R*x) 

Dem. 

h :~(y72|72*y) . xRy . D . (ga) . R“a Qa .yea — R“a .xRy (1) 

h : Hp . R“a C a . y e a — R**a . xRy . y = i*x \j i*y \j R**a . 

D . R“y = l*y yj R‘y sj R“R“a . (2) 

D . R“y C y (3) 
h :.~(y/2| 72* y) . D :~(y72y) : 

Ds xRy.D.x^y (4) 

h: y e a —R“a . xRy . D . x~e a (5) 

h :.~(y72|72*y). Dz~(yRhy)z 

D : x72y . D . x~*R‘y (6) 

- (2) - (4) . (5) - (6) • D h : Hp (2) .'*-*{yR | R*y) ."D .xey — R**y (7) 

h . (3) . (7). D h : Hp (2). D .~(xR | R*x) (8) 

h . (1) . (8) .Df. Prop 
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*89133. h R e Cls —► 1 : rj e p. . „ . »; v Cy e p : A e /z : x7?e : D : 

^{zR | R*z) . (^HHy) € p . D | 7?*.r). It(x*-*y) e p 

[*8!)'13'132] 

*89 14. h c Cls -* 1 .~(y/?| R+my). 3 : xR*,m+»y • 3 . 

R,„ (-r»-Hy) e Cls induct**, 
Pem. 

By *89-133, ~(zR | R*,»z). R„, (*>-*y) € p,u*, is a hereditary property of z if 

*/ € /*»«.♦! .Di.p.yv i*y € : A € /x,„*,. 

Moreover this property is of order in + 1. And by *89-113, y has this property 

if ~(y/{|/f*My). Hence .r has this property if xR*,m+lty. Hence with this 

hypothesis we have 

. /*,„ (xi-«y) «,***,, 

Rm ( r*-*y) € Cls induct,,,*,, 

which was to Ik* proved. 

*89 15. h : R € Cls -► 1 . R“am C a m. ye a,n - R“am . 3 : 

*R*<•»+»y • 3. /?*(xi-Hy)« Cls induct**, [*8911414] 

We have Rm+X (xtny) C R,„ (x>-*y), 

Cls induct,,,*, C Cls induct*. 

The next point is to prove 

p e Cls induct* . 7 C p . D . 7 C Cls induct*. 

This can be proved for Cls induct,, and extended to any other order of inductive 

classes. The proof is as follows. 

*89 16. h : a^e Cls induct,. y e Cls induct, .3.310-7 

Deni. 

Hp.3:(a^): A***,:. 3*,,.£ v €/4,s7C/£>.(1) 

A e p3: fi e p*. 0f,¥ . i'ye p3 :y e n,. a ~ e A . A c ft*: 

3 :3 ! a — A . A e/x, (2) 
3 !a-/9.aC/3w‘y.3.a = /9 v e*y (3) 

(3) . 3 Hp (2). 3 : >9 e /x,. a ~ e /x, . 3 ! a — £ . 3 . 

£w‘ye/x,.a + £vt‘y.3!a-(/9v«‘y) • (4) 

(4) . 3 :. Hp (2). 3 : /9 € /x, . 3 ! a - ^. D . /3 w £‘y e ^ . g ! a _ (^ w t‘y) (5) 

(2). (5). 3 h :. Hp(2). 3 :/3e Cls induct,. 3.#e/x,.a !a-/9 (6) 

(1). (6). 3 V . Prop 

*8917. H : 7 < Cls induct,. a C 7. D . a e Cls induct, [*8916 . Transp] 

It follows that, with the hypothesis of *8915, Rm (xnny), Rm+l (xt-iy), etc. 

are all of them inductive classes of the (m + l)th or any lower order. 
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*89 18. I- :. R e Cls —> 1 . y, « ( . ~(yR | R*#) . D : yR^z . „ . zR^y 

Deni. 

Put f = R3 (x hh y) r\ R3 (x *-* z). 

h . *8912 1417 . D h : Hp . D . f c Cls,, i.e. f is a class of the second order 

h Hp .~(yR*zz) . D : u c £ . D . u/e*,y . a/?*,* . w + y . w + z . 

[*89102] 3 . R‘UR^ . . 

CHP] D.rt'uef 

b.(l).(2).Db:Hp(2>.D.ye£ 

b:Hp(2).D.y~e£ 

h . (3) . (4) -3b:. Hp . D : yR^z . v . zR^y 3 b . Prop 

(1) 

(2) 

(3) 

(4) 

*8919. h:Re Cls-» 1 

Dem. 

h:Hp + 

[*89121517] 

1- : Hp(l).D.y,^/^cf 

b • (1) • (2) • 3 b . Prop 

Rily~t C^.\-R^3x n ^ — Rtlfj7 .D.XeOul 

-ft*(**-«y) n iZ,(**-<*) . 3 . R“£C g .xe ( [as above] 

3-y,2€£ (1) 

(2) 

*89 2. b : i* c Cls —> 1. xR^y. Rs (y >-<y) c Cls induct,. 3. /i,(a;HHy) c Cls induct, 

Dem. 

As in *8911111112, 

b i? e Cls —► 1 . a:/iz . D : 

^-ft (*»-Hy) . v . R(xv-iy) = i*x. v. R(x*-iy)-> A (1) 

b • (1) • 3 b Hp(l) : A^:af/i.D,iU.ayt<ut/i.O: 

^ . D ./2(x»-Hy) 6 ^4 (2) 
b • (2) . 3 b : e CJs —* 1 . xR+,y . 72, (y *-«y) e Cls induct,. D . 

Rt (arnny) e Cls induct,: Db. Prop 

To deal further with the case in which y(/2| R^)y, proceed as follows: 

Having proved 

R e Cls —► 1 . xR^y . R, (yn-«y) c Cls induct, . 3 . R, (xt-iy) e Cls induct,, 

we have to prove Rt(y*-*y) c Cls induct,; for this purpose, put 

S = (- i‘y) 1 R. 

Then 5 e Cls —* l . S G R. 

Observe that yRy .D.R (y nny) = i*y, 

yR*y - 3.22 (ynny) = t‘y ^ i<R*y. 

Assume, therefore, ~ {yRy) •~(yRxy)- 

We have S**y. * R“(jt — t‘y) . S“/t = R“y. — i*y. Hence 

S**fjL C fx,. R*y «/*• = • C /4 - i£'y e /*, 

<S‘V C/t.y«/*. = . /2‘V C ft .ye y.. 
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Hence ‘y = **‘^7 =R*'J- 

1 lence 8, (Rtu+-*y) = 77, (Ft*!/*-*!/) - (•/>-*!/) 

because y 

Moreover xve have ~(1/8 | S*y) because //~ e IPS. 

Hence by *8914. R.(y*-*y)e CIs induct.. Hence generally: 

*89-201. I-: 77 c CIs —* 1 . x77*,y . D . 7?,(x>-<y) € CIs induct, 

We have 77,(x>-«y) C 77.<x»-«y). 

11,.nee by *89*17, 77_. (xHHy) «< Ms induct.. D. 77. (.#**—•//) e CIs induct,. Hence 

*89 21. h : 77 c CIs —¥ 1 . D . 77. (rwy) e CIs induct, 

because ''•'(•r77*,y) • ^ • /7,(.ri—«y) — A. 

*89*22. b 77 « CIs -> 1 .y%Z€ 77*/.#-. D : y77*.; . v . zR*<y 

[Proof as in *89*18. using *89*21 instead of *89*14] 

*89221. 

*89 23. 

PotidM‘J<-(/?„)*/ R.. l>f 

I- ,S\ T€ Potid/77 . D : 8RtJT. v . TR,^S [*89*22( 

*89*24. b : 77 « CIs —> 1 . 77“X C X . .r < X . D . 77*/a* C X 

Here X is assumed to be of more than the third order. 

Dem. 

f-Hp . y « 77*/. r - X.):;tXft 77, (xhHy). D. * + y . 

D . 77‘r ( X a 77, (xn-iy) (1) 

h . *89*2117*12 . D h : Hp. D . (g/O. X n 77,(xi-«y) = (2) 

H • (I). (2) • D b : Hp (1). D . (g/i-). X ^ 77, (.r^ny) = ^. 77“***C^• 

D . 77*a‘x C\r\ Rt (x>-ny) (3) 
4— 

h . (3). D b Hp. D : y 6 77*/.r - X . I) . y * X : 

D : 77*/x CX:. DK Prop 

Hence if X is an inductive class, it can be used in an induction no matter 

what its order may be, if 77 € CIs—> 1. 

*8925. 

*8926. 

h : 77 € 1 —* CIs. D . 77^ (xt-ny) e CIs induct, 

h 77 e 1 —» CIs . y, z c 77*,‘x. D : y77*j2 . v 
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*89 28. h-.R e (1 -» CIs) u (Cls —» 1). D . R^ = i‘Potid,‘« 

Dein. 

y-.Tt Potid/ii . xT<j . yRz .0 . T\ Re Potid JR ,x(’T\R)z 

Hence h : s'Pot id/ft = ft . D . R“*S‘x C*S‘x (1) 

I- .(1). *89-24.3h/(t Cls —»l.Hp(l).D (2) 

h :• Hp(l). ft“/* C y.. 0 : iF'x C M . D . ft“7\, C M : 

Jnr.^.S'C,. (3) 

K(3).Dh:Hp(l).D.S'sC V* (4) 

K . (2) . (4) . D h : Hp(2) . Z> .S'* = ft*/® (5) 

H . (5) . 3 I- : R e Cls -» 1 . D . ft*, - i«Potid/ft (6) 

Similarly 1- : R e 1 -» Cls . 3 . ft*, = i‘Potid/ft (7) 

I-. (6). (7) . D I-. Prop 

*89 29. h:Re(l~. Cls) w(Cls —►1).D. ft*otml = ft*, [*89 24-27] 

We have now to obtain an analogous result when R is not one-many or 

many-one. For this purpose, we use R,, which is one-many. 

We Prove «*,»«'* = »'(/£. 

whence, since = (A)*,, 

it follows that R*u+m = ft*s, 

so that for a relation which is not one-many or many-one we obtain the ad¬ 

vantages of unlimited induction by proceeding to ft*,. The proof is us follows. 

*89 3. 1 - : ft, = ft. D . *‘S+„‘i‘x C~Rmm‘x 

Devi. 

h Hp . D ::aS+i‘x.= Df. R“£en: . aep 

D l*x € CVy : £ e C\‘y . D, . R“% « 01*7 : =>y • * * Cl‘7 

3 :• x e y • R“y Q y. Dy. a C 7 :. 

D a C D h . Prop 

*89 31. h : R< = D . R+^l^'x C 873+m*itx 

Dem. 
h. *89101 .Dh.S|S#GS#. 

D h . S“7?+‘i‘x C . 

D h . C (1) 

h . (1) . *40-38 .DhtHp.D. R^s^S^^x C (2) 

= J (i‘* e /j . S'V C . 3.«SVt‘ar = sipt\ (3) 

h . (2) . D h s *‘^‘*‘0: £ Clan . D . ll^'x C 8^S+‘l‘x (4) 

h . (3) . D h . a'S'U/i'x « CIs^, (5) 

J-. (4) . (5) . D h . Prop 

r & w 1 42 
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■•89 32. H = .s*‘( /<. >* *.r 

I h’ ni. 

H . *89 3 29 . D h . .v‘( /;.•)*‘.r C 7^‘r 

h . ( I ). *89'31 . D h . Prop 

*89 33. h . /f*.,.- /.’* 

prill. 

As ill *K9-:p>. h . /(+«.„,‘x = .v‘( 

= .v'(/M#V 

[*89-321 = . D h . Prop 

*89 34. : ylt*,r . .» € X . /f“X C X . D . .y c X [*89 33] 

11 ere X is supposed to he of any order, however high. Hence, so far ns 

inatheniatical induction is concerned, all proofs remain valid without the 

asiom of redueihilily provided " lt.+ is underst«>od to mean " 
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TRUTH-FUNCTIONS AND OTHERS 
• 

In the Introduction to the present edition we have assumed that a function 

can only enter into a proposition through its values. We have in fact 

assumed that a matrix f\ (<f> ! 2) always arises through some stroke-function 

F{p, q, r, ...) 

by substituting </> ! a, <f> ! 6, <f> ! c, ... for some or all of p, q, r, .... and that all 

other functions of functions are derivable from such matrices by generalization 

—i.e. by replacing some or all of a, b, c, ... by variables, and taking “all 

values” or "some value.” 

The uses which we have made of this assumption can be validated by 

definition, even if the assumption is not universally true. That is to say, we 

can decide that mathematics is to confine itself to functions of functions which 

obey the above assumption. This amounts to saying that mathematics is 

essentially extensional rather than intensional. We might, on this ground, 

abstain from the inquiry whether our assumption is universally true or not. 

The inquiry, however, is important on its own account, and we shall, in what 

follows, suggest certain considerations without arriving at a dogmatic con¬ 

clusion. 

There is a prior question, which is simpler, and that is the question 

whether all functions of propositions are truth-functions. Or, more precisely, 

can all propositions which do not contain apparent variables be built up from 

atomic propositions by means of the stroke? If this were the case, we should 

have, if fp is any function of propositions, 

psq.O.fp =/q. 

Consequently, according to the definition *13 01, 

psq.O .p-q. 

There will thus be only two propositions, one true and one false. This was 

Frege’s point of view, but it is one which cannot easily be accepted. Frege 

maintained that every proposition is a proper name, either for the true or for 

the false. On grounds not connected with our present question, we cannot 

regard propositions as names; but that does not decide the question whether 

equivalent propositions are identical. It is this latter question that concerns 

us. • That is to say, we have to consider whether, or in what sense, there are 

functions fp which are true for 6ome true values of p and false for other true 

values of p. 

, Two obvious prxmd facie instances are “ A believes p ” and “p is about A.” 

We may take these instances as crucial. If A believes p and p is true, it does 

42—2 
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not follow that A believes every other true proposition q: nor, if A believes p, 

and p is false, does it follow that A believes every other false proposition q. 

Again, the proposition "A is mortal ” is about A ; but the proposition “B is 

mortal,” which is equally true, is not about A. Thus the function “ p is about 

A " is not a truth-function of p. This instance is important, because the 

notation “<£./ ” is used to denote a proposition about xt and thus the conception 

involved seems to be presupposed in the whole procedure of propositional 

functions. 

We must, to begin with, distinguish between a proposition as a fact and 

a proposition as a vehicle of truth or falsehood. The following series of black 

marks: "Socrates is mortal, is a fact of geography. The noise which I should 

make if I were to say "Socrates is mortal " would be a fact of acoustics. The 

mental occurrence when I entertain the belief “ Socrates is mortal ” is a fact 

of psychology. None of these introduces the notion of truth or falsehood, 

which is, for logic, tin* essential characteristic of propositions. We shall return 

in a moment to tin' consideration of propositions as facts. 

When we say that truth or falsehood is, for logic, the essent ial characteristic 

of propositions, we must not be misunderstood. It does not matter, for mathe¬ 

matical logic, what constitutes truth or falsehood; all that matters is that 

they divide propositions into two classes according to certain rules. Let us 

take a set of marks 

■*j. •rj. ••• •'*»»• 

Let us put, as unexplained assertions, 

F^) <m<n). 

Lot us further introduce the symbol xr\ xt, and assume 

T(xr |x.) if F(xr) or F(xa)\ 

F(xr\x,) if T(xr) and T(xa). 

Assume further that, if p, q. s are any one of the x's or any combination of 

them by means of the stroke, the above rules are to apply to p\q, etc., and 

further we are to have: 

T\p\(p\p)l 
T\p0q.D .s\qDp\s], 

where " p D q ” means " p \ (q | q).” Further: given T (/> J (q | r)J and T(p), we 

are to have T(r). 

Taking the above as mere conventional rules, all the logic of molecular 

propositions follows, replacing “h ,p“ by "T(p).” 

Thus from the formal point of view it is irrelevant what constitutes truth 

or falsehood : all that matters is that propositions are divided into two classes 

according to certain rules. It does not matter what propositions are, so long 

as we are content to regard our primitive propositions as defining hypotheses, 



TRUTH-FUNCTIONS AND OTHERS 66 I 

not as truths. (From a philosophical point of view, this formal procedure may 

be shown to presuppose the non-formal interpretation of our primitive pro¬ 

positions; but that does not matter for our present purpose.) 

Throughout the logic of molecular propositions, we do not want to know 

anything about propositions except whether they are true or false. Further, 

we are concerned only with those combinations of propositions which are true 

in virtue of the rules, whether their constituent propositions are true or false. 

That is—to take the simplest illustration—we assert p\(p\p), but we never 

assert any proposition j) that has not some suitable molecular structure, 

although we believe that half of such propositions are true. Our assertions 

depend always upon structure, never upon the mere fact that some proposition 
is true. 

A new situation arises, however, when we replace p by <f>lx. For example, 

we have ^-p\(p\p) 

and we infer h . 0 ! x\(<f> l x\<f> l x). 

We cannot explain the notation <f>! x without introducing characteristics of 

propositions other than their truth or falsehood. Take for example the 

primitive proposition (*811) 

h . (3*) . 4>! x | (<f> l a | <f> ! b). 

1 he truth of this proposition depends upon the form of the constituent pro¬ 

positions <f>lx, (pia, <p\b, not simply upon their truth or falsehood. It cannot 

be replaced by 

“»-.<aj>).p|(g|r)/' 

which is true but does not have the desired consequences. We are therefore 

compelled to consider what is meant by saying that a proposition is of the 

form <f>la (where a is some constant). This brings us back to “ A occurs in p," 

which we gave above as an example of a function which is not a truth-function. 

And this, we shall find, brings us back to the proposition as fact, in opposition 

to the proposition as true or false. 

Let us revert to our two instances: “A believes p" and “p is about A.” 

We shall avoid certain psychological difficulties if we take, to begin with, 

“A asserts p” instead of "A believes />.” Suppose “/>” is “Socrates is Greek.” 

A word is a class of similar noises. Thus a person who asserts " Socrates is 

Greek ” is a person who makes, in rapid succession, three noises, of which the 

first is a member of the class “ Socrates,” the second a member of the class 

“ and the third a member of the class “ Greek.” This series of events is 

part of the series of events which constitutes the person. If A is the series of 

events constituting the person, a is the class of noises “ Socrates,” 0 the class 

“is,” and y the class “Greek,” then “A asserts that Socrates is Greek” is 

(omitting the rapidity of the succession) 

(3*. y,*).a;ea.ye&.zey.xlywxlzKjylzCiA. 

It is obvioas that this is not a function of p as p occurs in a truth-function. 

42—3 



GG2 APPENDIX C 

11 we now take up ".l believes />.” we find the matter rather more com¬ 

plicated, owing to doubt as to what constitutes belief. Some people maintain 

that a proposition must be expressed in words before we can believe it: if 

that were so, there would not. from our point of view, be any vital difference 

between believing and asserting. But if we adopt a less unorthodox stand¬ 

point, we shall say that when a man believes “Socrates is Greek" he has 

simultaneously two thoughts, one of which “ means ’ Socrates while the other 

“ ttH-ans Greek, and these two thoughts are related in the way we call 

“predication.” It is not necessary for our purposes to define “meaning," 

beyond noticing that two different thoughts may “have the same meaning." 

The relation having the same meaning" is symmetrical and transitive; 

moreover, if two thoughts “have the same meaning,” either can replace the 

oth. r in any belief without altering its truth-value. Thus we have one class 

of thoughts, called “ Socrates." which all “have the same meaning"; call this 

class a. We have another class of thoughts, called " Greek," which all “ have 

the same meaning ; call this class Call the relation of predication between 

two thoughts P. (This is the relation which holds between our thought of 

the subject and our thought of the predicate when we believe that the subject 

has the predicate. It is wholly different from the relation which holds between 

the subject find the predicate when our belief is true.) Then "A believes 

that Socrates is Greek " is 

<:*K. &)•***•!/*&. jP'J . X, j/‘t C‘A. 

Here, again, the proposition .as it occurs in truth-functions has disappeared. 

It is not necessary to lay any stress upon the above analysis of belief, 

which may bo completely mistaken. All that is intended is to show that 

"A believes p may very well not be a function of />. in the sense in which 

p occurs in truth-functions. 

Wo have now to consider "p is about A.” e.g. “ * Socrates is Greek ’ is about 

Socrates." Here wc have to distinguish (1) the fact, (2) the belief, (3) the 

verbal proposition. The fact and the belief, however, do not raise separate 

problems, since it is fairly clear that Socrates is a constituent of the fact in 

the same sense in which the thought of Socrates is a constituent of the belief. 

And tlie verbal proposition raises no difficulty, since each instance of the 

verbal proposition is a series containing a part which is an instance of 

" Socrates." That is to say, “ Socrates ” (the word) is a class of scries of noises, 

say \; and “ Socrates is Greek ” is another class of series, say p; and the fact 

that “ Socrates " occurs in “ Socrates is Greek " is 

Pep.D .(aQKQcX.QGP. 

Thus we are left with the question : What do we mean by saying that Socrates 

is a constituent of the fact that Socrates is Greek ? This raises the whole 

problem of analysis. But we do not need an ultimate answer; we only need 
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an answer sufficient to throw light on the question whether there are functions 

of propositions which are not truth-functions. 

There are those who den}' the legitimacy of analysis. Without admitting 

that they are in the right, we can frame a theory which they need not reject. 

Let us assume that facts are capable of various kinds of resemblances and 

differences. Two facts may have particular-resemblance; then we shall say 

that they are about the same particular. Again they may have predicate- 

resemblance, or dyadic-relation-resemblance, or etc. We shall say that a fact 

is about only one particular if any two facts which have particular-resemblance 

to the given fact have particular-resemblance to each other. Given such a 

fact, we may define its one particular as the class of all facts having particular- 

resemblance to the given fact. In that case, to say that Socrates is a con¬ 

stituent of the fact that Socrates is Greek (assuming conventionally that 

Socrates is a particular) is to say that the fact is a member of the class of 

facts which is Socrates. In the case of a belief about .Socrates, which is itself 

a fact composed of thoughts, we shall say that a belief is about Socrates if it 

is one of the class of facts constituting a certain idea which “ means ” Socrates 

in whatever sense we may give to “ meaning.” Here an “ idea ” is taken to be 

a class of psychical facts, say all the beliefs which “refer to” Socrates. 

We can define predicates by a similar procedure. Take a fact which is 

only capable of two kinds of resemblance such as we are considering, namely 

particular-resemblance and predicate-resemblance; such a fact will be a 

subject-predicate fact. The predicate involved in it is the class of facts to 

which it has predicate-resemblance. 

We shall assume also various kinds of difference: particular-difference, 

predicate-difference, etc. These are not necessarily incompatible with the 

corresponding kind of resemblance; e.g. It (x, x) and R (x, y) have both 

particular-resemblance in respect of x and particular-difference in respect of 

y. This enables us to define what is meant by saying that a particular occurs 

twice in a fact, as x occurs twice in R(x,x). First: R{x,x) is a dyadic- 

relation-fact because it is capable of dyadic-relation-resemblance to other facts; 

second: any two facts having particular-resemblance to R (x, x) have particular- 

resemblance to each other. This is what we mean by saying that R(x, x) is a 

dyadic-relation-fact in which x occurs twice, not a subject-predicate fact. Take 

next a triadic-relation-fact R(x,x,z). This is, by definition, a triadic-relation- 

fact because it is capable of triadic-relation-resemblance. The facts having 

particular-resemblance to R(x, x, z) can be divided into two groups (not three) 

such that any two members of one group have particular-resemblance to each 

other. This shows that there is repetition, but not whether it is x or z that 

is repeated. The facts of the one group are R (x, x, c) for varying c; the facts 

of the other are R (a, b, z) for varying a and b. Each fact of the group R (x, x, c) 

belongs to only two groups constituted by particular-resemblance, whereas 
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tin* tacts of the* group R{n, b, z)% except when it happens that a = b, belong 

t«» throe groups constituted by particular-resemblance. This defines what is 

un-ant by saying that x occurs twice and z once in the fact R (x, .r, z). It is 

obvious that we can deal with tctradic etc. relations in the same way. 

According to the above, when we say that Socrates is a constituent of the 

lad that Socrates is Greek, we mean that this fact is a member of the class 

of facts which is Socrates. 

W hen we use the notation “falx" to denote a proposition in which “ x" 

occurs, it is a fact that '* .r " occurs in “falx" but we do not need to assert 

the- tact; the fact does its work without having to be asserted. It is also a 

fad that, if " x ” occurs in a proposition p, ami p asserts a fact, then x is a 

constituent of that fact. This is not a law of logic, but a law of language. It 

might be false in some languages. For instance, in former days, when a crime 

was committed in India, the indictment stated that it was committed “in the 

manor of Hast (Jreemvich. These words did not denote any constituents of 

the fact. Hut a logical language avoids fictions of this kind. 

Tim notation for functions is an illustration of Wittgenstein’s principle, 

that a logical symbol must, in certain formal respects, resemble what it sym¬ 

bolizes. All the facts of which x is a constituent, according to the above, 

constitute a certain class defined by particular-resemblance. The various 

symbols far, fax, %x,... also all resemble each other in a certain respect, namely 

that their right-hand halves are very similar (not exactly similar, because no 

two ./'s are exactly alike). The symbols R (x.x). R(x,x,z), etc. are appropriate 

to their meanings for similar reasons. The symbols are used before their 

suitability can be explained. To explain why “far" is a suitable symbol for a 

proposition about x is. as we have seen, a complicated matter. But to use the 

symbol is not a complicated matter. Our symbolism, as a set of facts, resembles, 

in certain logical respects, the facts which it is to symbolize. This makes it 

a good symbolism. But in using it we do not presuppose the explanation of 

why it is good, which belongs to a later stage. Ami so the notation “far" can 

be used without first explaining what we mean by “a proposition about x" 

Wc are now in a position to deal with the difference between propositions 

considered factually and propositions as vehicles of truth and falsehood. When 

we say "'Socrates’ occurs in the proposition ‘Socrates is Greek,”’ we are 

taking the proposition factually. Taken in this way, it is a class of series, and 

' Socrates ’ is another class of series. Our statement is only true when we take 

the proposition and the name as classes. The particular * Socrates ’ that occurs 

at the beginning of our sentence does not occur in the proposition ‘Socrates 

is Greek’; what is true is that another particular closely resembling it occurs 

in the proposition. It is therefore absolutely essential to all such statements 

to take words and propositions as classes of similar occurrences, not as single 

occurrences. But when we assert a proposition, the single occurrence is all 
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that is relevant. When I assert “ Socrates is Greek,” the particular occurrences 

of the words have meaning, and the assertion is made by the particular oc¬ 

currence of that sentence. And to say of that sentence Socrates’ occurs in 

it” is simply false, if I mean the ‘Socrates’ that I have just written down, 

since it was a different ‘ Socrates’ that occurred in it. Thus we conclude: 

A proposition as the vehicle of truth or falsehood is a particular occurrence, 

while a proposition considered factually is a class of similar occurrences. It is 

the proposition considered factually that occurs in such statements as "A 

believes p ” and “p is about A." 

Of course it is possible to make statements about the particular fact 

“ Socrates is Greek.” We may say how many centimetres long it is; we may 

say it is black ; and so on. But these are not the statements that a philosopher 

or logician is tempted to make. 

When an assertion occurs, it is made by means of a particular fact, which 

is an instance of the proposition asserted. But this particular fact- is, so to 

speak, “transparent”; nothing is said about it, but by means of it something 

is said about something else. It is this “ transparent ” quality which belongs 

to propositions as they occur in truth-functions. This belongs to p when p is 

asserted, but not when we say “ p is true.” Thus suppose we say: “All that 

Xenophon said about Socrates is true.” Put 

X (/>).*= • Xenophon asserted p, 

S (/>). = . p is about Socrates. 
Then our statement is 

X (p). S (p) . Dp . p is true. 

Here the occurrence of p is not “ transparent.” But if we say 

x e a . Dx . <f>! x 

we are asserting <i>! x for a whole class of values of x, and yet “ <f>lx'' still has 

a “transparent” occurrence. The essential difference is that in the former 

case we speak about the symbol or belief, whereas in the latter we merely use 

it to speak about something else. This is the point which distinguishes the 

occurrences of propositions in mathematical logic from their occurrences in 

non-truth-functions. 

Let us endeavour to give greater definiteness to this point. Take the 

statement “Socrates had all the predicates that Xenophon said he had." Let 

the series of events which was Xenophon be called X. Then if Xenophon 

attributed the predicate a to Socrates, we might appear to have (writing 

x -i y X z -i w f°r series x, y, z, w) 

Socrates X had X predicate |aGX 

Thus our assertion would be 

Socrates ^ had ^ predicate ^ a G X . . Socrates had predicate a. 

Here, however, there is an ambiguity. On the left, “ Socrates,” “ had,” “ pre¬ 

dicate” and “a” occur as noises; on the right they occur as symbols. This 
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ambiguity amounts to a fallacy. For, in fact, what I write on paper is not the 

noise that Xenophon made, but a symbol for that noise. Thus I am using 

one symbol " Socrates " in two senses: (a) to mean the noise that Xenophon 

made on a certain occasion. (M to mean a certain man. We must say : 

If Xenophon made a series of noises which mean what is meant by “Socrates 

had the predicate a," then what this means is true. 

For example: If Xenophon said “Socrates was wise,” then what is meant 

by “Socrates was wise” is true. 

Hut this does not assert that Socrates was wise. When I actually assert 

that Socrates was wise, I say something which cannot be said by talking about 

the words I use in saying it; and when I assert that Socrates was wise, although 

an instance of t he proposition occurs, yet I do not say anything whatever about 

the proposition — in particular I do not say that it is true. This is an inference, 

not logical, but linguistic. 

If the above considerations in any way approximate to the truth, we see 

that there is an absolute gulf between the assertion of a proposition and an 

assertion about, the proposition. The p that occurs when we assert p and the 

p that occurs in "A asserts p " are by no means identical. The occurrence of 

propositions as asserted i*» simpler than their occurrence as something spoken 

about. In the assertion of a proposition, and in the assertion of any molecular 

function of a proposition, the proposition does not occur, if we mean by the 

proposition the p that occurs in such propositions as " A asserts p " or "p is 

about A." When these latter are analysed, they are found not to conflict with 

the view that propositions, in the sense in which they occur when they are 

asserted, only occur in truth-functions. 

When p is asserted, p does not really occur, but the constituents of p occur, 

or an instance of p occurs. The same is true when a molecular proposition 

containing p is asserted. Thus we cannot infer p = tj, because here p and 7 

occur in a sense in which they do not occur when molecular propositions con¬ 

taining them are asserted. 

Similar considerations apply to propositional functions. Suppose there are 

two predicates a and f3 which are always found together: we may still say 

that they are two, on the ground that a(.r) and £ {x) are fact* which do not 

have predicate-resemblance. Hut the propositional function a (.'!') is solely to 

be used in building up matrices by means of the stroke. The predicate a is 

a class of facts, whereas the propositional function a (?) is merely a symbolic 

convenience in speaking about certain propositions. Thus we may have 

a (?) = &(?) without having a = &. In this way we escape the primd facie 

paradoxes of the theory that propositions only occur in truth-functions, and 

propositional functions only occur through their values. The paradoxes rest 

on the confusion between factual and assertive propositions. 



LIST OF DEFINITIONS 

101. pO<j 13 03. x ~y = z 

233. pvqvr 14 01. [(?*) (<f>x)] . + (ix) (<f>x) 

301. p.q 14 02. E l(ix)(<t>x) 

302. p D q D r 14 03. [(»x)(^),0.r)(^)] ./[(ia:)(<px), 

(ix)(>jrx)) 

14 04. [OxX'l'*)].f{Ox)($x)Xlx)('lrx)\ 401. P = 9 

402. p = t/ = r 20 01. f\$(>\rz)) 

4-34. p.q .r 20 02. xe(<t>l$) 

901. ~ {(«). <M 2003. CIs 

9011. ~(x). <f>x 20 04. x,y e a 

902. —{(a :«)•♦*) 20 05. x,y,zea 

9021. ~(Rx) . <f>x 20 06. x~ea 

903. (x).<f>x.v.p 20 07 (<*)./« 

904. p • V . (x) . <t>x 20 071. (a«)./« 

905. (•7{x) . <px . V ,p 20 072. [(?a) (<*>a)] . /(?«) (<*>a) 

906. p • v. (g*). <t>x 20 08. /|5(Vra)| 

907. (x). <f>x. v . (ay) • iry 20 081. a e yfr l a 

908. (ay) . yfrr/ . v . (x) . <f>x 2101. /f£p*(*.y)l 

1001. <3*>. 4>x 2102. a 

1002. <f>x Dx \frx 2103. Rel 

1003. (f>x =x yjrx 21 07. (72) .fit 

1101. (x,y).<f>(x,y) 21*071. (a«)-/« 

1102. (x, y,z) . <f> (x, y, z) 21072. [(»/*) (4>R)] .f{iR) (<f>R) 

1103. <a*> y) • <t> (*, y) 2108. 

1104. (a37. y>z)-4> (x> y>z) 21 081. P {<f>! <£, S)) Q 

1106. <f>(x,y).Dx.v.yfr(x,y) 21082. /(^(^i2)| 

1106. <f>(x,y).=miy.yfr(x,y) 21083. Re<f>lR 

1301. *=y 2201. flC/3 

1302. x^y 2202. arx& 



008 LIST OF DEFINITIONS 

2203. 34 03. R- 

2204. — a 3501. <*1 R 

2205. 3502 ji r/3 

2253. a r\ ft r\ y 35 03. 

2271. 35 04. 

23 01. It G .S' 3505. R‘* T 0 

2302. li*S 35 24 a-\R\S 

2303. It u .S’ 3525. S\Rf 0 

2304. ^ It 3601. n« 
2305. It - .S’ 3701. R"0 

2353. It* S* T 37 02. R. 

2371. It u .S’ o T 37 03. li. 

2401. V 37 04. R"'k 

2402. A 37 05. E !! R“0 

2403. a 3801. •'? 

2501. V 3802. 

2502. A 38 03. «1>J 

2503. a** 4001. p‘« 
3001. It*!/ 4002. S*K 

3002. &&•/ 4101. j/\ 

3101. Cnv 4102. s*\ 

3102. I* 4301. R\\S 

3201. It 5001. I 

3202. tT 5002. J 

3203. sg 5101. i 

3204. gs 5201. 1 

3301. i) 5401. 0 

3302. a 54 02. 2 

3303. c 5501. xlu 
3304. F 6502. 

3401. R\S 5601. 2 

34 02. Ri 56*02. 2r 



LIST OF DEFINITIONS 669 

5603. 0, 65 03. R* 

6001. Cl 6504. R(x) 

6002. Cl ex 651. R(x .y) 

6003. Cls3 6511. 

6004. Cls3 65 12. R(x,y) 

6101. R1 7001. 

6102. R1 ex 7301. a sm >9 

6103. Rel3 7302. sm 

6104. Rel3 8001. r* 

6201. € 8401. Cls3 excl 

6301. t‘x 84 02. Cl excl'? 

63011. tux 84 03. Cls ex3 excl 

6302. 855. plv 
63 03. ti . 8801. Rel Mult 

6304. tux 88 02. Cls3 Mult 

63041. tux 8803. Mult ax 

6305. t*K 9001. R* 

63051. U'k 9002 R» 

6401. Ua 9101. R.t 

64 011. t"‘x 9102. Ru 

64 012. t”‘x 9103. Pot-R 

64013. t*‘x 9104. Potid-R 

64 014. twx 9105. iJpo 

64 02. tn*a . 93 01. B 

64 021. tio'a 9302. rain/. 

64 022. tu‘« 93021. max/. 

64 03. U‘a 9303. gen'P 

64 031. Uu« 9601. <P*Q) Dft [*95] 

6404. V« 9601. JR*x Dft [*96] 

64-041. V« 96 02. JR‘x Dft [*96] 

65*01. 9701. R‘x 

6502. a(x) 10001. Nc 



670 LIST OF DEFINITIONS 

10002. XC 11201. 

10201. NCd(a) 11202. 2Nc‘* 

10301. X0c *a 11302. £ X Q 

10302. N„C 11303. M Xc" 

10401. X'c'a 11304. Nc‘£ xcft 

104011. XVa 11305. ft xc Nc‘a 

104 02. X'C 113511. a x x 7 

104 021. N*C 113541. /x x0 i/ xc cr 

104 03. 11401. IINV* 
104 031. n* 11501. Prod‘* 

10501. X,c-« 11502. C Is5 atri thm 

105011. X,c‘« 11601. a exp/3 

10502. N,C 11602. 

105021. x,c 116 03. (Nc‘a)* 

10503. M(l» 11604. 

105031. 11701. 

10601. N,oC*a 11702. ft > Nc‘a 

106011. N»'c‘a 11703. Nc‘a > »» 

106012. Nolc‘a 11704. ft<v 

106 02. N0'c‘a 11706. ft^v 

106021. •NoC‘a 11706. ft^v 

106 03. N«C 11901. y-c* 

106 04. /*«»» 11902. Xc‘a —0*/ 

106041. 11903. 7-cNc‘/3 

11001. a 4- /3 12001. NC induct 

11002. 120011. N<C induct 

11003. Nc‘a +o /a 12002. Cls induct 

11004. M +c Nc‘a 120021. Clsf induct 

110561. +0 ^ +0 12003. Infin ax 

11101. * sui 8m X 12004. Infin ax (*) 

11102. Crp 12043. spec‘/3 

11103. Sill Sill 12101. P(,*-y) 



LIST OF DEFINITIONS 

121011. P (x —t y) 161213. x*±y 4+ P 

121 012. P (x y) 16201. 2‘P 

121013. P(xhi/) 16301. ReP excl 

12102. P* 16401. Psmor smor 

12103. finid'P 16402. smor smor 

121031. fin‘P 16601. QxP 

12104. Vp 166 421. PxQxP 

12201. Prog 17001. Pc 

12301. No 17002. P .c 

12302. N Dft [*123—4] 17101. Pdf 

12401. Cls refl 17102. Pm 

12402. NCrefl 17201. Tl‘P 

124 021. Nc*p e NC refl 17301. Prod‘P 

124 03. NC mult 17401. RcParithm 

12601. NCind 17601. P exp Q 

16001. S'>Q 17602. po 

16002. SfQ 18001. P + Q 

16003. Q%y 
18002. fit + v 

16004. R'S'yQ 18003. Nr ‘P + v 

16006. R'’S'’Q 18004. fit- + Nr ‘Q 

16101. P emor Q 180 661. fit -i- v + w 

16102. smor 18101. P 

16201. Nr 181011. x+¥ P 

16202. NR 18102. M + l 

16301. 1. 
181021. i + b 

16401. NRr(2T) 18103. Nr‘/> + i 

16601. Nor‘P 181-031. i + Nr‘.P 

16602. N0R 18104. i + i 

160,01. P*Q 
181661. m + 1 + 1 

16101. P -\+x 181-671. 14-14-/* 

16102. xM-P 18201. S 

161-212. P-frx-fry 18301. 2Nr‘P 



672 LIST OF DEFINITIONS 

18401. A* X v 23101. PR~Q 
184 02. Nr‘P x * 23102. PK..Q 

184 03. m X Nr‘« 232 01. (PRQ)^a 

18432. n X v X ST 23202. (P RQ)0,‘a 

18501. nNr‘7* 23301. (.PPQbmx 
18601. A* expr v 23302. R(PQ) 
186 02. (Nr*7J)expr v 23401. sc (P.Qyii 

186 03. Aicxp, (Nr*Q) 234 02. os (P.QYli 

20101. trails 234 03. chPQ)‘P 

20201. cnnncx 234 04. con tin (7*<2)*7? 

204 01. Ser 234 05. /* con tin Q 

20601. se«|/. 25001. Bord 

206 02. prcci* 25002. il 

20701. It/. 25101. NO 

207 02. tl /. 25401. less 

207 03. limax/. 254 02. A*. 
207 04. limin/- 25501. < 

208 01. cror‘7* 25502. > 

21101. sect* 1* 25503. N0O 

21201. 9*7* 26504. 

21202. syni‘7* 25505. 

21301. A 25506. /X< Nr‘7* 

21401. Dccl 25607. Nr‘7* < 

21402. semi I)ed 25601. M Dft [*256] 

21601. str'P 25602. TV Da [*256] 

21601. Si- 25701. (7i*Q)*x 

216 02. dense* P 25702. Q,u 

21603. closed*/* 25901. A Da [*256] 

21604. perPP 25902. A Ir Da [*256] 

21606. V*7J 25903. wA 

23001. 72<2c„« 26001. An 

23002. Qcn 26101. Ser infin 



LIST OF DEFINITIONS 673 

26102. fl infin 27604. TP Dft [*276] 

26103. Ser fin 27605. TV* Dft [*276] 

26104. n fin 30001. U 

26105. H induct 30002. Rel num 

262 01. NO fin 30003. Rel num id 

26202. NO infin 30101. Rp Dft [*301] 

26203. Hr 30102. num (R) Dft [*301] 

26301. CO 30103. R* 

263 02. N Dft [*263] 30201. Prm 

26401. Ppr Dft [*263] 30202. (p, <x) Prmr (p, v) 

264 429. 1 X a 30203. (p, a) Prm (p, v) 

26501. a>, 302 04. hcf (p,v) 

26502. N, 302 05. 1cm (p, u) 

26503. 0>i 30301. p/v 

26504. 303 02. 0, 

26505. M Dft [*265] 30303. 00, 

26606. N Dft [*265] 30304 Rat 

27001. Comp 30305. Rat def 

27101. med 30401. X<rY 

27201. Tpq 304 02. H 

27301. V 304 03. H' 

27302. Rspq'T Dft [*273] 30501. X x, Y 

27303. (RS)pq Dft [*273] 30601. X+.Y 

27304. TRSPQ Dft [*273] 30701. Rat „ 

27401. Rn 307011. Rat, 

27402. Pn>‘« Dft [*274] 307 02. <n 

27403. Tp‘« Dft [*274] 307 021. >n 

27404. Mp<K Dft [*274] 307 03. <* 

27601. e 307 031. >* 

27601. Ps 307 04. Hn 

27602. A Dft [*276] 307*05. u. 

27603. Pm‘\ Dft [*276] 30801. X-.Y 



C74 LIST OF DEFINITIONS 

30802. -Y +, Y 33401. 

30901. X x, r 334 02. FM trs 

31001. (-) 334 03. FM connex 

310011. c-r 334 04. FM sr 

31002. ©n 334 05 FM sisyin 

310021. 33501. init'* 

31003 <->* 33502 FM init 

31101. concord (/*,«». ...) 33601. K 

31102. M +/*v 336011. u. 

31201. H-,.v 336 02. An 

31202. H +„ v 35101. FM subin 

31301. H- x«. v 35201. T. 

31401. X +r Y 35202. Tm 

31402. X x( Y 35301. FM rt 

31403. 35302. FM ex 

31404. M +„ N 35303. FM rt ex 

31405. M x. N 35401. *9 

33001. ci ‘a 36402. cxn*\ 

33002. Abel 354 03. FMgrp 

33003. fin'a 35601. xm 

33004. FM 37001. FM cycl 

33005. K* 37002. K. 

33101. etmx** 37003. /. 

33102. FM conx 37101. wm 

33201. rep,‘P 37201. V. 

33301. *5 
37301. M„ Dft [#373—5] 

333011. K*b 
37302. Prime 

33302. FM up 37303. Dft [#373—5] 

33303. FM sip conx 37601. (/*/*)« 



CAMimiMiR: pniKTrn by 

W. LRWI8 

AT Tlir UNIVRBHITY PBF.B8 


